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EXPONENTIAL GROWTH IS AN ILLUSION
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S. K. Moore, "The node is nonsense," in IEEE Spectrum, vol. 57, no. 8, pp. 24-30, Aug. 2020, doi: 10.1109/MSPEC.2020.9150552.
-> LMC: density of logic (DL), of main memory (DM), and interconnect (DC).




https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

I Faith no Moore

Selected predictions for the end of Moore’s law

1995 2000 2005 2010 2015 2020 2025 2030
G. Moore, Intel ®-==--—-—recn——- -3
Transistors bought per $, m Fre diction Predicted
D. Hutcheson, o _____ - ' Issued end date
VLSI Research <
I. Chuang, IBM Research @======--~. e L1
10
P. Gargani, Intel @=--~ ;|- —
L. Krauss, Case Western, gl | SR S NI B L 2600
& G. Starkman, CERN 200204 06 08 10 12 15
G. Moore, Intel @=====emeed e P 2015-25
Cited reason: M. Kaku, City College of NY @=======meceeae-x -W2021-22
“ Economic limits R. Colwell, DARPA; (formerly Intel) @==========- - 2020-22
W Technical limits
G. Moore, Intel @=====—wesemnmaman B

Sources: Intel; press reports; The Economist


https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

MOORE’S LAW AS OF TODAY

Transistors still getting smaller
Albeit end in sight (probably 3nm)

Careful: prototyping != mass production

. Planar FET FINFET GAAFET MBCFET™
New devices: TFET [1], FEFET [2][3] (Nanowire) (Nanosheet)
(Thomas Theis, 2017) samsung. com

Chips get larger
Size limited by reticle (some NVIDIA GPUs are already at the max)

Chiplets (lego-like silicon bricks)
See Multi-Chip Modules (MCMs) from the 80s/90s

2nd gen AMD Epyc: 8 chiplets

[1] E. Memisevic, et al., "Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mV/decade and lon = 10 uA/um for
loff = 1 nA/um at Vds = 0.3 V," 2016 IEEE International Electron Devices Meeting (IEDM)

[2] S. Salahuddin and and Supriyo Datta, Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,
Nano Letters 2008 8 (2), 405-410

[3] Z. Krivokapic, et al., 14nm Ferroelectric FinFET Technology with Steep Subthreshold Slope for Ultra Low Power Applications, 2017 IEEE
International Electron Devices Meeting (IEDM) 5




DENNARD SCALING

P = CLfCV2 T V]leaka,ge

Results of classic scaling (scaling factor: a)
Higher density (a?)
Lower voltage, capacity (each 1/a)
Higher speed (a)

Active power density (1)

1 x1

v

Y

Scaled Device

Voltage,V/a_>; WIRING ¢
tox/oL

__________

J<—L/a—>
p substrate, doping

Classic Dennard

Oxide: tox /a
Wire width: W/a
Gate width: L/a

Diffusion: Xq4/d
Substrate: a * NA
Voltage: V/a
Current: |/a

o*Na Xd/OL

Pradip Bose, IBM Research, 2014



MICROARCHITECTURE EXAMPLE DRIVEN BY MOORE
(& DENNARD SCALING)
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nstruction _gy Buffer Statict Unit |
Cache |1 L2/3 | e
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Reser- :
vatioali FunLcJ:gi?nal

add rl,r2,r3 station

sub rd,rl,r5
slt ro,r8,r9
bne r6,exit
muld f£0,f2,f4

Reorder |
Buffer
|

Correctness check |
. [
on speculation

| oad/store
queue

More transistors

. Multiple, deep pipelines
Lt G U * Latency minimization & hiding

Locality (spatial/temporal)
Predictable control flow
Partly by Sudha Yalamanchili, Architectural Alternatives for Energy Efficient Performance Scaling, VLSI Conference, 2013

