
RaPping and Compilation
for Highly Dynamic Parallelism

Gregor Snelting

KIT – Research University of the Helmholtz Association

Presentation at ANDREAS-50, 26.2.16

www.kit.edu

http://www.kit.edu

Background

SFB Transregio InvasIC: FAU, KIT, TUM

new language, soft- and hardware for highly dynamic parallelism

3 universities, 15 PIs, 50 doctoral researchers

DFG funding 2010–2018 (2022?)

Scenario: big heterogenous PGAS architectures, several kCores / Tile
Goal: support highly dynamic parallelism through all system levels

2 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Background

SFB Transregio InvasIC: FAU, KIT, TUM

new language, soft- and hardware for highly dynamic parallelism

3 universities, 15 PIs, 50 doctoral researchers

DFG funding 2010–2018 (2022?)

Scenario: big heterogenous PGAS architectures, several kCores / Tile

Goal: support highly dynamic parallelism through all system levels

2 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Background

SFB Transregio InvasIC: FAU, KIT, TUM

new language, soft- and hardware for highly dynamic parallelism

3 universities, 15 PIs, 50 doctoral researchers

DFG funding 2010–2018 (2022?)

Scenario: big heterogenous PGAS architectures, several kCores / Tile
Goal: support highly dynamic parallelism through all system levels

2 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Background

SFB Transregio InvasIC: FAU, KIT, TUM

new language, soft- and hardware for highly dynamic parallelism

3 universities, 15 PIs, 50 doctoral researchers

DFG funding 2010–2018 (2022?)

Scenario: big heterogenous PGAS architectures, several kCores / Tile
Goal: support highly dynamic parallelism through all system levels

2 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP to the Future

Fundamental idea: Resource-aware programming

applications dynamically determine their resource requirements

allocate and release resources (in particular CPUs) dynamically

supported by language, compiler, OS, and dedicated hardware

=⇒ optimize resource utilization, energy consumption, fault tolerance

Slogan (J. Teich): “Invade, infect, combat, retreat”

i-let

- invade

- infect

- retreat

- …

- permission

- speed

- utilization

- power/

temp

- fault/error

- permission

- speed

- utilization

- power/

temp

- fault/error

3 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP to the Future

Fundamental idea: Resource-aware programming

applications dynamically determine their resource requirements

allocate and release resources (in particular CPUs) dynamically

supported by language, compiler, OS, and dedicated hardware

=⇒ optimize resource utilization, energy consumption, fault tolerance

Slogan (J. Teich): “Invade, infect, combat, retreat”

i-let

- invade

- infect

- retreat

- …

- permission

- speed

- utilization

- power/

temp

- fault/error

- permission

- speed

- utilization

- power/

temp

- fault/error

3 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Example: InvasIC Multi-Tile MPSoC

tiles: RISC multicore, memory, I/O, TCPA, ...
3 applications have invaded the example tiles

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU

i-Core CPU

CPU

i-Core CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

N
A

N
A Memory

N
A

N
A Memory

N
A

N
A Memory

N
A Memory

N
A

N
A

App. 1

App. 3App. 2

CPU

CPU

Demonstrator implemented via FPGAs

4 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Fundamental InvasIC Ingredients

Dynamic X10 + Compiler: see below

constraint system: attribute hierarchy for resource selection

OctoPos OS: dedicated scheduling, load balancing

Agent system: priorizes / allocates dynamic resource requests

CiC: hardware support on local tile for app code dispatch / monitoring

NoC: network on chip

i-core: adaptive hardware supporting specific accelerators

TCPAs: support (numerical) loop parallelization

Further aspects:

applications: HPC, robotics

dark silicon: dynamic selection of non-overheated cores etc.

predictability: soft realtime and security

hardware sensors: temperature, speed, fault status etc

...

