
Sonderforschungsbereich/Transregio 89
Transregional Collaborative Research Center 89

Invasive Computing
Annual Report 2012

Friedrich-Alexander-Universität Erlangen-Nürnberg
Karlsruher Institut für Technologie
Technische Universität München

TRR 89

Transregional Collaborative Research Centre 89

Invasive Computing

Friedrich-Alexander-Universität Erlangen-Nürnberg
Karlsruher Institut für Technologie
Technische Universität München

Annual Report 2012
January 2012 – December 2012

Coordinator
Prof. Dr.-Ing. Jürgen Teich
Lehrstuhl für Informatik 12
Universität Erlangen-Nürnberg
Cauerstraße 11, 91058 Erlangen

Managing Director
Dr.-Ing. Jürgen Kleinöder
Lehrstuhl für Informatik 4
Universität Erlangen-Nürnberg
Martensstr. 1, 91058 Erlangen

Public Relations
Dr. rer. nat. Katja Lohmann
Lehrstuhl für Informatik 12
Universität Erlangen-Nürnberg
Cauerstraße 11, 91058 Erlangen

Preface

This report summarises the activities and scientific progress of the
Transregional Collaborative Research Centre 89 “Invasive Computing”
(InvasIC) in 2012.

The main idea of InvasIC is to develop and investigate a completely
novel paradigm for designing and programming future parallel comput-
ing systems. To support its major ideas of self-adaptive and resource-
aware programming, not only new programming concepts, languages,
compilers and operating systems are necessary but also revolutionary ar-
chitectural changes in the design of Multi-Processor Systems-on-a-Chip
(MPSoCs).

InvasIC is funded by the Deutsche Forschungsgemeinschaft for initially
four years and aggregates 58 of the best researchers from three excellent
sites in Germany (Friedrich-Alexander-Universität Erlangen-Nürnberg,
Karlsruher Institut für Technologie, Technische Universiät München).
This scientific team includes specialists in algorithm engineering for
parallel algorithm design, hardware architects for reconfigurable MPSoC
development as well as language, tool and application, and operating
system designers.

A highlight in 2012 was the Annual Meeting in Kloster Irsee, Germany.
55 scientists met to review and discuss the progress within the last 12
months. Besides short talks in which projects and the three working
groups presented the state of the art of their work, the meeting program
also comprised a poster session. A special highlight was the demonstra-
tor day on the second day of the Annual Meeting. Here, 6 members
of the "InvasIC Industrial and Scientific Board" attended to evaluate
the ideas and progress of the presented projects in real and first time
hardware and software demonstrations.

Also, the SFB/TRR InvasIC was very active in organising workshops,
seminars and special sessions on the topic of invasive computing through-
out the year.

We would like to thank all members of the SFB/TRR InvasIC and all
our partners from industry and academia for the fruitful collaborations
and inspiring discussions. The substantial progress made within the last
year was only possible by the motivated and committed work of the
members of InvasIC.

Jürgen Teich
Coordinator

3

Contents

Preface 3

Contents 4

I Invasive Computing 7

1 About InvasIC 8

2 Participating University Groups 10

II Research Program 13

3 Overview of Research Program 14

4 Research Projects 17
A1: Basics of Invasive Computing 17
A3: Scheduling and Load Balancing 21
B1: Adaptive Application-Specific

Invasive Microarchitecture 25
B2: Invasive Tightly-Coupled Processor Arrays 32
B3: Invasive Loosely-Coupled MPSoCs 38
B4: Hardware Monitoring System and Design

Optimisation for Invasive Architectures 46
B5: Invasive NoCs – Autonomous,

Self-Optimising Communication
Infrastructures for MPSoCs 51

C1: Invasive Run-Time Support System (iRTSS) 56
C2: Simulation of Invasive Applications

and Invasive Architectures 63
C3: Compilation and Code Generation

for Invasive Programs 70
D1: Invasive Software–Hardware Architectures for Robotics . 80
D3: Multilevel Approaches and Adaptivity

in Scientific Computing 86
Z: Central Services . 95
Z2: Validation and Demonstrator 96

4

5 Working Groups 107
WG1: Working Group Architecture 107
WG2: Working Group System Software 112
WG3: Working Group Language

and Applications . 117

III Events and Activities 123

6 Internal Meetings 125

7 Trainings and Tutorials 127

8 Industrial and Scientific Board 128

9 InvasIC Activities 130

10 Publications 136

5

Invasive Computing

I

1 About InvasIC

The Idea of Invasive Computing

The main idea and novelty of invasive computing is to introduce resource-
aware programming support in the sense that a given program gets the
ability to explore and dynamically spread its computations to neighbour
processors similar to a phase of invasion, then to execute portions
of code of high parallelism degree in parallel based on the available
(invasible) region on a given multi-processor architecture. Afterwards,
once the program terminates or if the degree of parallelism should
be lower again, the program may enter a retreat phase, deallocate
resources and resume execution again, for example, sequentially on
a single processor. To support this idea of self-adaptive and resource-
aware programming new programming concepts, languages, compilers
and operating systems are necessary as well as architectural changes in
the design of MPSoCs (Multi-Processor Systems-on-a-Chip) to efficiently
support invasion, infection and retreat operations by involving concepts
for dynamic processor, interconnect and memory reconfiguration.

Decreasing feature sizes have already led to a rethinking in the design
of multi-million transistor system-on-chip (SoC) architectures, envision-
ing dramatically increasing rates of temporary and permanent faults
and feature variations. The major question will be how to deal with
this imperfect world in which components will become more and more
unreliable. As we can foresee SoCs with 1000 or more processors on a
single chip in the year 2020, static and central management concepts to
control the execution of all resources might have met their limits long
before and are therefore not appropriate. Invasion might provide the
required self-organising behaviour to conventional programs for being
able to provide scalability, higher resource utilisation numbers and,
hopefully, also performance gains by adjusting the amount of allocated
resources to the temporal needs of a running application. This thought
opens a new way of thinking about parallel algorithm design. Based
on algorithms utilising invasion and negotiating resources with others,
we can imagine that corresponding programs become personalised ob-
jects, competing with other applications running simultaneously on an
MPSoC.

8

Scientific Goals of InvasIC

The goal of the Transregional Collaborative Research Centre InvasIC is
to implement invasive programming through all layers of abstraction,
starting from language design, supportive OS and middleware layers
to new architectural processor, interconnect and memory structures
providing the necessary extensions and isolations to support predictable
and resource-aware programming on multicores. Legacy programs shall
still be executable within an invasive computing architecture, thus we
will show a migration path from traditional programming to the new
invasive programming paradigm.

We believe that only a Transregional Collaborative Research Centre
aggregating the best researchers from three excellent sites in Germany
do allow us to investigate these revolutionary ideas. Our InvasIC re-
searching team includes specialists in algorithm engineering for parallel
algorithm design, hardware architects for reconfigurable MPSoC devel-
opment as well as language, tool and application and operating system
designers. Invasive computing is the central theme of InvasIC that can
be found in each project. A carefully worked out validation concept
with an FPGA-based demonstrator has been proposed in order to fully
demonstrate the benefits of invasive computing quantitatively.

9

2 Participating University Groups

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Hardware-Software-Co-Design
– Prof. Dr.-Ing. Jürgen Teich

– Dr.-Ing. Frank Hannig

Lehrstuhl für Verteilte Systeme und Betriebssysteme
– Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

– Dr.-Ing. Daniel Lohmann

Karlsruher Institut für Technologie

Institut für Anthropomatik
– Prof. Dr.-Ing. Rüdiger Dillmann

– Prof. Dr.-Ing. Tamim Asfour

Institut für Technik der Informationsverarbeitung
– Prof. Dr.-Ing. Jürgen Becker

Institut für Programmstrukturen und Datenorganisation
– Prof. Dr.-Ing. Gregor Snelting

Institut für Technische Informatik
– Prof. Dr. Jörg Henkel

– Dr.-Ing. Lars Bauer

Institut für Theoretische Informatik
– Prof. Dr. Peter Sanders

Technische Universität München

Lehrstuhl für Integrierte Systeme
– Prof. Dr. Andreas Herkersdorf

– Prof. Dr.-Ing. Walter Stechele

– Dr.-Ing. Thomas Wild

Lehrstuhl für Wissenschaftliches Rechnen
– Prof. Dr. Hans-Joachim Bungartz

10

Lehrstuhl für Rechnertechnik und Rechnerorganisation
– Prof. Dr. Michael Gerndt

Lehrstuhl für Entwurfsautomatisierung
– Prof. Dr.-Ing. Ulf Schlichtmann

Lehrstuhl für Technische Elektronik
– Prof. Dr. Doris Schmitt-Landsiedel

11

Research Program

II

3 Overview of Research Program

To investigate the main aspects of invasive computing, the TRR is organ-
ised in 5 project areas:

Area A: Fundamentals, Language and Algorithm Research

Research in project area A focuses on the basic concepts of invasion and
resource-aware programming as well as on language issues, algorithmic
theory of invasion and on load balancing and scheduling.

B: Architectural Research

Project area B investigates micro- and macroarchitectural requirements,
techniques and hardware concepts to enable invasive computing in
future MPSoCs.

C: Compiler, Simulation and Run-Time Support

The focus of project area C is on software support for invasive computing
including compiler, simulation and operating system functionality with
a special focus on run-time management.

D: Applications

Applications serve as demonstrators for the diverse and efficient de-
ployment of invasive computing. Therefore, the applications have been
chosen carefully from the domains of robotics and scientific computing
in order to demonstrate distinct and complementary features of invasive
computing.

Z2: Validation and Demonstrator

A hardware demonstrator will serve as the concept validation platform
for invasive computing. It will allow for co-validation and demonstra-
tion of invasive computing through tight integration of hardware and
software research results at the end of the first project phase and to de-
cide on the further roadmap of specific hardware for invasive computing.

The three working groups Language and Applications, System Soft-
ware and Architectures defined on top of these project areas support
the interdisciplinary research.