Speculation everywhere




DENNARD SCALING

. 2.60
2
P = afCV?® + Vlicarage 3 ooy o
1 x 11|y 225 ' 1.95
E 150 1.30
* 75 0.65
0 0.00
o X Classic Dennard
Reality today: Post-Dennard Oxide: toy /a
Wiring & leakage power became a major issue Wire width: W/a
Voltage scaling no longer possible Gate width: L/a
V> Vr; Vi > 0.25-0.3V Diffusion: xd¢/a

Power no longer remains constant! Substrate: a * NA

Power budget limits device count (Moore vs. Dennard)

Current: |/a

Pradip Bose, IBM Research, 2014

Voltage



PERFORMANCE SCALING

Perf Instgyziclizons frequency CLASSICAL DENNARD
:r—/ ﬁ: SCALING
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Partly by Bill Dally, Sudha Yalamanchm (UCAA Workshop, 2012)




REGIME | - COMPUTE SPECIALIZATION



POST-DENNARD: TRANSITION TO MASSIVELY
PARALLEL MICROARCHITECTURES

Instruction cache

3
P — f C@_l_ V[l k X f Warp scheduler | Warp scheduler | Warp scheduler | Warp scheduler
eakage

Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch

Interconnect

Register file
T (0 = |
l- ————————————————————————————————————————————————————————— l . . LSO{aOdre/ -
I .
! Integer Write-back |
I I Load /
: - | . | Core | Core g Core Core | Core g Core Store
I
I
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' Instruction !
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! SIMD vector !
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Shared Memory / L1

Frequency reduction

Massively parallel

Replication

In-order pipelines

Energy efficient



REMINDER: BULK-SYNCHRONOUS PARALLEL

A
In 1990, Valiant already described GPU computing bridoing
Model i
pretty well arallol
( hipatat
Superstep omputation
Compute, communicate, synchronize S

Leslie G. Valiant, A bridging model for
parallel computation, Communications of

Parallel slackness: # of virtual processors v, physical “ . ach vorume 35 isue 8, Ave. 1990

Processors p l |munm=m i
v = 1: not viable i S _____.
v = p: unpromising wrt optimality : [ I I
v >> p: leverage slack to schedule and pipeline computation F “faaero
and communication efficiently v

Extremely scalable, bad for unstructured parallelism




OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step
SIMT: single instruction, multiple threads

IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

lllusion of scalar threads: hardware packs them into compound units

IT’S AVECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

13



COMPUTE STACK

Post-Dennard | (specialization): today

Some uarchs tend to actually converge, but
programming models diverge => replicated

compute stacks

Massive parallelization requires structure for
efficient execution

Compute Stack

Application
AN Algorithm
;‘ ramework / Language
| Compiler
AP]
_Library _ _Runtime / OS_ 2W
System arch. & Network | HW
Consistency model
ISA
Microarchitecture
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Device
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HETEROGENEITY AND PORTABILITY

CUDA Flux
Predictions about execution time and power Collecton’ B
consumption
Collect Measure
Runtime/scheduling decisions @ime@
Provisioning decisions _ Y
ey e . Kernel Metrics Tlm;e/ P?wer
Performance portability explorations niormation

State-of-the-art: 25 publications investigated

Methods: analytical (9) vs. learning (10) vs. others

CUDA Application

Online Metric
Collection

Kernel Metrics

Model Training

Representativeness (1-169 kernels/apps) Time / Power
Portability (1-9 GPUs)
Availability (only 2 models published)
DVFS support (6)

Time / Power

Time (21); power consumption (10) Estimate

Lorenz Braun, Holger Froning, CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications, PMBS Workshop@5C2019
https://github.com/UniHD-CEG/cuda-flux

15


https://github.com/UniHD-CEG/cuda-flux

GPU MANGROVE: PORTABLE, FAST, SIMPLE

Which metrics make good features?
Instructions executed
FLOPs
Memory footprint

Kernel launch configuration

Computational intensity

Synchronizations 0.0 0.2 0.4 0.6 0.8 1.0

total instructions 1el0

Portable code features only depend on the kernel and the data handed to it

Hardware metrics like cache-hit rates not allowed
Creation of models for new GPUs requires only time and power measurements