5 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Fundamental InvasIC Ingredients

Dynamic X10 + Compiler: see below

constraint system: attribute hierarchy for resource selection

OctoPos OS: dedicated scheduling, load balancing

Agent system: priorizes / allocates dynamic resource requests

CiC: hardware support on local tile for app code dispatch / monitoring

NoC: network on chip

i-core: adaptive hardware supporting specific accelerators

TCPAs: support (numerical) loop parallelization

Further aspects:

applications: HPC, robotics

dark silicon: dynamic selection of non-overheated cores etc.

predictability: soft realtime and security

hardware sensors: temperature, speed, fault status etc

...
5 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

PP Group @ InvasIC

People: Gregor Snelting, (Matthias Braun),
Sebastian Buchwald, Manuel Mohr, Andreas Zwinkau

Contributions:

framework design (based on X10)

fundamental RaP examples

compiler, library, RTS

code generation for MPSoCs

optimizations for InvasIC OS / hardware

interfaces to simulator, OS, TCPA subcompiler [FAU], ...

application support

6 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

PP Group @ InvasIC

People: Gregor Snelting, (Matthias Braun),
Sebastian Buchwald, Manuel Mohr, Andreas Zwinkau

Contributions:

framework design (based on X10)

fundamental RaP examples

compiler, library, RTS

code generation for MPSoCs

optimizations for InvasIC OS / hardware

interfaces to simulator, OS, TCPA subcompiler [FAU], ...

application support

6 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Basic RaP Patterns & Constraints

fundamental “invade/infect/retreat” pattern (X10) uses closure for app code:

1 val ilet = (id:IncarnationID) => {
2 do_something(id);
3 };
4 claim = Claim.invade(constraints)
5 claim.infect(ilet)
6 claim.retreat()

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

FPUAvailable
LocalMemory

Type
LatencyToMaster

LatencyToMemory

ThisPlace
SetConstraints

PEQuantity

PartitionConstraints

PlaceCoherent
LatencyWithinTeam

TileSharing

Hint

ScalabilityCurve
AppClass

PotentiallyFewerPEs
PotentiallyMorePEs

“reinvade()” allows OS to adapt resources
“reinvade(nC)” allows app to reallocate

1 claim.infect(ilet)
2 // optimize resource allocation:
3 val changed1 = claim.reinvade()
4 claim.infect(ilet)
5 // respecify resource needs
6 val changed2 = claim.reinvade(otherConstraints)

7 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Basic RaP Patterns & Constraints

fundamental “invade/infect/retreat” pattern (X10) uses closure for app code:

1 val ilet = (id:IncarnationID) => {
2 do_something(id);
3 };
4 claim = Claim.invade(constraints)
5 claim.infect(ilet)
6 claim.retreat()

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

FPUAvailable
LocalMemory

Type
LatencyToMaster

LatencyToMemory

ThisPlace
SetConstraints

PEQuantity

PartitionConstraints

PlaceCoherent
LatencyWithinTeam

TileSharing

Hint

ScalabilityCurve
AppClass

PotentiallyFewerPEs
PotentiallyMorePEs

“reinvade()” allows OS to adapt resources
“reinvade(nC)” allows app to reallocate

1 claim.infect(ilet)
2 // optimize resource allocation:
3 val changed1 = claim.reinvade()
4 claim.infect(ilet)
5 // respecify resource needs
6 val changed2 = claim.reinvade(otherConstraints)

7 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Basic RaP Patterns & Constraints

fundamental “invade/infect/retreat” pattern (X10) uses closure for app code:

1 val ilet = (id:IncarnationID) => {
2 do_something(id);
3 };
4 claim = Claim.invade(constraints)
5 claim.infect(ilet)
6 claim.retreat()

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

FPUAvailable
LocalMemory

Type
LatencyToMaster

LatencyToMemory

ThisPlace
SetConstraints

PEQuantity

PartitionConstraints

PlaceCoherent
LatencyWithinTeam

TileSharing

Hint

ScalabilityCurve
AppClass

PotentiallyFewerPEs
PotentiallyMorePEs

“reinvade()” allows OS to adapt resources
“reinvade(nC)” allows app to reallocate