14

Research Area Project

A: Fundamentals,
Language and
Algorithm Research

Basics of Invasive Computing A1
Prof. Dr.-Ing. Jürgen Teich, Prof. Dr.-Ing. Gregor Snelting

Scheduling and Load Balancing A3
Prof. Dr. Peter Sanders

B: Architectural
Research

Adaptive Application-Specific Invasive Microarchitecture B1
Prof. Dr. Jörg Henkel, Prof. Dr.-Ing. Michael Hübner,
Dr.-Ing. Lars Bauer

Invasive Tightly-Coupled Processor Arrays B2
Prof. Dr.-Ing. Jürgen Teich

Invasive Loosely-Coupled MPSoCs B3
Prof. Dr. Andreas Herkersdorf, Prof. Dr. Jörg Henkel

Hardware Monitoring System and Design Optimisation for
Invasive Architectures B4
Prof. Dr. Doris Schmitt-Landsiedel,
Prof. Dr.-Ing. Ulf Schlichtmann

Invasive NoCs -– Autonomous, Self-Optimising Communica-
tion Infrastructures for MPSoCs B5
Prof. Dr.-Ing. Jürgen Becker, Prof. Dr. Andreas Herkersdorf,
Prof. Dr.-Ing. Jürgen Teich

C: Compiler, Simulation
and Run-Time Support

Invasive Run-Time Support System (iRTSS) C1
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat,
Dr.-Ing. Daniel Lohmann, Prof. Dr. Jörg Henkel,
Dr.-Ing. Lars Bauer

Simulation of Invasive Applications and Invasive Architectures C2
Dr.-Ing. Frank Hannig, Prof. Dr. Michael Gerndt,
Prof. Dr. Andreas Herkersdorf

Compilation and Code Generation for Invasive Programs C3
Prof. Dr.-Ing. Gregor Snelting, Prof. Dr.-Ing. Jürgen Teich

D: Applications

Invasive Software–Hardware Architectures for Robotics D1
Prof. Dr.-Ing. Rüdiger Dillmann, Prof. Dr.-Ing. Tamim Asfour,
Prof. Dr.-Ing. Walter Stechele

Multilevel Approaches and Adaptivity in Scientific Computing D3
Prof. Dr. Hans-Joachim Bungartz, Prof. Dr. Michael Gerndt

Z: Administration
Central Services Z
Prof. Dr.-Ing. Jürgen Teich, Dr.-Ing. Jürgen Kleinöder,
Dr. Katja Lohmann

Validation and Demonstrator Z2
Prof. Dr.-Ing. Jürgen Becker, Dr.-Ing. Frank Hannig,
Dr.-Ing. Thomas Wild

WG: Working Groups

Working Group Architecture WG1
Prof. Dr. Andreas Herkersdorf

Working Group System Software WG2
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Working Group Language and Applications WG3
Prof. Dr.-Ing. Gregor Snelting

15

16

A1

4 Research Projects

A1: Basics of Invasive Computing

Jürgen Teich, Gregor Snelting

Andreas Zwinkau, Andreas Weichslgartner, Stefan Wildermann

We investigate the basics of invasion – the fundamental programming
model for invasive and resource-aware computation. This includes a)
the functionality requirements and b) the development of a mathemati-
cal model for quantitative performance, resource efficiency (utilisation)
and overhead analysis for different types of invasive architecture targets.
We also research a programming notation for invasive programming:
Here, c) the syntax, semantics and type system of an abstract invasive
core language is defined, which is the basis for d) the definition of a
concrete invasive language and its system interfaces. The goal of Proj-
ect A1 is not to build a new programming language from scratch, but to
make the invasive programming model usable for the programmer. For
this purpose, the abstract invasive constructs have been embedded as a
concrete language in the parallel computing language X10 from IBM.

Overhead Analysis

When considering benefits of invasive programming, a mathematical
model for performance and overhead analysis is a must. Dynamic deci-
sions about invasion will depend on data distribution, load balancing
and the dynamic state of resources. The definition of corresponding
overhead functions for resource utilisation and efficiency is important
to show if invasive programming allows to achieve utilisation close to
100%. Such overhead functions can be used in the design of invasive
algorithms and help to dynamically decide if and where invasion should
happen.

To achieve these goals, Project A1 worked on an overhead calculus
and obtained experimental results for several available many-core ar-

17

A1

chitectures such as Intel’s 48-core Single-Chip Cloud Computer (SCC),
the Tilera’s 64-core TILEPro64, as well as TCPAs (cooperation with
Project B2) and in single RISC tiles (cooperation with Project C1), with
a shared memory and a minimal implementation of the invasive core
primitives. The result of these measurements, the derived formulas for
the RISC tile and an introduction to invasive computing was published
in [TWOS12]. It could be shown that for the minimal RISC tile imple-
mentation, the invasive overheads are reasonably small and behave
almost linearly to the number of cores. For the SCC and TILEPro64, the
overheads are orders of magnitudes higher because of the crossing of
operating system borders and the costly thread/process creation. To
consider complex communication structures, Project A1 also worked
together with Project B5 and Project C2 on an integration of a network
model into the functional simulator [RHT12a].

Game-Theoretic Analysis of Distributed Core Allocation

The invasive constructs invade and retreat are used locally in appli-
cations to steer their resource utilisation. However, this local usage
influences the system globally. Thus, it is important to anticipate how
the local use of invade and retreat influences the overall system. In
[WZT13], we proposed and applied game theory for analysing the influ-
ence of different local usage schemes on the global goal of maximising
the average speedup of multiple concurrently active applications. Partic-
ularly, we studied the convergence time, communication overhead, and
the optimality of several core allocations schemes.

Concrete Language Design

The concrete language must exploit modern language theory, respect
the above-mentioned abstraction levels, and provide interfaces to dy-
namic resource parameters as well as to existing technology for parallel
programming. It should utilise generic mechanisms, instead of introduc-
ing many low-level, adhoc syntactic constructs. The concrete language
must be exercised on real algorithms and problems. Expressiveness
and usability must be evaluated for all different types of potential tar-
get architectures ranging from tightly- over loosely-coupled MPSoC
architectures to high-performance computing (HPC) machines.

A language developed in isolation is unlikely to meet the needs of
actual programmers of a diverse project, like InvasIC, which includes
hardware and software design. After the iterative group process for
language design last year, we had a working base system [Zwi12] for

18

A1

invasive programming called InvadeX10, which is based on the X10
programming language from IBM. For further changes we adopted a
document-based approach, inspired by RFCs (Request for Comments),
PEPs (Python Enhancement Proposal), JSRs (Java Specification Re-
quest), and others. This allowed for small interest groups to develop
new features independently and in parallel. Only for a final consensus
the whole project was involved.

From a range of currently 22 language change proposals (LCPs), so far
seven have reached consensus and were implemented into our invasive
programming framework. Namely:

Asynchronous Block Prefetching For efficient matrix multiplication
algorithms, blocks of data must be cached on tile-local memory. Those
blocks should be prefetched in parallel to the multiplication. This can
be done efficiently by the iNoC, which acts similar to a DMA controller
on a desktop computer.

iNoC Constraints The iNoC can reserve throughput and latency for
specific applications. These resources can be allocated via constraints.
The application as a whole benefits, without additional effort for the
programmer. To give Quality-of-Service (QoS) guarantees is an essential
part of Project B5 research and will be also demonstrated.

Scalability Graphs / Performance Curves An invasive application
requests its resource requirements via a constraint system. For example,
if an application asks for 8–12 cores, it either gets any number of cores in
this range or an exception is thrown. To evaluate the benefit of resources
within that range, an application must express to which extent it benefits
from the requested resources. Performance/scalability curves provide
this information to the agent system.

Claim.update An agent system (Project C1) continuously prepares
a resource optimisation (shrink/extend/modify) using hints from the
application. We propose a reinvade() method, so applications can
allow the optimisation prepared by its agent. The claim still fulfils the
constraints.

PE Retreat Retreat single specific processing elements.
Change Claim Constraints The agent system prepares and optimises

resource allocation using the given constraints. A claim’s constraint can
be updated to adapt to resource changes. To support this agent system
API, the framework needs to be extended.

ThisPlace Constraint Currently, it is impossible to request processors
(PEs) that must be part of the same tile as the requesting PE. As all
PEs within a place have fast access to shared memory, this constraint is
useful to avoid expensive inter-place communication.

19

Manual

For a more formal specification and better documentation, a manual
was written. It provides an introduction to invasive computing for a
programmer, who wants to use the InvadeX10 framework. It also lists
all constraints and features of the framework with their semantics.

Publications

[RHT12a] S. Roloff, F. Hannig, and J. Teich. “Approximate Time Func-
tional Simulation of Resource-Aware Programming Concepts
for Heterogeneous MPSoCs”. In: Proceedings of the 17th Asia
and South Pacific Design Automation Conference (ASP-DAC).
Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 187–192. ISBN:
978-1-4673-0770-3. DOI: 10.1109/ASPDAC.2012.6164943.

[Tei12] J. Teich. “Hardware/Software Co-Design: The Past, Present,
and Predicting the Future”. In: Proceedings of the IEEE
100.Centennial-Issue (May 2012), pp. 1411–1430. DOI: 10.
1109/JPROC.2011.2182009.

[TWOS12] J. Teich, A. Weichslgartner, B. Oechslein, and W. Schröder-
Preikschat. “Invasive Computing - Concepts and Overheads”.
In: Forum on Specification & Design Languages (FDL). Vi-
enna, Austria, Sept. 18–20, 2012, pp. 193–200. ISBN: 978-2-
9530504-5-5.

[WZT13] S. Wildermann, T. Ziermann, and J. Teich. “Game-Theoretic
Analysis of Decentralized Core Allocation Schemes on Many-
core Systems”. In: Proceedings of Design, Automation and Test
in Europe Conference (DATE). Mar. 18–22, 2013.

[Zwi12] A. Zwinkau. Resource Awareness for Efficiency in High-Level
Programming Languages. Tech. rep. 12. Karlsruhe Institute
of Technology, 2012. URL: http://pp.info.uni-karlsruhe.
de/uploads/publikationen/zwinkau12high.pdf.

20

http://dx.doi.org/10.1109/ASPDAC.2012.6164943
http://dx.doi.org/10.1109/JPROC.2011.2182009
http://dx.doi.org/10.1109/JPROC.2011.2182009
http://pp.info.uni-karlsruhe.de/uploads/publikationen/zwinkau12high.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/zwinkau12high.pdf

A3

A3: Scheduling and Load Balancing

Peter Sanders

Jochen Speck

Newly introduced computer systems usually have CPUs with many
cores and many jobs can be executed in parallel. Usually there is more
than one job executing in parallel on one machine. Lots of different
measuring devices are implemented in hard- and software in order to
get a picture of the system status. To use this information to efficiently
utilise the computing power of the parallel cores is an important task
usually called scheduling and load balancing.

The research goal of this project is to provide theoretically and practi-
cally efficient scheduling algorithms for the parallel and flexible invasive
systems. We are also working on fundamental algorithms for invasive
computing systems.

Figure 4.1: Energy Efficient Malleable Schedule

A task is called malleable if it is possible to change the number of
cores on which the task runs during its run-time. In [SS11] we sped up
an existing algorithm for the scheduling of malleable tasks and gave a
parallel scheduling algorithm for the same problem. As announced last
year we included energy efficiency into our solution of the scheduling
problem of malleable tasks (see [SS12]). In the energy efficient setting
the tasks are malleable and additionally the speed of execution of the

21

A3

cores can be changed. All tasks have to be processed in the same time
interval. The goal was to minimise the energy used for the processing
of all tasks in this time interval. A core which works with a higher
clock frequency uses more energy. If the power consumption grows
super-linearly in the speedup of a core one can save energy if one
parallelises a task on more slower cores which process the task in the
same time interval. So the challenge in this setting is to distribute the
resources (cores) among jobs in order to save energy. We plan to solve
this problem also for the case when each job has a different interval
during which it has to be processed. As we are considering energy
efficiency as important for computer architectures in the future, we
work further on energy efficient scheduling.

Together with Felix Brandt and Markus Völker, Jochen Speck took
part in the Google ROADEF-Challenge
(http://challenge.roadef.org/2012/en/index.php). The participation
was quite successful as the second price in the junior category (no
people with a PhD allowed) was won. The subject of the challenge was
to improve solutions for big complex scheduling problems arising in the
computing centres of Google. The challenge needed a different view
on scheduling problems, because here the model was very complex,
an optimal solution was impossible to find and it was impossible to
theoretically cover the subject. On the other hand no performance
guarantees were needed and with 5 minutes the time to compute a
solution was quite long. Hence heuristics were used which improved the
solution step by step until the given time was over. With this challenge
and our recent theoretical results we cover the whole bandwidth from
thorough analytic analysis of simple models to heuristic solutions for
complex models which is needed for scheduling of invasive computing
systems.

As proposed last year we finished the development of the malleable
sorter which is a flexible sorting algorithm that can handle changes in
the number of assigned processors very well. As we can see from the
Figure 4.2 the improvements when a task called Loadtask runs in parallel
are significant compared to the merge sort from MCSTL (here called
STLMS). Also the performance of Loadtask shows an improvement. We
still work on the X10 implementation. During that work we cooperated
with Project C1 and Project C3 on the OS to application interface, which
is very important for a malleable application.