Instruction counter are essential; represent actual work of the processing units

16



RandomForests Methodology

Light computational workload 189 unique kernels from Parboil, Rodinia, Polybench-
GPU and SHOC

Likely to over-fit (but can be improved by training

method) Prediction accuracy: 8.86-52.0% for time, 1.84-2.94%
Works well with even few samples for power, across five different GPU
Interpolation outside range of training data is difficult Prediction latency: 15-108ms (not optimized)
Dataset 4.0
200 - -
180/?
100" 2 B =
EEN S 2.5
R 80 3 q_
- W 2.0 o 1
S 60 g | A
Decision Tree-1 Decision Tree-2 Decision Tree-N 1.54 —
l v l 40 -
Result-1 Result-2 Result-N 1.0
Y 204 o 05<
t > Majority Voting / Averaging |« J % == L ==
i 0 G0 TitanXp P100 V100 GTX1650 00 %0 TitanXp P100 V100 GTX1650
Final Result GPU GPU
https://medium.com/@gupta020295/random- Ti dicti p dicti
forest-easily-explained-4b8094feb90 iIme prediction ower prediction

Accepted at TACO2021: http://arxiv.org/abs/2001.07104
https://github.com/UniHD-CEG/gpu-mangrove
Tutorial @ HIPEAC2021: https://www.hipeac.net/2021/budapest/#/program/sessions/ 7856/

17


https://medium.com/@gupta020295/random-forest-easily-explained-4b8094feb90
https://medium.com/@gupta020295/random-forest-easily-explained-4b8094feb90
http://arxiv.org/abs/2001.07104
https://github.com/UniHD-CEG/gpu-mangrove
https://www.hipeac.net/2021/budapest/%23/program/sessions/7856/

REGIME II: DATA MOVEMENT & LOCALITY



PERFORMANCE SCALING

Perf Instgyziclizons frequency CLASSICAL DENNARD
:r—/ ﬁ: SCALING
x PipelineCount - PipelineDepth scales with feature size
Perf(%) = Power(W) - Efficiency(J(())pje) POST DENNARD
e —— e , — E—
1‘ REGIME | operator cost W + 1: data movement cost REOIFIE Il |
| ~—— | |

|
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L. R - . _ e i |
Partly by Bill Dally, Sudha Yalamanchm (UCAA Workshop, 2012)




Energy [pJ]

ENERGY DOMINATED BY DATA MOVEMENTS

10,000

1,000 |
100 |

10 |

0.1

vold saxpy (...) {
int 1;
for (L = 0; 1 < N; 1 ) A
v[i1i] = alpha * x[1] vii];
}

}
2 SP FLOPs, 3 references

O
N

All registers: 20P/37.4pJ = 53.48 GOP/J 3x
g 2 5 & o % One miss to LLC cache: 20P/127.4pJ = 15.7 GOP/J \
5 ~ s s = ; One off-die access: 20P/2027.4pJ = 0.99 GOP/J 4~
é %: % % % Performance: multiply with power budget
= ® g Z Optimization toolbox?

M. Horowitz, "1.1 Computing’s energy problem (and what we can do about it),” 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). doi: 10.1109/1SSCC.2014.675732 20



REMINDER: LATENCY TOLERANCE TECHNIQUES

Property Relaxed Consistency Models  Prefetching Multiy \( \ Block Data
Types of Write (blocking read processors)

@6 Transfer
latency Read and write (dynamically A

tolerated scheduled processors) \4\\0€ _g@ronization

Write
Read

A~

ldentifying and
orchestrating

Software Labeling syn " Explicit extra

requirements / P\ concurrency hlock transfers
Extra = ? Not in processor,
hardware P‘\/ Little Substantial but in memory
support system
Supported in il
commercial Yes Yes Yes Yes

systems?