1 claim.infect(ilet)
2 // optimize resource allocation:
3 val changed1 = claim.reinvade()
4 claim.infect(ilet)
5 // respecify resource needs
6 val changed2 = claim.reinvade(otherConstraints)

7 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Example: Invasive Quicksort

Sequential X10 code:
1 public static def sort(data: Array[Int](1)) =
2 qsort(data, 0, data.size -1);
3

4 private static def qsort(
5 data: Array[Int](1),
6 left: Int,
7 right: Int)
8 {
9 if (data.size>1) {

10 val p = partition(data, left, right);
11 val i = p.first;
12 val j = p.second;
13 qsort(data, left, i);
14 qsort(data, j, right);
15 }
16 }

8 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Goal: Parallelize Recursion

Pedagogical engineering on this part:
1 qsort(data, left, j);
2 qsort(data, i, right);

Requirements:

Invasive

Multi-core

Multi-tile

Dynamically Resource-aware

Disclaimer:

Pedagogical example
e.g. does not parallelize partition step

9 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Handling the two parts

After decision to parallelize: two parallel program paths
1. qsort()
2. invade() + (copying) + qsort() + (copying) + retreat()

Important: large and small part, not left and right

Hope: tlarge ≈ tinvade + tcopying1 + tsmall + tcopying2 + tretreat

⇒ Always handle large part locally

⇒ try to handle small part on new PE

tlarge ≈

tretreat

tcopying2

tinvade
tcopying1

tsmall

10 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 1: Invasive Single-Tile

small part runs on new core in local tile (X10: “ThisPlace”)

“isInvasionWorthwhile()”: user defined; checks new thread for small part;
based on problem size, processor speed, invade latencies, ...

Decision tree:

handle large locally
isInvasionWorthwhile(small)?

c = ThisPlace

invade(c) succeeded?

infect()

true

handle small locally

false

true

handle small locally

false

11 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 1: Invasive Single-Tile

small part runs on new core in local tile (X10: “ThisPlace”)

“isInvasionWorthwhile()”: user defined; checks new thread for small part;
based on problem size, processor speed, invade latencies, ...

Decision tree:

handle large locally
isInvasionWorthwhile(small)?

c = ThisPlace

invade(c) succeeded?

infect()

true

handle small locally

false

true

handle small locally

false

11 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 1: X10 Code

1 finish {
2 if (large.size > 1) { async qsort(large); }
3 if (isInvasionWorthwhile(small)) {
4 val constraints = new AND(); // constraint system
5 constraints.add(new PEQuantity(0, 1));
6 constraints.add(new ThisPlace());
7 constraints.add(new ScalabilityHint([100, 190]));
8 val claim = Claim.invade(constraints);
9 if (claim.size() == 1) {

10 val ilet = (id: IncarnationID) => qsort(small);
11 claim.infect(ilet);
12 } else { qsort(small); }
13 claim.retreat();
14 } else if (small.size > 1) {
15 qsort(small);
16 }
17 }

12 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 2: Invasive Multi-Tile
small part runs on new tile

“isRemoteWorthwhile()” checks new tile for small part;
based on problem size, tile attributes, network latencies, ...

Decision tree:

handle large locally
isInvasionWorthwhile(small)?

isRemoteWorthwhile(small)?

c = PreferOtherPlace

invade(c) ok?

infect()

true

small

locally

false

true

c = ThisPlace

invade(c) ok?

infect()

true

small

locally

false

false

true

handle small locally

false

13 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 2: Invasive Multi-Tile
small part runs on new tile

“isRemoteWorthwhile()” checks new tile for small part;
based on problem size, tile attributes, network latencies, ...