A further important area is the scheduling of task-DAGs (DAG =
directed acyclic graph). Many applications can be modelled as small
tasks with dependencies. Especially numerical applications from Proj-

22

A3

Figure 4.2: Results with parallel running Loadtask for sorting n = 106 integers, 2ms time slots
and k = 100 workpackages. The second picture shows the performance of Loadtask.

ect D3 fit into this model. We started our investigations about DAG
scheduling in the area of dense linear algebra algorithms. During that
work we noticed that there is no scalable and work efficient matrix
inversion algorithm. The Newton inversion method is not work efficient
as the amount of work done is a logarithmic factor larger than in other
algorithms. On the other hand the Newton method is very scalable. The
inversion method of Strassen has a critical path linear in the size of the
matrix, thus larger machines can not speed up this method very much if
the matrix is not very big. On the other hand the method of Strassen is
work efficient. We managed to combine these two algorithms and now
have work efficient algorithm which also scales very well.

We also cooperate with the agent system (see Project C1) in order to
build a theoretical model of the agent behaviour.

In the future we plan to do more work in the area of dense linear
algebra. We plan to develop a malleable matrix multiplication and we
will also continue our work on DAG scheduling. As the project builds
more and more parts of the invasive system our models will get more
detailed and we might be able to create scheduling algorithms for these
more detailed models.

Publications

[SS11] P. Sanders and J. Speck. “Efficient Parallel Scheduling of Mal-
leable Tasks”. In: International Parallel and Distributed Process-
ing Symposium (IPDPS). Anchorage, AL, USA: IEEE Computer
Society, 2011, pp. 1156–1166. DOI: 10.1109/IPDPS.2011.
110.

23

http://dx.doi.org/10.1109/IPDPS.2011.110
http://dx.doi.org/10.1109/IPDPS.2011.110

[SS12] P. Sanders and J. Speck. “Energy Efficient Frequency Scaling
and Scheduling for Malleable Tasks”. In: Euro-Par 2012 Paral-
lel Processing. Vol. 7484. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 167–178. ISBN: 978-
3-642-32819-0. DOI: 10.1007/978-3-642-32820-6_18. URL:
http://dx.doi.org/10.1007/978-3-642-32820-6_18.

24

http://dx.doi.org/10.1007/978-3-642-32820-6_18
http://dx.doi.org/10.1007/978-3-642-32820-6_18

B1

B1: Adaptive Application-Specific
Invasive Microarchitecture

Jörg Henkel, Jürgen Becker, Lars Bauer, Michael Hübner

Artjom Grudnitsky, Carsten Tradowsky

The goal of Project B1 is the research of concepts for an adaptive microar-
chitecture (µArch) and Instruction Set Extension (ISE), culminating in
the design of a processing element that is reconfigurable at run time—
the i-Core, shown in Figure 4.3, and its integration into the invasive
hardware architecture. In particular, we focus on applying the invasive
paradigm on the hardware resources of the i-Core itself, thus allowing
applications to invade the different components of the i-Core.

32	

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

…

…

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

Load /
Store Units

Inter-
connect

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

ME	
XC	
WB	

EX	
RA	
DE	

FE	

DE/RA	

Tile	 Bus	

Legend:	
LEON	
iCore	

Memory	
Arbiter	

Data	 Cache	

TLM	

ICAP	

iNoC	
Network	
Adapter	

128	 128	

32	 32	

32	
128	

128	

32	

Figure 4.3: i-Core Architecture

Adaptive µArch

In [HGTH12], we introduce the novel methodology to adapt the mi-
croarchitecture of a processor during run-time. The goal is to tailor

25

B1

the internal architecture to the requirements of an application and the
data to be processed. In Project B1, we use the architecture description
language (ADL) Language for Instruction-Set Architectures (LISA) for
modelling the invasive microarchitecture.

LISA enables the developer to create behavioural as well as cycle-
accurate models of processors and their instruction- set architecture
(ISA). These models cover the needs of the design space exploration of
hardware / software co-design and co-simulation. Thus, it is possible to
close the gap between hardware description languages (HDL) on the
one hand and the needs of compilers and ISA simulators on the other
hand. The hardware / software co-design takes place in different levels
of abstraction. We published our approach of modelling the i-Core in
[TTHB12a]. The Best Work-in-Progress Paper Award was won with this
publication.

LISA provides a description of the pipeline on the operational level
which enables the modelling of complex pipeline mechanisms. To fur-
ther evaluate the LISA approach the LImbiC (LISA model based ideal
Cortex) is modelled. Out of this model all the tools, like the necessary
tools as well as HDL code is generated. These generated tools, like the
compiler and simulator, are only used for development and evaluation.
In the end, the results are discussed with Project C2 and Project C3 to
make use of their developments. The LImbiC is then extended by instruc-
tions to support image processing. With this extension of the hardware,
the execution time of a Canny-Filter, in comparison to software exe-
cution, is reduced by 98 %. In addition to this, the instruction set of
LImbiC can be reduced to the instructions, which are needed for the
filter’s execution. This adaptions for an optimised application-specific
instruction-set processor (ASIP) for image processing.

The variation of i-Core’s pipeline depth should increase performance
and decrease power consumption depending on the specific work-load.
The merge of adjacent pipeline stages is achieved by switching adjacent
pipeline registers transparently. This requires additional instructions
to be added to the existing instruction set. This instruction has to be
inserted additionally into the existing program code by the compiler
or the application developer for example using inline assembly. These
additions to the instruction set have been made available to the invasive
applications, operating system and compiler projects. As presented in
[TTHB12b], it is important to highlight that the concept of pipeline
reconfiguration has—in contrast to a branch prediction—impact on
control flow branches such as jumps and calls. Thus, the potential of
this concept on the one hand is to save one cycle per control flow branch.

26

B1

On the other hand, valuable energy on the basis of the transparency
of the pipeline registers can be saved and thus lower dynamic power
consumption is anticipated. Furthermore, we implemented the adaptive
pipeline onto a standalone Leon3 system, which was prototyped on a
Xilinx XUPV5. We made it available to the application Project D1. Each
adaptive microarchitecture feature will be brought into the invasive
hardware on its own. After successful tests on the XUP system, i-Core
will be integrated including more adaptive features onto the CHIPit
system for the final demonstration.

While integrating the adaptive pipeline into Leon3, the question on
where to place which part of the hardware on the FPGA came up. For
further analysis of the heat distribution of the FPGA, we developed an
on-chip measurement system for reconfigurable hardware, which can
be placed close to the hardware itself throughout the reconfigurable
hardware, in order to monitor its heat distribution. Based on the results
from the experiments, a trend is identified. As a result, the effect of
temperature variations are measurable. This enables the clarification of
a temperature gradient across the reconfigurable hardware. These inter-
esting results were published at the ReConFig conference [TCDH+12].

Another very interesting part of the microarchitecture is the cache.
The concept of an adaptive cache for realisation on an FPGA platform
is developed. This concept enables the adaptation of the cache pa-
rameters during run-time without the need for reconfiguration of the
FPGA. Different properties of caches, like for example the line size, the
associativity, the cache size or the write policy have an direct impact
on the performance and on the efficiency of the cache itself. Until
today, these parameters were fixed. This means that the configuration
of the cache needs to be decided at design time according to a chosen
trade-off. This trade-off might be not beneficial in some application
scenarios. Together with Project D3, we identified the need for adaptive
cache size, especially when running HPC scenarios, like the tsunami
scenario. Depending on the application, it might be better for cache
performance, e. g., minimising the miss rate and by that bus accesses,
to change some parameter setting of the cache. Thus, the possibilities
of an adaptive run-time adaptive cache are evaluated in order to have
a run-time parametric cache. An adaptive concept based on a cache
control register is currently developed to make the cache parameter
accessible and change them during run-time via a register update. The
resulting implementation uses more logic compared to a static design.
In real world, however, the Leon3 is running at a low clock frequency,
such that an overhead in area and speed can be used to implement more

27

B1

adaptive features in the following year.
We will now discuss the reconfigurable fabric and Instruction Set

Extension (ISE).

Reconfigurable Fabric

The ISE provides applications with access to run-time reconfigurable
hardware accelerators located in the reconfigurable fabric of the i-Core.
The ISE consist of Special Instructions (SIs), which serve as the interface
for the applications to the accelerators on the fabric. A talk providing an
overview of the reconfigurable fabric of the i-Core was given in [Hen12].

Performance-Aware Task Scheduling

Loading of accelerators, required for efficient execution of SIs, takes
a considerable amount of time. While loading is an asynchronous
operation, and thus concurrent to program execution, SIs have to be
emulated in software until the required accelerators have finished load-
ing. This reconfiguration latency can be efficiently hidden through a task
scheduling approach that is aware of the underlying reconfigurable ar-
chitecture. We have explored this approach in [BGSH12]. Tasks request
accelerators, and their requests are subsequently fulfilled by loading
accelerators onto the fabric. We have introduced performance levels
for tasks, which are defined as # fulfilled accelerator loading requests

accelerator loading requests for a task.
Our proposed scheduling approach, PATS, targets a set of periodic soft
deadline tasks and aims to reduce the system tardiness, i. e., the sum of
all times that the tasks finished late. The general approach is to prefer
tasks with a high performance level, weighted by the remaining time
to their deadline. Tasks with a low performance level wait while their
performance level increases. A comparison of our PATS scheduler to
existing scheduling approaches is shown in Figure 4.4.

Prototype Implementation

We have implemented the i-Core with the reconfigurable fabric on a XUP
V5 board, which uses the same type of FPGA as the CHIPit demonstrator,
which should reduce the migration effort to the CHIPit platform. In
particular, we have we have developed a dedicated interconnect between
the reconfigurable fabric and the tile-local memory, an IP core for
the reconfiguration port, which allows loading of accelerators in an
asynchronous manner and the bus-attached memory for the µ-programs
that control Special Instruction execution on the fabric. A floorplan

28

B1

of this implementation is shown in Figure 4.5. In addition to this
standalone implementation, we have implemented an i-Core along with
a standard Leon in a shared memory configuration, which can be viewed
as a minimal tile configuration, in preparation to the integration of the
i-Core into the common demonstration platform.

A demonstrator of the i-Core capabilities using a video encoder demo,
was presented to the InvasIC industrial board (Figure 4.6) and at the
demo night at ReConFig conference 2012.

Collaborations

We have developed two versions of the register file permutator as part
of our cooperation with Project C3 - one optimised for speed, and one
for low area overhead - and integrated them as optional components
into the i-Core. Further details on the compiler support of this feature is
discussed in the report of Project C3.

We have developed a behavioural and timing accurate i-Core sim-
ulator and provided it to Project C2 for integration into their overall
InvasIC simulator. The simulator can also be used to model standard
Leon cores.

In collaboration with the other architecture projects and Project Z2
a partitioning of the CHIPit demonstrator has been defined, with i-
Core tiles placed onto their own FPGAs due to their higher memory
requirements.

0

200

400

600

800

1,000

1,200

1,400

RMS EDF RR PATS

Ta
rd

in
ce

ss
 [M

il
lio

n
 C

yc
le

s]

Figure 4.4: System tardiness of the PATS Scheduler compared to existing schedulers averaged
over different task set configurations

29

B1

Figure 4.5: Floorplan of the i-Core prototype
Figure 4.6: i-Core prototype running a

video encoding application,
presented to the industrial
board

Publications

[BGSH12] L. Bauer, A. Grudnitsky, M. Shafique, and J. Henkel. “PATS:
a Performance Aware Task Scheduler for Runtime Reconfig-
urable Processors”. In: 20th Annual International IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM). Toronto, Canada, May 2012.