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach,
Morgan Kaufmann, 1998
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COMPUTE STACK

Post-Dennard | (specialization): today

Some uarchs tend to actually converge, but
programming models diverge => replicated

compute stacks

Massive parallelization requires structure for
efficient execution

Post-Dennard |l (locality-centric): emerging

Energy = locality, but missing notion of locality
hinders optimizations

Severity of implications demands for both safe
and unsafe optimizations
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 POST-DENNARD i

A Algorithm

Compute Stack

Application

kFramework / Language
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SW

HW

I Compiler
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L _Library _ _ Runtime / OS
| System arch. & Network
,é* Consistency model
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¥ Microarchitecture
| Functional unit
Logic
Device
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DL AND MOBILE COMPUTING

/ Rospherry Pi 3 Model B+ -m " Za. “-
(© Respderey Pi 2012

3R
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XILINX Zynq

NVIDIA Xavier Raspberry Pi 3 B+

Ultrascale+ ZU19EG

Wattage 30W ~10W oW

Peak GFLOP/s 1,300 (325 images/s’) difficult 5.6 (1.4 images/s?)
Total memory 16GB 2GB 1GB

In-core memory 2 OMIB (2.8%2) 4.3MB (4.2%2) 2 3MIB (2.3%2)
! based on theoretical peak GFLOP/s performance, 2 weights only, both for ResNet-50/ImageNet

Extreme mismatch between DNN complexity and mobile processor capability

23



DEEPCHIP PROJECT

DL-based speech & image processing for resource-constrained |£F b =5
devices EEPCHIP
Trading among precision, model size and accuracy http://www.deepchip.org

Preferred: no accuracy loss compared to state-of-the-art

Reduced precision (quantization), sparsity and asynchrony

1. Inference architecture suitable for various
embedded processors

2. New neural networks concepts with particular
low requirements

3. Software inference architecture based on
quantization and pruning

4. Exploring applicability to various processors

Collaboration with SPSC group @ TU Graz

24


http://www.deepchip.org

REDUCE & SCALE

Weight quantization to ternary values C =
according to TTQ

Trained scale factors Wp and Wn

Bounding activations, quantization to fixed
point (flexible bit-width k, DoReFa)

Run-length encoding of weight matrix W; | =
(reduced cardinality) & Huffman coding

=> Saving complexity: reduced precision,
sparsity, only partial sums (+2 mults.) A;=t-mazx(|wl|);t € (0,1

AlexNet/ImageNet
Baseline BNN INT8 DeepChip

Top-5 Acc.:uracy [%] /8.3 56.4 79.0 - Wlp . Z a; + Wln . Z a;. wwhere
Sparsity [%] 0.0 0.0 0.0 63.0 —
Inference Rate [FPS] 4 22 / 8 vl vl
Memory [MB] 044 24 61 o5 i, = {itjlw;; =W/} and i = {ilw;; = W'}
" Authors claim no change in accuracy 75

Glnther Schindler, et al, Towards Efficient Forward Propagation on Resource-Constrained Systems, ECML-PKDD 2018



N-ARY QUANTIZATION (NAQ)

Up to now: all good for ConvNet+SVHN, AlexNet+ImageNet,
ResNet-44+CIFAR-10

l.e., complex model + simple data, or simple model + complex data

But: quantization depends on complexity(data) & complexity(model)

Non-uniform n-ary weight representations

Multiple scale factors, cost-effective nested-means clustering

18

16

14
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SO N IR o ™

I Weight distribution

- = |Interval thresholds

-0.05

a
0.00

0.05

0.10

LQNet
DeepChip - ternary

LQNet

DeepChip - quinary

ResNet-18/ImageNet

Weights Activations
[bit] [bit]

Training

| [o] o 1

[%]
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STRUCTURED PRUNING

Unstructured sparsity for HW B ".al. 1 F ot
Systolic-array based accelerators: dense computation Ei EI . ii ..
and predictability Eﬁ EI . ii ..