Decision tree:

handle large locally
isInvasionWorthwhile(small)?

isRemoteWorthwhile(small)?

c = PreferOtherPlace

invade(c) ok?

infect()

true

small

locally

false

true

c = ThisPlace

invade(c) ok?

infect()

true

small

locally

false

false

true

handle small locally

false

13 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 2: X10 Code

1 finish {
2 if (large.size > 1) { async qsort(large); }
3 if (isInvasionWorthwhile(small)) {
4 val constraints = new AND();
5 constraints.add(new PEQuantity(0, 1));
6 if (isRemoteWorthwhile(small)) {
7 constraints.add(new PreferOtherPlace());
8 constraints.add(new ScalabilityHint([100, 160]);
9 } else {

10 constraints.add(new ThisPlace());
11 constraints.add(new ScalabilityHint([100, 190]);
12 }
13 val claim = Claim.invade(constraints);
14 if (claim.size() == 1) {
15 val ilet = (id: IncarnationID) => qsort(small);
16 claim.infect(ilet);
17 } else {
18 qsort(small);
19 }
20 claim.retreat();
21 } else if (small.size > 1) {
22 qsort(small);
23 }
24 } // finish

14 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 3: Fine Tuning

Other sensible constraints in this example:
ThroughputToMaster, ThroughputToMemory, ThroughputWithinTeam,
LatencyToMaster, LatencyToMemory, LatencyWithinTeam, . . .

General Principle:

Application dynamically crafts its constraints based on locally available
data, e.g. the input size
The larger the input size, the weaker the constraints

Three “levels” in quicksort example

Application decides when it is certainly not sensible to parallelize

Application supplies scalability hints for invade() call

OS (“Agent system”) decides which application actually gets PEs

15 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

RaP 3: Fine Tuning

Other sensible constraints in this example:
ThroughputToMaster, ThroughputToMemory, ThroughputWithinTeam,
LatencyToMaster, LatencyToMemory, LatencyWithinTeam, . . .

General Principle:

Application dynamically crafts its constraints based on locally available
data, e.g. the input size
The larger the input size, the weaker the constraints

Three “levels” in quicksort example

Application decides when it is certainly not sensible to parallelize

Application supplies scalability hints for invade() call

OS (“Agent system”) decides which application actually gets PEs

15 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

The Compiler

working compiler was built with only a few PJ!

front end: adapted from IBM X10 compiler

back end: PP@KIT, based on libFIRM ({ Goos, Hack et al.)
“FIRM is like llvm, only better”

generates code for SPARC (Leon 5)

“invade” etc implemented as OctoPos calls

compiler tested and integrated into demonstrator (FPGA system)

Current work:

specialised optimizations for InvasIC
inference of app characteristics for better load balancing,
infer minimal execution time for “isInvasionWorthwhile()”,
infer efficient i-core configurations (accelerators, permutation instructions, ...),
efficient copying of data to other places,
...

generate code for NoC, i-Core

16 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

The Compiler

working compiler was built with only a few PJ!

front end: adapted from IBM X10 compiler

back end: PP@KIT, based on libFIRM ({ Goos, Hack et al.)
“FIRM is like llvm, only better”

generates code for SPARC (Leon 5)

“invade” etc implemented as OctoPos calls

compiler tested and integrated into demonstrator (FPGA system)

Current work:

specialised optimizations for InvasIC
inference of app characteristics for better load balancing,
infer minimal execution time for “isInvasionWorthwhile()”,
infer efficient i-core configurations (accelerators, permutation instructions, ...),
efficient copying of data to other places,
...

generate code for NoC, i-Core

16 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

The Compiler

working compiler was built with only a few PJ!

front end: adapted from IBM X10 compiler

back end: PP@KIT, based on libFIRM ({ Goos, Hack et al.)
“FIRM is like llvm, only better”

generates code for SPARC (Leon 5)

“invade” etc implemented as OctoPos calls

compiler tested and integrated into demonstrator (FPGA system)