[Hen12] J. Henkel. “i-Core: Adaptive Computing for Multi-core Ar-
chitectures”. Embedded System Design from MultiMedia to
Cloud, Hong Kong, Invited Talk. May 18, 2012.

[HGTH12] M. Hübner, D. Göhringer, C. Tradowsky, and J. Henkel. “Adap-
tive Processor Architecture”. In: 12th International Conference
on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XII). July 2012.

[TCDH+12] C. Tradowsky, E. Cordero, T. Deuser, M. Hübner, and J. Becker
Jürgen. “Determination of On-Chip Temperature Gradients
on Reconfigurable Hardware”. In: Proceedings of the Inter-
national Conference on Reconfigurable Computing and FPGAs
(ReConFig). Cancun, Mexico: IEEE Computer Society, Dec. 5–
7, 2012.

[TTHB12a] C. Tradowsky, F. Thoma, M. Hübner, and J. Becker. “LISPARC:
Using an architecture description language approach for mod-
elling an adaptive processor microarchitecture (Best Work-
in-Progress (WiP) Paper Award)”. In: 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12). June
2012.

30

[TTHB12b] C. Tradowsky, F. Thoma, M. Hübner, and J. Becker. “On Dy-
namic Run-Time Processor Pipeline Reconfiguration”. In: Pro-
ceedings of the International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). May 2012.

31

B2

B2: Invasive Tightly-Coupled Processor Arrays

Jürgen Teich

Srinivas Boppu, Frank Hannig, Vahid Lari, Shravan Muddasani

In this project, fundamental architectural (hardware) concepts to sup-
port invasion for tightly-coupled processor arrays (TCPAs, as shown in
Figure 4.7) are investigated including the development of proper hard-
ware controller circuitry.

Architectural Overview

As part of the overall heterogeneous tiled invasive computing archi-
tecture [HHBW+12], TCPAs may be used as accelerators for compu-
tationally intensive tasks. That is, such processor arrays are designed
to support many application-specific or domain-specific algorithms in
image and signal processing domains. A simplified drawing of a TCPA
with 24 processor elements (PEs) is sketched in Figure 4.7. The different
rectangular areas show three applications running simultaneously on
the array tile.

In the first two years of research, we have proved that an invasion
of an array of TCPA processing elements can be accomplished at an
overhead of only two clock cycles per processing element by exploiting
regularity and by developing dedicated invasion control hardware struc-
tures, called invasion controllers or short iCtrl (see Figure 4.7). Thanks
to this hardware support, the overhead for resource management could
be significantly reduced by two orders of magnitude compared to a
centralised software-based approach. We proposed and evaluated two
variants of invasion controllers, namely FSM-based and programmable
invasion controllers. For these, we developed and evaluated various
1-D and 2-D invasion strategies with respect to invasion time, area,
power and flexibility. Invasion signals (e. g., INV, CLAIM and RET) are
propagated in the same way as data from one processing element (PE)
to another neighbouring PE in a TCPA in order to (a) invade the PEs,
(b) build a claim structure that includes information about the invaded

32

B2

Reconfiguration

and

Communication

Processor

N
etw

ork Adapter

to/from
 N

oC

Configuration

Memory

Global

Controller

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

R
e

c
o

n
fi
g

u
ra

b
le

 B
u

ff
e

rs
/F

IF
O

s

Reconfigurable Buffers/FIFOs

Address & Status
Generation Logic

Reconfigurable Buffers/FIFOs

R
e

c
o

n
fi
g

u
ra

b
le

 B
u

ff
e

rs
/F

IF
O

s

PU

iCtrl

Interconnection
Wrapper

Processing Element (PE)

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

iCtrl: invasion controller

PU: Processign Unit

Figure 4.7: Invasive Tightly-Coupled Processor Array (TCPA). Each processing unit (PU) is aug-
mented by an invasion controller (iCtrl). Invade and retreat requests are propagated
locally PE by PE through the mesh-connected array architecture.

PEs, and finally, (c) free the captured PEs in a distributed manner again.

Invasive Computing as an Enabler for Power Management

Resource-aware computing shows its importance when targeting many-
core architectures consisting of tens to thousands of processing elements.
Such a great number of computational resources allows to support very
high levels of parallelism but on the other side may also cause a high
power consumption. One traditional way to decrease the overall power
dissipation on a chip is to decrease the amount of static power by
powering-off unused resources. In the context of invasive computing,
we now may exploit invasion requests to wake up processors and retreat
requests to shut down the processors as well to save power. These
invasion and retreat requests may be initiated by each application, thus,
the architecture itself adopts to the application requirements in terms of
power needs. During the invasion phase, two different kinds of power
domains are considered: processing unit power domains and invasion
controller power domains. These domains are controlled hierarchically,
based on the system utilisation, which is in turn controlled by the
invasion controllers (see Figure 4.8). When a PE receives an INV signal,
its invasion controller is first powered on, and then when the invasion is
confirmed by a CLAIM signal, the processing unit is turned on (making
the PE ready to start application execution). Finally, by receiving a RET
signal, both components are turned off again.

33

B2

Power gating of individual invasion controllers may reduce the power
consumption of the MPSoC but at the cost of timing overhead of power
switching delays. Therefore, in [LMBH+12a] the effects of grouping
multiple invasion controllers in the same power domain were studied.
Such grouping mechanisms may reduce the hardware cost for power
gating yet, by sacrificing the granularity of power gating capabilities.
The finer the granularity for the power control, the more power we
might save. In contrast, grouping more invasion controllers together will
reduce the timing overhead that is needed for power switching during
both, the invasion and the retreat phases. Figure 4.8 shows different
example architectures for grouping the invasion controllers. Experimen-
tal results show that up to 70 % of system energy consumption may
be saved for selected applications and different resource utilisations.
In addition, we developed a mathematical energy consumption model
being dependent on the size of the invasion controller power domains
for TCPAs [LMBH+12b]. Notably, the estimation error of the presented
models is less than 3.6 % when compared to the simulation results.

Invasion controller power domain Processing unit power domain

iCtrl

Proc.

Unit

P
M

U iCtrl

Proc.

Unit

P
M

U iCtrl

Proc.

Unit

P
M

U iCtrl

Proc.

Unit

P
M

U

Proc.

Unit

Proc.

Unit

Proc.

Unit

Proc.

Unit

P
M

U

iCtrl iCtrl

iCtrl iCtrl

Figure 4.8: Different designs for grouping invasion controllers into one power domain. Left side:
invasion controller power domains controlling the power state of a single invasion
controller, right side: an invasion controller power domain controlling the power state
of four invasion controllers belonging to four processing elements.

Invasive TCPA Video Demo

Combining the parallelism at instruction level (VLIW architecture) and
at loop level (multiple PEs working concurrently) is a major strength of
TCPAs, which, as aforementioned, makes them suitable as an accelerator
for a multitude of computationally intensive applications like image or
video processing. Here, we applied the invasive computing paradigm to
video applications that are pre-processed on TCPAs. A visual eye-catcher
for the benefits of invasive computing is here that the applications get
the ability to adapt the quality of their output image depending on
the number of available resources. Together with Project Z2, we have

34

B2

implemented a first invasive TCPA prototype on FPGA basis, which was
demonstrated at the Invasive Computing annual meeting in October
2012 as well as at the demo night of DASIP 2012 [MBHK+12]. For
the demo, a TCPA array of size 5× 5, a datapath width of 16 bits was
generated, where each VLIW-PE was configured with one addition/-
subtraction unit, one multiplier, one unit for logical operation and one
shifter. The exact description of the prototype architecture and its im-
plementation on the CHIPit FPGA platform is given in the report section
of Project Z2.

Video Applications: The first targeted applications on the invasive
TCPA prototype were several real-time1 1-D and 2-D image filters (e. g.,
FIR filtering, 2-D convolutions, edge and feature detection) on a stream-
ing input video. Such image filters have many applications in imaging
and video processing. The range of applications vary from very pre-
cise medical imaging systems to low precision industrial imaging and
consumer video applications.

An example of a 2-D convolution is specified in Eq. (4.1). Here, the
convolved output pixel at location (m,n) for a given window size of
wh × wv is computed as follows:

y(m,n) =

bwh/2c∑
i=b−wh/2c

bwv/2c∑
j=b−wv/2c

h(i, j) · x(m− i, n− j) (4.1)

In Eq. (4.1), x represents the input pixel stream and h represents the
convolution window. Depending on the number of invaded PEs, the
convolution window size can be varied, which results in a different
quality of the output images as shown in Figure 4.9.

Outlook

Our current work and future activities include the mapping of computer
vision algorithms like optical flow and Harris corner edge detection such
as studied in Project D1. In order to ease the algorithm mapping, we
are also in the course of developing a compiler back end for the TCPA
code generation in cooperation with Project C3, and investigate and
design finally required architectural components like a global controller,
which can reduce control overheads in the program execution on the
TCPA. Currently, only streaming applications are supported. In order
to allow for partitioned algorithms, a further task is the development

1Processing of a video stream with a resolution of 1024 × 768 pixels and 60 frames per
second.

35

B2

TCPA array Utilization

Application: Edge Detection

Convolution window

Laplace 5x5: Laplace 3x3: Sobel 1x3:

Input Output

Image

processing

Video

processing

INV Request 25

Pre-Occupied PEs 0

Claimed PEs 25

INV Request 25

Pre-Occupied PEs 10

Claimed PEs 9

INV Request 25

Pre-Occupied PEs 20

Claimed PEs 3

(1) (3)(2)

Claimed PEs

Pre-occupied PEs

Free PEs

41014

12321

03430

12321

41014

),(jiH

010

141

010

),(jiH 121),(jiH

Figure 4.9: Three application scenarios for an invasive edge-detection algorithm on TCPAs, a
1× 3 Soebel filter suitable to be mapped on 3 PEs, a 3× 3 Laplace filter suitable to
be mapped on 9 PEs and 5× 5 Laplace filter on 25 PEs.

of address generators to support data access from/to buffers with in
order or out of order access capabilities, and interface modules for the
efficient coupling of TCPA tiles to the iNoC (invasive Network-on-a-Chip
developed in Project B5). Moreover, our research will also include the
investigation of invadable and reconfigurable buffer architectures for
efficient decoupling of incoming and outgoing data-rates between TCPA
tiles and other tiles, which is crucial for the performance.

Publications

[Han12] F. Hannig. “Invasive Tightly-Coupled Processor Arrays”.
Talk, 1st International Workshop on Domain-Specific Mul-
ticore Computing (DSMC) at International Conference on
Computer-Aided Design (ICCAD), San Jose, CA, USA. Nov. 8,
2012.

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings
of the 17th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200. ISBN:
978-1-4673-0770-3. DOI: 10.1109/ASPDAC.2012.6164944.

[LMBH+12a] V. Lari, S. Muddasani, S. Boppu, F. Hannig, and J. Teich.
“Design of Low Power On-Chip Processor Arrays”. In: Proceed-
ings of the 23rd IEEE International Conference on Application-
specific Systems, Architectures, and Processors (ASAP). Delft,

36

http://dx.doi.org/10.1109/ASPDAC.2012.6164944

The Netherlands: IEEE Computer Society, July 9–11, 2012,
pp. 165–168. ISBN: 978-0-7695-4768-8. DOI: 10.1109/ASAP.
2012.10.

[LMBH+12b] V. Lari, S. Muddasani, S. Boppu, F. Hannig, M. Schmid, and J.
Teich. “Hierarchical Power Management for Adaptive Tightly-
Coupled Processor Arrays”. In: ACM Transactions on Design
Automation of Electronic Systems (TODAES), accepted for pub-
lication 18.1 (Dec. 2012).