(a) Weights  (b) Columns (c) Channels (d) Shapes (e) Layers

CPUs/GPUs: usually only sparsity > 90% effective (various

reasons) z = g(W D X)

Parametrized structured pruning (PSP) with

. q;, — W0y
trainable parameters e
—— Baseline
Consider weight tensor W, input tensor X, linear ol T o sty |
operation ®, non-linear function g: learn a structured == PSP (I1 regularization)
9 e—& PSP (weight decay)

substitute Q for the weight tensor W resp. sub-tensors wi

(0 0)

Gradient of q; is calculated following the chain rule

Validation Error [%]

Trained together with weight using gradient descent, but
regulated and pruned independently

If a; < t (tunable threshold parameter), prune the , ,
corresponding structure (post-training) 0 20 30 40 50 e 70 80 %

Col-wise sparsity [%]

Glnther Schindler, et al., Parameterized Structured Pruning for Deep Neural Networks, 6th International 27
Conference on Machine Learning, Optimization, and Data Science (LOD 2020). Best paper finalist.



Meantime

(Restricted) architecture search
PSP for FPGAs, extending FINN

Auto-generation of quantized
operators for ARM processors
(AccML@HIPEAC2021)

Emulation of TF operators on
systolic arrays for explorations of
architectural parameters (Camuy)

NN compression is dependent on
{Data,Model,HW}

ResNet on CIFAR-10
Different options @5W

96 A

Test Accuracy [%]

Q0
(&)
|

NN COMPRESSION IN A NUTSHELL

X  GPU (NVIDIA Nano): structured pruning
+ FPGA (Xilinx Ultra96): quantization

< CPU (ARM Cortex-A57): Gemmlowp

vy CPU (ARM Cortex-A57): reduce-and-scale
A CPU (ARM Cortex-A57): binarization

-

0

1000

2000 3000 4000 5000 6000 7000

Throughput [fps]
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WRAPPING UP
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WRAPPING UP

Moore’s law will deliver, Dennard scaling is failing

Anticipated growth in device count for another 5-10 years

Specialization will dominate computer architecture => tension in between
performance (specialization) and programmability (generality)

Post Dennard Regime 1 => structure

Post Dennarc

Regime 2 => locality & predictability

101
L0
L1
L0
101
L0

s 3

GPU

Address-sliced XBARs

s 3

L2 slice L2 slice

Bill Dally: “locality is efficiency, efficiency is power, power is performance,
performance is king” (2011) => safe & unsafe optimizations

picojoule replaces nanosecond (there be dragons [1])

Our main research concept: app+data=architecture

In spirit of algorithms + data structures = programs [2]

[1] "Here be dragons” (Latin:

RN TR

v ESANTY :

3 £

b ALS L

B ¢ S .
~——

38

‘hic sunt dracones’)

- - ® s X
3 ~
p— - !6' -
g

: dangerous or unexplored territories

[2] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.
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FPGA
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BACKUP
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CAMUY EMULATOR

=P Main Control Unit
* Weight Fetcher
-+
O = = v
(© _— C
= - -
5 = a ]
S £ =p % FIFO | —| PEoo PEoi % *%| PEor >
Q .ps : :
§_> onyp Unified . s : : E
S = Buffer cD"é FIFO) | %) PRio =% PRun b PR 2
2 || g - v 4 2
AR Z ”
— O A FIFO | =% PEmo —{ PEmo % -**%{ PEmn
= =
mmmm Control flow === Weights === |nput activations === Qutput activations Partial sums

Kevin Stehle, Gunther Schindler, Holger Froning, On the Difficulty of Designing Processor Arrays for Deep Neural Networks, ITEM Workshop@ECML-PKDDZ2020.
https://arxiv.org/abs/2006. 14008
https://github.com/UniHD-CEG/camuy



https://arxiv.org/abs/2006.14008
https://github.com/UniHD-CEG/camuy

CAMUY RESULTS

—  AlexNet
e \/GG-16
AR I A — GoogleNet
§ B ' — InceptionV2
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o4 o4 o4 - ResNeXt-152
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224 224 224 1.0
256 256 256
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DenseNet-264 MobileNetV3 EfficientNet-BO
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Comparison of data movement heat maps for
different CNN models, for different SA dimensions