Current work:

specialised optimizations for InvasIC
inference of app characteristics for better load balancing,
infer minimal execution time for “isInvasionWorthwhile()”,
infer efficient i-core configurations (accelerators, permutation instructions, ...),
efficient copying of data to other places,
...

generate code for NoC, i-Core

16 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Case Study: Multigrid Software

Invasive multigrid: solver for part.diff.equations from TUM+KIT

discretization with dynamically varying grid resolutions

application: simulation of laser engraving on metal plate
=⇒ heat equation (Laplace operator) must be discretized and solved

grid levels: N × N, N/2 × N/2, N/4 × N/4, ...

result at timesteps 50/200/450:

17 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

X10 Code + Dynamic Loads
1 vcycle(N, x, b):

2 r = computeResidual(N, x, b)

3 while |r| > threshold:
4 vcycleIteration(N, x, b)

5 r = computeResidual(N, x, b)

6
7
8 vcycleIteration(N, x, b):

9 smoother(N, x, b) # pre-smooth

10 r = residual(N, x, b) # residual

11
12 nc = reinvade(N, claim) # reinvade claim

13
14 Nr = N/2

restricted level

15 rr = restrict(N, r)

restrict residual to new claim
16 er = (Nr, 0)

setup error with 0 values

17
18 nc2 = vcycleIteration(Nr, er, rr)

vcycle

19
20 # redistribute

21 if (nc != nc2):
22 nc = nc2

23 x.redistribute(Nr, nc)

24 b.redistribute(Nr, nc)

25
26 e = prolongate(Nr, er)

prolongate error

27 x = x + e

apply correction

28
29 smoother(N, x, b) # post-smooth

30
31 return nc # possibly modified claim

Four multigrid applications;
combat mode on 38 PEs:

18 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

X10 Code + Dynamic Loads
1 vcycle(N, x, b):

2 r = computeResidual(N, x, b)

3 while |r| > threshold:
4 vcycleIteration(N, x, b)

5 r = computeResidual(N, x, b)

6
7
8 vcycleIteration(N, x, b):

9 smoother(N, x, b) # pre-smooth

10 r = residual(N, x, b) # residual

11
12 nc = reinvade(N, claim) # reinvade claim

13
14 Nr = N/2

restricted level

15 rr = restrict(N, r)

restrict residual to new claim
16 er = (Nr, 0)

setup error with 0 values

17
18 nc2 = vcycleIteration(Nr, er, rr)

vcycle

19
20 # redistribute

21 if (nc != nc2):
22 nc = nc2

23 x.redistribute(Nr, nc)

24 b.redistribute(Nr, nc)

25
26 e = prolongate(Nr, er)

prolongate error

27 x = x + e

apply correction

28
29 smoother(N, x, b) # post-smooth

30
31 return nc # possibly modified claim

Four multigrid applications;
combat mode on 38 PEs:

18 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Conclusion

InvasIC: hard- + software support for resource-aware parallel
programming
Dynamic RaPping based on local estimations:

1. check whether additional resources required,
2. invade resources (= obtain a “claim” of PEs),
3. infect them (= load app code + data to new PEs + execute),
4. combat (= OS balances dynamic resource requests),
5. retreat (= free invaded claims)

PP@KIT: language + compiler + applications

next step: validate resource utilization / energy consumption / fault
tolerance in combat setting on demonstrator system

Thank You!

19 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

Conclusion

InvasIC: hard- + software support for resource-aware parallel
programming
Dynamic RaPping based on local estimations:

1. check whether additional resources required,
2. invade resources (= obtain a “claim” of PEs),
3. infect them (= load app code + data to new PEs + execute),
4. combat (= OS balances dynamic resource requests),
5. retreat (= free invaded claims)

PP@KIT: language + compiler + applications

next step: validate resource utilization / energy consumption / fault
tolerance in combat setting on demonstrator system

Thank You!

19 February 9, 2016 RaPping and Compilation for Highly Dynamic Parallelism