[MBHK+12] S. Muddasani, S. Boppu, F. Hannig, B. Kuzmin, V. Lari, and
J. Teich. “A Prototype of an Invasive Tightly-Coupled Proces-
sor Array”. In: Proceedings of the Conference on Design and
Architectures for Signal and Image Processing (DASIP). Karl-
sruhe, Germany: IEEE, Oct. 23–25, 2012, pp. 393–394. ISBN:
978-1-4673-2089-4.

37

http://dx.doi.org/10.1109/ASAP.2012.10
http://dx.doi.org/10.1109/ASAP.2012.10

B3

B3: Invasive Loosely-Coupled MPSoCs

Andreas Herkersdorf, Jörg Henkel

Anton Ivanov, Ravi Kumar Pujari, Muhammad Shafique, Benjamin Vogel,
Thomas Wild

Performance-optimised and energy-efficient invasive computing on
loosely-coupled RISC processors is the major goal of this project. Func-
tionalities with computational overhead within the i-let assignment
process are offloaded to dedicated macroarchitectural hardware exten-
sions. These dynamic Many-Core i-let Controllers (CiCs) supplement the
software-based invasive run-time system (iRTSS). To increase the energy
efficiency of invasive computing, the application-specific knowledge pro-
vided by the invasive programming language is used to determine the
resource requirements of the applications. By abstracting the power
management decisions from the hardware towards the software layer,
additional leakage power savings become possible. We call this approach
Virtual Power Gating (ViPG).

CPU CPU

CPU CPU

Mem
N
A

CiC
EM

ST

ST

ST

ST

OctoPOS

Agents ViPG

Applications

(a) Tiled architecture

 Energy
Manager

ilet Mapper

 CiC

 Hardware Monitor Sensors

 C
o

m
m

u
n

ic
at

io
n

 In

te
rf

ac
e

 Sleep Signal

 Interrupt

 Network Adapter

 Local Bus

 Monitor
Abstractor &
Aggregator

 Rule Base

(b) Core i-let Controller

Figure 4.10: Envisaged architecture

Figure 4.10a gives an overview of the envisaged architecture of a RISC-
based compute tile [HHBW+12]. The i-let mapping decisions are CiC-
accelerated and cooperate with the operating system (OctoPOS/iRTSS,

38

B3

Project C1). The Agent System/iRTSS and the ViPG are tightly-coupled
and receive the applications’ resource and performance requirements
and hints. The CiCs aggregate monitor data (e. g., performance counters
or temperature values) provided by Project B4.

CiC

Figure 4.11: Infection of i-let among cores within a compute tile. New i-lets are buffered on arrival
in i-let Mapper’s FIFOs.

In order to let the invasive concept scale to over hundreds of cores
connected over the iNoC, a HW–SW co-design for the i-let assignment
policy is performed. Concretely, the i-let distribution strategy is hierar-
chically partitioned wherein (a) the coarse level i-let mapping decisions
are performed by the agent system/iRTSS and (b) the fine-grained i-let
assignments to individual cores within a tile are done by a dedicated
HW extension block, the CiC.

During this year, many enhancements to the initial CiC design are in-
corporated based on the review and discussions with the OctoPOS/iRTSS
development team (Project C1). In particular, to avoid frequent inter-
ruptions to the run-time system software (OctoPOS) and to offload the

39

B3

infection routines, i-let FIFOs within the i-let-mapper (Figure 4.11) are
developed as part of the CiC_v1. With this CiC_v1, infection of i-lets
among cores within a tile is possible. The i-let-mapper controller logic
is designed to avoid race conditions that might occur due to non-atomic
access over the bus while enqueuing or dequeuing i-lets. Also, to save
power on empty FIFOs, the CiC drivers are enhanced to power down
the cores in conjunction with the ViPG policies. The complete synchro-
nisation and interaction mechanism with the SW layers is co-developed
with the OctoPOS/iRTSS development team.

To enable resource awareness in the system, a number of hardware
sensors/monitors are being developed. These sensors/monitor data
aid the CiC’s decision logic in selecting the cores for i-let assignments
during infection stage. At any given point in time, these monitors can
have arbitrary values based on the current/past run-time behaviour of
applications. As a consequence, (a) it is really difficult for an application
programmer to express the exact values for these dynamically changing
sensor/monitor data that are suitable for an application to run and,
also (b) for the Agent System, the search space would be prohibitively
large to find a core matching all the hardware monitoring conditions as
expected by an application.

To aid the applications to express their desired hardware monitoring
conditions, we proposed to classify applications into a smaller / finite
set of different classes (Table 4.1). Any application can express its
hardware needs by specifying the class it belongs to, as part of the
hints/constraints passed to the invade call.

Application Class
Sensors/
Monitors

Compute
Intensive

Bandwidth
Limited

Low
Latency

Low
Power

Safety
Critical

General
Purpose

Temperature 1 1 3 5 5 2
Aging 2 1 2 3 5 1
CPU load 5 1 4 4 3 2
CPU power 2 1 2 5 4 4
Cache miss
rate

3 5 4 2 1 1

CiC fifo level 5 1 5 2 1 1
i-let
dispatch rate

5 1 5 1 1 1

Bus load - - - - - -
NoC link load - - - - - -

Table 4.1: Weights for different sensor values for different application classes. A higher weight
implies a higher relevance of the monitor data for an application.

40

B3

For example,

• A programmer can specify which parts of the application are
Compute Intensive and needs more computing power. The CiC’s
selection logic would give CPU load, CiC FIFO level and i-let
dispatch rate higher importance than temperature or ageing data
while selecting a core.

• Similarly, for a control application to be able to react quickly on
updated sensor data, it needs Low Latency, thereby requiring a
minimal FIFO fill level and fast i-let dispatch rate from the CiC’s
FIFOs.

Thus, based on the application class information, the CiC computes
cost/benefit values for each core using normalised weights as mentioned
in Table 4.1 and selects the core for infection which provides maximum
gain. The i-let assignment policy can be set by configuring these weights
via the OctoPOS/iRTSS driver interface. If desired or needed, the policy
can be fine-tuned even during the run-time of an application by updating
the weights.

To adhere to the promised guarantees made by the Agent System
to the application, further work is under progress to enhance the rule
based evaluator within the CiC to perform i-let assignments taking into
account the claim information of the application.

ViPG

The classification of applications and the abstracted monitor values
provided by the CiCs are used to drive the ViPG’s dynamic power man-
agement policies. The integration of ViPG in the overall system is
depicted in Figure 4.12.

From the hardware perspective, an Energy Management (EM) block
is integrated into the CiC which drives the power down signals for
the Leon3 cores. To demonstrate ViPG policies in the central CHIPit
demonstrator platform (Project Z2), we enhanced the Leon3 processor
with clock gating capabilities. We extended applications from the parsec
benchmark suite to express its core requirements to an in-house Linux
kernel interface. When the application invades additional cores, these
cores are woken up, when cores are retreated, the cores are clock gated
immediately. We used a Xilinx Virtex5 board (similar to the FPGAs in the
central CHIPit demonstrator platform (Project Z2)) with built-in power
meters to directly present the impact of the activation and deactivation
of the cores.

41

B3

The driver to perform clock gating of the Leon3’s is already integrated
into the CiC’s FIFO dispatching logic. The information of an empty FIFO
can be transmitted to the SW layers including the ViPG to integrate
into the policy decisions. As current technology prevents to perform
power gating in the central CHIPit demonstrator platform (Project Z2),
we are currently examining how to mimic the temporal and the energy
overhead of power gating. The deactivation and activation of a power
gated core has a considerably higher overhead as the (one cycle) clock
gating. We therefore are investigating the power gating overhead of the
Leon3 in an ASIC synthesis to reintegrate it into the EM-block.

App1 App2 Appn-1... Appn

Applications (Invade/Retreat)

ViPGn-1... ViPGnViPG2ViPG1

Distributed Resource Management

(e.g. Kobbe et al.:

“DistRM” @ CODES+ISSS11)

ViPG-Driven

DPM

Reserved

Cores

Achieved

Perf./Power

Monitored Data (CiC)

Allocated

Cores

IR, RI

Periods

Figure 4.12: Integration of ViPG in the invasive system.

Besides our effort in the integration, a self-adaptive, hybrid DPM
policy has been built this year and will be presented in [SVH13]. In-
vasive applications adapt their core requirements depending on their
application-specific knowledge. This knowledge is expressed through
the constraints and hints in the invasive language (see Project A1). In
such a scenario, invasive applications invade and retreat cores in quick
succession. The invade and retreat periods of applications are dependent
on the application-specific knowledge and might occur uncoordinated.
It may happen that an application retreats its dispensable cores and later
tries to invade them again when the cores are already invaded by an-
other application. These unavailable cores would lead to a performance
degradation and thus to a loss of energy efficiency. We compensated
this energy loss by a hybrid prediction approach of the invade/retreat

42

B3

periods. An overview of the flow in the ViPG managers is depicted in
Figure 4.13.

Based on our analysis, we concluded that it might be, from an energy
perspective, better to temporarily reserve dispensable cores, i. e., to
virtually power gate them. These virtually power gated cores can be
put in the appropriate sleep state as the point in time they are needed
again is accurately predicted. Moreover, the wakeup overhead can be
hidden from the applications. We analysed the behaviour of several
applications and classified them into different classes to be used in
our hybrid prediction. System feedback capabilities compensate for
competing applications as the energy efficiency improvement of one
application might lead to performance loss of another application in
uncoordinated systems.

Predicted requirements
t-1

Hybrid Prediction Block

(Predict IR, RI time periods,

Predict #Cores

to invade & retreat)

Monitored
IR, RI Periods,

#Cores

Workload Class

t

-

Actual
Requirements

Prediction
Error

Controller

e e´ +
Corrected

prediction

ViPG-Driven DPM

Local Resource

Manager (Agent)

Cores for Expanding

ViPG Manager (Resource

Reservation)

Reserved

Cores

Reserved Cores

(ViPG Cores)T

Penalty

Application-Driven Workload
Classification

Different

Requirements

of all Apps.

Predicted Values

based on

Hybrid Prediction

Figure 4.13: Detailed flow of the ViPG managers.

Summarising, we save the energy overhead to deallocate and re-
allocate cores through the agent system (Project C1), and decrease
performance loss due to uncoordinated invade/retreat patterns. To eval-
uate our approach, we enabled applications from the parsec benchmark
suite to behave in an invasive fashion. As an example, a H.264/AVC en-
coder (x264) invades additional cores when the throughput constraint
(e. g., in fps) is not met. Accordingly, an application retreats cores, if the
throughput constraint is reached. For these applications, ED2P-savings
in the range of 15%− 40% were achieved compared to recent related
work (cmp. Figure 4.14).

We extended our power simulation infrastructure to determine the
achievable energy savings. A cycle accurate performance simulator
(gem5) is combined with an ITRS-based power model (McPAT) to deter-
mine power/performance trade offs. Moreover, a power state machine
based on current processor architectures has been integrated to take

43

B3

1.0

0.8

0.6

0.4

0.2

0
 avg. bt-B bt-A mix1 mix2 mix3

R
e
la

ti
v
e
 E

D
²P

a) 48 Cores 1-10 App. (w/o power gating)

c) 48 Cores 1-10 App. IdlePG

b) 48 Cores 1-10 App. UtilPG

d) 48 Cores 1-10 App. MaxBIPS

Benchmarks & Input Sets

1.0

0.8

0.6

0.4

0.2

0

R
e
la

ti
v
e
 E

D
²P

 avg. bt-B bt-A mix1 mix2 mix3

 avg. bt-B bt-A mix1 mix2 mix3 avg. bt-B bt-A mix1 mix2 mix3

Benchmarks & Input Sets

Benchmarks & Input Sets Benchmarks & Input Sets

Figure 4.14: Relative ED2P savings of the ViPG-based DPM.

the power gating overhead into account. Our simulation infrastructure
is depicted in Figure 4.15. We are currently examining other perfor-
mance simulators and behavioural simulations. An integration in the
Project C2-temporal behavioural simulator is planned.

We further demonstrate the potential and benefits of leveraging the
application-specific knowledge for dynamic power management with
the help of a case study, a complex multiview video encoding applica-
tion, where processing of different views compete for the compute and
memory resources [SZSA+13]. The algorithm properties and the input
data properties are jointly accounted to reach an application-driven
DPM. In the multiview video encoding application, the different views
are competing for the available memory resources. By reordering the
processing of the different views at application level, we increased the
potential to achieve energy efficiency improvements.

Core Configuration

(Alpha 21264, 2GHz)

Input Data

Applications

(parsec) I-R/R-I

ViPG

Manager

L
in

u
x
 2

.6
.2

7
.2

Power Simulator (McPAT 0.8 r274)

 (45 nm HP (ITRS))

Performance Simulator (Gem5)

(hg dev, April 2012)

Power State

Machine

Figure 4.15: The ViPG simulation infrastructure.

We participated in the extension of the invasive language (LCPs),
especially in the integration of application hints in cooperation with
Project A1, Project C1, and Project D3. The cooperation with the
agent system (Project C1) led to interfaces to include energy-efficiency

44

enhancements in the agent system decisions. Hints expressed by invasive
applications allow the ViPG to decide then to virtually power gate
retreated cores instead of retreating them to the agent system. These
virtually power gated cores can be physically powered down in an
appropriate sleep state to be quickly revealed to a reinvading application.
The physical power down is performed by the aforementioned energy
management block in the CiC.

Publications

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings
of the 17th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200. ISBN:
978-1-4673-0770-3. DOI: 10.1109/ASPDAC.2012.6164944.

[SZSA+13] F. Sampaio, B. Zatt, M. Shafique, L. Agostini, S. Bampi, and J.
Henkel. “Energy-Efficient Memory Hierarchy for Motion and
Disparity Estimation in Multiview Video Coding”. In: Design
Automation and Test in Europe Conference (DATE) (to appear).
Grenoble, France, Mar. 2013.

[SVH13] M. Shafique, B. Vogel, and J. Henkel. “Self-Adaptive Hybrid
Dynamic Power Management for Many-Core Systems”. In:
Design Automation and Test in Europe Conference (DATE) (to
appear). Grenoble, France, Mar. 2013.

45

http://dx.doi.org/10.1109/ASPDAC.2012.6164944

B4

B4: Hardware Monitoring System and Design
Optimisation for Invasive Architectures

Doris Schmitt-Landsiedel, Ulf Schlichtmann

Ning Chen, Qingqing Chen, Elisabeth Glocker, Christoph Knoth,
Dominik Lorenz, Martin Wirnshofer

With the resource-aware programming support in invasive computing
systems, applications get the ability to explore the system and make
decisions for execution (e. g., number of processors to execute on)
based on the current state—including physical hardware properties—
of the hardware platform. For a realisation of invasive architectures,
a closed-loop between applications, operating system/agent system
and the underlying hardware is necessary. This results in the need to
monitor and regulate physical hardware conditions. And it becomes
even more important—especially with thousands or more processors on
a single chip—when considering the significantly different processing
capabilities and susceptibility to degradation of modern integrated
circuits.

The research goal of Project B4 is to measure and preprocess the spe-
cific status of hardware elements. Different monitor types are necessary,
including temperature evolution, power consumption, reliability, and
maximum and age-dependent performance capability. This information
is communicated—with different levels of detail—to other system com-
ponents like higher hardware layers, operating system (agent system)
and applications. The system is then able to act considering monitor
information when, e. g., choosing processing elements to execute ap-
plications on or react when a critical status is detected. In turn these
actions may influence the status of hardware elements and with that the
measured monitoring data. Project B4 considers optimisation strategies
and the design of corresponding circuits and interfaces, including the
demonstration by simulation and emulation on the FPGA hardware
prototype platform.

Different task allocation techniques and application characteristics
as well as different physical conditions such as package types, material
parameters and cooling all result in different temperature scenarios.
Also economical processor packaging cannot cover the worst case hot

46

B4

Project B4: Hardware Monitoring System and Design Optimisation for

Invasive Architectures

PIs: Prof. Doris Schmitt-Landsiedel, Prof. Ulf Schlichtmann

Researchers: Ning Chen, Qingqing Chen, Elisabeth Glocker, Christoph Knoth, Dominik Lorenz,

Martin Wirnshofer

With the resource-aware programming support in invasive systems, applications get the ability to

explore the system and make decisions for execution (e.g., number of processors to execute on)

based on the current state - including physical hardware properties - of the hardware platform. For a

realization of invasive architectures, a closed-loop between applications, operating system/agent

system and the underlying hardware is necessary. This results in the need to monitor and regulate

physical hardware conditions. This becomes even more important - especially with thousands or

more processors on a single chip - when considering the significantly different processing capabilities

and susceptibility to degradation of modern integrated circuits.

The research goal of subproject B4 is to measure and preprocess the specific status of hardware

elements. Different monitor types are necessary, including temperature evolution, power

consumption, reliability and maximum and age-dependent performance capability. This information

is communicated – with different level of detail – to other system components like higher hardware

layers, operating system (agent system) and applications. The system is then able to act considering

monitor information when e.g. choosing processing elements to execute applications on or react

when a critical status is detected. In turn these actions may influence the status of hardware

elements and with that the measurued monitoring data. Subproject B4 considers optimization

strategies and design of corresponding circuits and interfaces, including the demonstration by

simulation and emulation on the FPGA hardware prototype platform.

Figure 1: For a multicore system with 50% usage scenario different active core placements can be
chosen. Compared to a square configuration (left side), a checkerboard-configuration (right side)

decreases maximum and hotspot temperature by 3%.

Figure 4.16: For a multicore system with 50% usage scenario different active core placements
can be chosen. Compared to a square configuration (left side), a checkerboard-
configuration (right side) decreases maximum and hotspot temperature by 3%.

spot scenario anymore. In [GS13] we modelled different scenarios
in a multicore system and evaluated the temperature distribution of
the cores. In a multicore system a reciprocal influence between the
core temperatures of neighbouring cores occurs, so an intelligent active
core placement in a non-full-usage scenario can further decrease the
present temperatures as shown in Figure 4.16. We also evaluated
different temperature limiting measures: The best choice is either an
intelligent core choice combined with lower than 100% usage-rates or
lowering of the input power, e. g., by implementing supply voltage or
frequency scaling or use of intelligent task fragmentation techniques.
Since temperature should be regulated during run-time, we recommend
an implementation of different concepts and choosing the appropriate
temperature limiting measure for the individual situation during run-
time.

In [WHAP+12] we demonstrated the use of in-situ delay monitors for
use in adaptive voltage scaling (AVS) and evaluated the performance.
In-situ delay monitors are enhanced flip-flops that observe the timing of
the circuit. Critical, but not yet erroneous signal transitions are detected
as pre-errors. The pre-error rate is used as indicator for the remaining
timing slack of the circuit. By use of these in-situ delay monitors, all
kinds of variation and ageing effects are determined inside the real
circuit and thus reliable performance information is provided. When
using this monitor type in an online AVS technique, the supply voltage

47

B4

can be regulated during normal circuit operation—without need for test
intervals. In [PHSG+12] different designs to implement in-situ delay
monitors are presented and the reliability of the timing information as
well as the power overhead are carefully analysed. Our next research
activities target further optimisation of these in-situ monitors especially
for all kinds of ageing effects.

[LCXS13] investigates the challenges in hierarchical timing analysis
considering process variations. With abstract statistical timing models
containing interfacing constraints, this flow can reduce the complexity
of design and verification of large SoC systems effectively. For each of
the three basic circuit types—combinational, flip-flop-based and latch-
controlled—methods to extract statistical timing models are proposed to
prune the unnecessary timing information from the underlying modules.
With additional methods for the reconstruction of correlation between
modules and for system-level verification, the complete framework is
several times faster than applying it to the flattened circuit directly,
therefore providing an efficient flow for statistical timing verification of
invasive architectures.

[LCS12] evaluates the statistical timing performance of circuits with
level-sensitive latches, which are widely used in high-performance de-
signs, such as CPUs. Circuits of this type, however, impose more com-
plexity in timing analysis due to latch transparency. With reduced
iterations and graph transformations, the proposed method extracts
setup time constraints at latches and across sequential loops very effi-
ciently, more than 10 times faster than other state-of-the-art methods,
while still maintaining a good accuracy in the computed minimum clock
period in a parametric form. The proposed method contributes a fast
tool for statistical timing evaluation in the optimisation iterations of
invasive systems, in which the aforementioned circuits always serve as
the source of flexibility and robustness.

[CLS12] introduces a modelling framework for the timing behaviour
of a flipflop by building a nonlinear functional relationship between the
clock-to-q delay and the data/clock alignment. The proposed framework
makes it possible to carry out static timing analyses at gate level taking
into consideration the interdependency of different computation stages.
An iterative timing analysis method is developed to find out whether
a circuit can work at a given clock frequency and to determine the
minimal clock period of the circuit. The new method will be able to
further improve the performance and the yield of the ASIC design for
invasive architectures, especially when process variation is considered.

We are currently working on integrating our temperature simulation

48

B4

framework in the invasive functional simulator environment (Project C2)
and use temperature monitor emulation for the Tightly-Coupled Proces-
sor Arrays (TCPAs, Project B2).

We are also working on the implementation of an energy model
for invasive loosely-coupled MPSoCs. We apply an energy estimation
methodology based on instruction-level characterisation for a Leon3
core, as well as for an integrated FPU. Figure 4.17 shows the flowchart
of our approach.

RTL Design

Synthesis & Implementation

Post-P&R Static Timing Data

Simulation

Testbench

VCD File

Power Analysis

Instruction-Based Energy Model Assisting Hardware Energy Estimation

Figure 4.17: Flowchart of instruction-based energy estimation

Firstly, the RTL design of a Leon3 core for MPSoC is synthesised and
implemented for an FPGA using Xilinx ISE tools. After that, post-place-
and-route static timing data will be generated, which makes it possible
to run post-P&R timing simulations with testbenches feeding different
CPU or FPU instruction sequences. During the timing simulations, VCD
files are dumped, which provide the power analyser, i. e., Xilinx XPower
with accurate signal activities. And then, by analysing the floorplan,
physical constraints and signal activities, XPower is able to generate
power reports using Xilinx cell libraries. Based on those power reports
for running different instruction sequences, an instruction-based energy
model containing an energy look-up-table for different instructions
or different combinations of instructions is created. And finally, an
integrated assisting hardware for MPSoCs will be able to report energy
estimations for a specific piece of code running on a processor. At run-
time, this information will be able to help the operating system decide
how to distribute i-lets to meet specified power constraints. As our
current work is based on an MPSoC implemented in FPGA, the same
approach will also be carried out later for tightly-coupled processor

49

arrays, and for the ASIC implementation of invasive architectures once
ASIC floorplans are available.

Publications

[CLS12] N. Chen, B. Li, and U. Schlichtmann. “Iterative timing analysis
based on nonlinear and interdependent flipflop modelling”.
In: Circuits, Devices Systems, IET 6.5 (Sept. 2012), pp. 330–
337. ISSN: 1751-858X. DOI: 10.1049/iet-cds.2011.0347.

[GS13] E. Glocker and D. Schmitt-Landsiedel. “Modeling of Tempera-
ture Scenarios in a Multicore Processor System”. 2013.

[LCS12] B. Li, N. Chen, and U. Schlichtmann. “Statistical Timing Anal-
ysis for Latch-Controlled Circuits with Reduced Iterations and
Graph Transformations”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. Nov. 2012,
pp. 1670–1683.

[LCXS13] B. Li, N. Chen, Y. Xu, and U. Schlichtmann. “On Timing Model
Extraction and Hierachical Statistical Timing Analysis”. to
appear in: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 2013.

[PHSG+12] N. Pour Aryan, L. Heiss, D. Schmitt-Landsiedel, G. Georgakos,
and M. Wirnshofer. “Comparison of in-situ delay monitors
for use in Adaptive Voltage Scaling”. In: Advances in Radio
Science (ARS). Vol. 10. 2012, pp. 205 –208.

[WHAP+12] M. Wirnshofer, L. Heiss, A.N.Kakade, N. Pour Aryan, G. Geor-
gakos, and D. Schmitt-Landsiedel. “Adaptive voltage scaling
by in-situ delay monitoring for an image processing circuit”.
In: IEEE 15th International Symposium on Design and Diag-
nostics of Electronic Circuits & Systems (DDECS). Apr. 2012,
pp. 205 –208. DOI: 10.1109/DDECS.2012.6219058.

50

http://dx.doi.org/10.1049/iet-cds.2011.0347
http://dx.doi.org/10.1109/DDECS.2012.6219058

B5

B5: Invasive NoCs – Autonomous,
Self-Optimising Communication
Infrastructures for MPSoCs

Jürgen Becker, Andreas Herkersdorf, Jürgen Teich

Jan Heißwolf, Andreas Weichslgartner, Aurang Zaib

In recent years, Networks-on-Chip (NoCs) have emerged as interconnect
for on-chip systems with many cores. Invasive computing architectures
[HHBW+12] include systems with hundreds of heterogeneous cores
thereby offering features that enable software to dynamically allocate
architectural resources depending on the current resource utilisation.

The research goal of this project is to provide a communication in-
frastructure for such large scale, heterogeneous architectures, as can be
seen in Figure 4.18, that is able to efficiently handle diverse communi-
cation patterns dynamically. As the invasive Network-on-Chip (iNoC) is
an integral part of a decentralised resource management strategy, all
its components—that is, the network adapters (NA) and iNoC routers—
have to support also link invasion [HKB12], this requires novel protocols
and hardware methodologies.

As part of the overall decentralised resource management, we in-
vestigated decentralised embedding strategies for task graphs called
self-embedding within the iNoC. We extended an initial protocol to sup-
port not only tree-shaped topologies but also communication graphs
with multiply predecessors. The self-embedding functionality is imple-
mented itself as a hardware component inside the dedicated control
network along with iNoC-internal invasive features, such as, end-to-end
flow control and global self-optimisation.

Along with the research on self-embedding, we developed protocols
and routers that support dynamic link invasion that also will provide
the basis for autonomous mapping of communication graphs. The
developed router, network adapter and the protocols support different
types of communication that cooperatively share router’s resources.
Hard Quality-of-Service (QoS) guarantees can be given by reserving
Guaranteed Service (GS) communication channels while Best Effort
(BE) communication channels can be used where no guarantees are

51

B5

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU iCore

iCore CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

N
A N

A Memory
N
A

N
A Memory

N
A

N
A Memory

N
A Memory

N
A

N
A

Figure 4.18: Heterogeneous invasive architecture consisting of heterogeneous tiles which are
connected through the iNoC

required without the need of any channel reservation. Thereby, BE
channels may utilise resources that are not occupied by GS at that
moment. In addition, we also investigated region based policies for
GS and BE connections [HZWK+12]. With this technique, it is possible
to adjust the resource utilisation on a region basis depending on the
requirements of the application executed in the region. This strategy
is beneficial for region-based resource management as developed by
Project C1. The regions based policy reconfiguration mechanism is
shown in Figure 4.19.

In addition to region based mechanisms, a self-optimisation strategy
called Rerouting was investigated and realised in 2012. Rerouting en-
ables to move existing GS connections in case of congestion of particular
links. A congestion situation is detected by the iNoC router and an
existing connection is selected for Rerouting. The selected connection is
rerouted transparently from the perspective of the node using this GS
connection. Rerouting enables to balance the load of the network and
increases the probability of invading communication resources success-
fully. In Figure 4.20, the mapping of an MPEG task graph is investigated
with and without rerouting. Rerouting increases the probability to map
a task graph successfully if the architecture is utilised by additional GS
connections.

To investigate the above mentioned invasion strategies and self-
optimisation mechanisms at a higher level of abstraction, we developed
a cycle-accurate SystemC model of the iNoC. It is highly parameteris-

52

B5

a)
B1 B2

B3

A5

A1 A4A2

A3

b)

C3

C5

C1

C4

C2

Task graph of new application to be executed:

c)
B1 B2

B3

A5

A1 A4A2

A3

d)
B1 B2

B3

A5

A1 A4A2

A3

C5

C3

C4

C2 C1

Region Boarders: Task of an Application:

Figure 4.19: Policy reconfiguration for application mapping: a) Two applications are running, b)
New application needs to be mapped, c) Region for new application is prepared by
policy reconfiguration within the NoC routers, and d) Application mapped into new
region and executed

0

2

4

6

8

10

12

0 10 20 30 40 50 60

G
S-

R
o

u
te

s
fo

r
M

P
EG

 e
st

.

Coexisting GS-Routes

MPEG Task Graph Mapping

Rerouting Enabled

Reroutin Disabled

Figure 4.20: MPEG task graph using 11 GS connection mapped to the iNoC-based MPSoC
architecture with additional GS connections

able and can be used for design space exploration as well as to provide
performance characteristics for the simulation of invasive applications
and invasive architectures (Project C2). Along with the SystemC model,
a parameterisable RTL model of the iNoC router was realised in Sys-
temVerilog. It enables to obtain power, area and speed figures that are
propagated to higher level simulation models. The parameterability of
the iNoC RTL implementation enables to instantiate a very light weight
version of the iNoC [PHWAA+13] as well as complex ones [HKB12].
This RTL model of the iNoC plays a central role within the final in-
tegrated demonstrator platform [BFHK+12] integrated in Project Z2.
The parameterability enables to setup different demonstrator platform

53

B5

instances with low overhead. To approach that goal, a rudimentary
architecture consisting of RTL models of Leon3 tiles, the NA and the
iNoC was realised in collaboration with Project Z2 and Project B3.

A modular approach is followed to design the network adapter. It
consists of a tile interface, the FIFO and the iNoC interface layer. The
modular approach shall simplify the connection of the different tile
types of our heterogeneous architectures. Only the tile interface layer
needs to be replaced depending on the tile type.

To optimise the performance of the InvasIC architecture, two features
have been added in 2012 with major contribution of the Project B5. An
L2 cache was added between the tile local AHB bus and the Network
Adapter to reduce the load on the NoC for tile external memory accesses.
The second feature is a DMA unit which is located in each Network
Adapter to enable efficient transfers of huge chunks of data between tile
local memories and external DDR-RAM.

In 2013, Project B5 will further contribute to the demonstrator integra-
tion activities of the Project Z2. Besides more advanced self-optimisation
features we will investigate the following: Inside the network adapter, a
mechanism will be implemented to automatically detect communication
partners which are addressed frequently. After a detection, the net-
work adapter might then automatically setup a GS connection to such
nodes to improve the performance of the communication and reduce
the energy consumption for communication. Inside the iNoC routers,
a prediction mechanism will be implemented. This mechanism might
be used also to trigger power gating of iNoC components to reduce the
static energy consumption in case of low utilisation.

Publications

[BFHK+12] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D. May.
“Hardware Prototyping of Novel Invasive Multicore Archi-
tectures”. In: Proceedings of the 17th Asia and South Pacific
Design Automation Conference (ASP-DAC). Sydney, Australia,
Jan. 30–Feb. 2, 2012, pp. 201–206.

[HKB12] J. Heisswolf, R. König, and J. Becker. “A Scalable NoC Router
Design Providing QoS Support Using Weighted Round Robin
Scheduling”. In: Parallel and Distributed Processing with Ap-
plications (ISPA), 2012 IEEE 10th International Symposium
on. July 2012, pp. 625 –632. DOI: 10.1109/ISPA.2012.93.

54

http://dx.doi.org/10.1109/ISPA.2012.93

[HZWK+12] J. Heisswolf, A. Zaib, A. Weichslgartner, R. König, T. Wild,
J. Teich, A. Herkersdorf, and J. Becker. “Hardware-assisted
Decentralized Resource Management for Networks on Chip
with QoS”. In: Proceedings of the 19th Reconfigurable Archi-
tectures Workshop (RAW 2012). Shanghai, China, May 2012,
pp. 1 –8.

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings
of the 17th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200. ISBN:
978-1-4673-0770-3. DOI: 10.1109/ASPDAC.2012.6164944.

[PHWAA+13] C. Pham, J. Heisswolf, S. Wenner, Z. Al-Ars, J. Becker, and
K. Bertels. “Hybrid Interconnect Design for Heterogeneous
Hardware Accelerators”. In: Proc. Design, Automation & Test in
Europe Conference & Exhibition, to appear. Grenoble, France,
Mar. 2013.

55

http://dx.doi.org/10.1109/ASPDAC.2012.6164944

C1

C1: Invasive Run-Time Support System (iRTSS)

Wolfgang Schröder-Preikschat, Daniel Lohmann, Jörg Henkel, Lars Bauer

Benjamin Oechslein, Jens Schedel, Christoph Erhardt, Sebastian Kobbe

Project C1 investigates basic system-software support for application-
aware static/dynamic configuration and on-demand adaptation of the
invasive computing platform—bridging the gap from invasive hard-
ware (project area B) to invasive applications (project area D). The
scientific objective is a flexible run-time system coping with massively
parallel, heterogeneous and dynamic workloads and requirements of
the envisioned invasive applications. The challenge is to map (static/-
dynamic) application properties to iRTSS configuration variants and to
efficiently instantiate schemes for i-let entities considering cross-cutting
and non-functional properties (e. g., energy consumption, timeliness).

Architectural Overview Schichtenstruktur der Software

Benjamin Oechslein, Jens Schedel InvasIC, was ist das überhaupt? (23. November 2012) 4 – 17Figure 4.21: iRTSS Architecture

Figure 4.21 provides a high-level
view of the current iRTSS architec-
ture, which we have refined further
in 2012. Key elements are Octo-
POS, the parallel operating system
(POS) that implements the mecha-
nisms of iRTSS to make all capabili-
ties of the underlying hardware avail-
able to higher (software) levels, and
the agent system, which provides
global iRTSS strategies for resource
management through means of self-
adaption to cope with the scalability problem in large multicore systems.
In order to provide these services also to C/C++ applications, the agent
system has been ported from X10 to C++ and is now considered as
part of the operating system layer, logically residing between the new
operating-system abstraction layer (OSAL) and the OctoPOS kernel.

56

C1

i-Lets entfernt starten

Benjamin Oechslein, Jens Schedel InvasIC, was ist das überhaupt? (23. November 2012) 11 – 17
Figure 4.22: CIC-supported i-let dispatching in OctoPOS

The Configurable OctoPOS Kernel

One key aspect in the design and development of OctoPOS is to make
all the capabilities of the underlying hardware available to higher (soft-
ware) levels in an “unfiltrated” way by tailoring operating-system mech-
anisms towards the hardware capabilities—and vice versa.

In this realm, we have designed in 2012 the central OctoPOS abstrac-
tions and integrated them with the hardware designs of the CiC and
the iNoC. We have further investigated and quantified the benefits of
“clever” hardware (mis-)use on commodity hardware for scheduling and
dispatching of thread control flows: up to 170x lower latencies and
the complete elimination of noise [HDMS+12]. These insights culmi-
nated in the ultra-light-weight OctoPOS control-flow abstraction—the
OctoPOS i-let—and, in close collaboration with Project B3, its hardware-
based low-noise/-latency dispatching by the CiC.

An OctoPOS i-let consists of just a code pointer and a data pointer and
describes a (fundamental) block of the parallel program (Figure 4.22);
large quantities of them are (tile-locally) scheduled and dispatched by
the CiC purely in hardware. OctoPOS i-lets are considered to be short
and to run to completion, even though OctoPOS provides support for
blocking i-lets (Figure 4.23).

On top of the i-let abstraction we designed, in close collaboration
with Project B3 and Project B5, a fundamental and novel abstraction
for low-noise/-latency cross-tile interaction: Figure 4.24 depicts the

57

C1

Kontrollflussmodell

i-Let 1

+func1
+data1

i-Let 2

+func2
+data2

i-Let 3

+func3
+data3

Ready-List

Context 1

Context 2

CPU 1 CPU 2

Application

Context 3

Context 4

Free Contexts

i-Let 1

+func1
+data1

i-Let 2

+func2
+data2

Blocker

Block?

Context 2

Context 2

i-Let 2

+unblock
+context2

Context 3

Context 2

i-Let 3

+func3
+data3

i-Let 2

+unblock
+context2

ilet3 finishes
i-Let 2

+unblock
+context2

Context 3

i-Let 2

+func2
+data2

Benjamin Oechslein, Jens Schedel InvasIC, was ist das überhaupt? (23. November 2012) 7 – 17Figure 4.23: i-let incarnation and execution in OctoPOS

OctoPOS concept of a dual-ported active message (DPAM), which (upper
half) consists of an (optional) message buffer and two i-lets that specify
the after-delivery activities. A DPAM is given to the iNoC, which delivers
it to the target tile (lower half) and, upon successful delivery, hands over
the i-lets to the respective local CiCs to dispatch the related activities on
both the source and the target tile.

Nevertheless, we provide OctoPOS for a variety of platforms—with
and without dedicated hardware support. The x86 bare-metal and Linux
“guest mode” family members (Figure 4.21) ease the development and
evaluation of the invasive software stack (applications, X10 extensions,
compiler). They also make it possible to transfer recent techniques for
energy-aware development and precise energy estimations [HEKSP12;
HKSP12] to the OctoPOS development. Optimising for non-functional
properties, such as energy, however, requires a fine-grained configura-
tion and adaptation of all low-level OctoPOS abstractions, which we
provide for by our approach of aspect-aware operating-system design
[LSHSP12; MFGSP12].

The Agent System

To obtain an estimation of the overhead of our Agent System in a real
hardware environment before the InvasIC demonstrator is available,
we implemented our work presented in [KBHL+11] on top of Linux
on the Intel SCC, a 48-core system. The Intel SCC communication
infrastructure is optimised for running one big application (using all
cores) which is programmed to expect specific messages in the right
order. However, our Agent System requires multiple concurrent receivers

58

C1

Figure 4.24: Cross-core interaction by dual-ported active messages.

with many possible kinds of messages that should be handled. Therefore
we had to implement a middleware to multiplex the communication
infrastructure. The overhead of running one instance of Linux and our
middleware on each core (i. e., 48 instances of Linux) influenced the
measurements of the latencies of our Agents heavily, resulting in a high
variance of the measurements. A “bare metal” implementation would
be required to allow more accurate measurements. However, as the
InvasIC demonstrator and OctoPOS are (close to being) operational by
now, the focus will be measurements on that platform.

As the internal state of a many-core chip is not visible to the human
eye, we designed a many-core demonstration platform that directly
allows to visualise a) the ongoing communications in such a chip and b)
the mapping of applications to cores. Each core of the system is repre-
sented by an 8-bit micro-controller, communication happens by using
four serial links per micro-controller, creating a fully meshed network.
The firmware running on each micro-controller implements a NoC em-
ulation that allows for packet-based communication between any two
cores in the network. Ongoing communications are visualised by two
LEDs per link. To allow larger many-core systems to be emulated, the
platform consists of stackable modules of four cores each. Figure 4.25
shows photos of the demonstration platform. We implemented a variant
of or Agent System on this platform which gives direct insight on how

59

C1

the Agent-based bargaining leads to the mapping of applications to
cores. The claims of different applications are indicated by different
colours of an RGB LED per core.

a) b) c)

Figure 4.25: Photos of a) a single module consisting of four nodes, b) two modules stacked
together, and c) our many-core demonstration platform running our Multi-Agent
system on 80 cores

The previous decision to implement the Agent System in the In-
vadeX10 framework has been revised towards an implementation of the
Agent System directly within the iRTSS using the C++ language. This
design change led to the requirement of an interface between the X10
language features (i. e., invade and retreat) and the C++ implementa-
tion of our Agent System. This interface has been defined in cooperation
with Project C3, and has been implemented in a first version. Future
versions of the OctoPOS will include the Agent System.

Currently, we are refining our Agent System simulation environment
used for design-space exploration. The new simulation back end will
allow a more accurate analysis of the latencies of the Agent System and
the direct influence of these latencies on the application performance.
Therefore, a more accurate iNoC model (Project B5) as well as an
improved application model is required. While heterogeneous resources
already are supported in principle, an application performance model
that is able to estimate the performance of an application (i. e., the
foundation of our agent-based bargaining and theoretical strategies
developed by Project A3) on our heterogeneous architecture is still
under development.

Several LCPs have been proposed and/or advanced, mostly in cooper-
ation with Project A1, Project B3, and Project D3. Interfaces on how to
include the i-Core and the TCPA into the resource management have
been discussed. Our cooperation with the ViPG (Project B3) led towards
interfaces that include energy-efficiency enhancement strategies into the
Agent System decisions. Hints expressed by the invasive applications
are forwarded to the ViPG. Based on the application’s hints, the ViPG
can decide to virtually power-gate individual cores instead of retreating

60

C1

from them. These virtually power-gated cores can be quickly revealed
to a reinvading application.

Outlook

In 2013, we will finalise the interfaces towards the application/compiler
interface (project area D, Project C3) and the invasive hardware platform
(project area B, in particular Project B2). An important milestone in
this realm is the stepwise integration of our results into the planned
demonstrator scenarios of Project Z2. Residing between “a rock and a
hard place” (application and hardware projects), Project C1 continues
to play a central role in this setting.

Publications

[HDMS+12] W. Hofer, D. Danner, R. Müller, F. Scheler, W. Schröder-
Preikschat, and D. Lohmann. “Sloth on Time: Efficient
Hardware-Based Scheduling for Time-Triggered RTOS”. In:
Proceedings of the 33rd IEEE International Symposium on
Real-Time Systems (RTSS ’12). (To appear). IEEE Computer
Society Press, Dec. 2012. URL: http://www4.cs.fau.de/
Publications/2012/hofer_12_rtss.pdf.

[HEKSP12] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat.
“SEEP: exploiting symbolic execution for energy-aware pro-
gramming”. In: ACM SIGOPS Operating Systems Review 45.3
(Jan. 2012), pp. 58–62. ISSN: 0163-5980. DOI: 10.1145/
2094091.2094106.

[HKSP12] T. Hönig, R. Kapitza, and W. Schröder-Preikschat. ProSEEP:
A Proactive Approach to Energy-Aware Programming. Poster.
June 13–15, 2012, Boston, MA, USA, 2012.

[JH13] J. Jahn and J. Henkel. “Pipelets: Self-Organizing Software
Pipelines for Many Core Architectures”. In: Design Automation
and Test in Europe Conference (DATE) (to appear). Grenoble,
France, Mar. 2013.

[JKPC+12] J. Jahn, S. Kobbe, S. Pagani, J.-J. Chen, and J. Henkel. “Work
in Progress: Malleable Software Pipelines for Efficient Many-
core System Utilization”. English. In: Proceedings of the 6th
Many-core Applications Research Community (MARC) Sympo-
sium. Ed. by E. Noulard and S. Vernhes. Toulouse, France:
ONERA, The French Aerospace Lab, July 2012, pp. 30–33.
URL: http://hal.archives-ouvertes.fr/hal-00719027.

61

http://www4.cs.fau.de/Publications/2012/hofer_12_rtss.pdf
http://www4.cs.fau.de/Publications/2012/hofer_12_rtss.pdf
http://dx.doi.org/10.1145/2094091.2094106
http://dx.doi.org/10.1145/2094091.2094106
http://hal.archives-ouvertes.fr/hal-00719027

[KBHL+11] S. Kobbe, L. Bauer, J. Henkel, D. Lohman, and W. Schröder-
Preikschat. “DistRM: Distributed Resource Management for
On-Chip Many-Core Systems”. In: Proceedings of the IEEE
International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). Taipei, Taiwan, Oct. 9–14,
2011, pp. 119–128.

[LSHSP12] D. Lohmann, O. Spinczyk, W. Hofer, and W. Schröder-
Preikschat. “The Aspect-Aware Design and Implementation
of the CiAO Operating-System Family”. In: Transactions on
AOSD IX. Ed. by G. T. Leavens and S. Chiba. Lecture Notes in
Computer Science 7271. Springer-Verlag, 2012, pp. 168–215.
DOI: 10.1007/978-3-642-35551-6_5.

[MFGSP12] T. R. Mück, A. A. M. Fröhlich, M. Gernoth, and W. Schröder-
Preikschat. “Implementing OS Components in Hardware us-
ing AOP”. In: ACM SIGOPS Operating Systems Review 46.1
(Jan. 2012). Best Papers from 2011 Brazilian Symposium on
Computing Systems Engineering (SBESC), pp. 64–72.

[TSDSP+12] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann. “Revealing and Repairing Configuration Incon-
sistencies in Large-Scale System Software”. In: International
Journal on Software Tools for Technology Transfer (STTT) 14.5
(Feb. 2012), pp. 531–551. DOI: 10.1007/s10009-012-0225-
2.

62

http://dx.doi.org/10.1007/978-3-642-35551-6_5
http://dx.doi.org/10.1007/s10009-012-0225-2
http://dx.doi.org/10.1007/s10009-012-0225-2

C2

C2: Simulation of Invasive Applications
and Invasive Architectures

Frank Hannig, Michael Gerndt, Andreas Herkersdorf

Vahid Lari, Marcel Meyer, Sascha Roloff, Aurang Zaib

Project C2 investigates novel simulation techniques that enable the
validation and variants’ exploration of all essential features of invasive
computing. It has two major research fields: (a) Timed functional
simulation of invasive resource-aware programs and (b) Performance
evaluation of individual architectures and an integrated simulation
methodology to co-simulate different types of invasive architectures. In
order to handle the complexity and diversity of the considered architec-
tures as well as different invasive programming, resource management
and invasion strategies, new methods for the modularisation and orthog-
onalisation of these exploration concerns are developed. This project
therefore provides evaluation facilities and enables the optimisation of
the concepts of invasive computing across all project areas, especially,
without the need to have full hardware or software implementations
available.

Timed Functional Simulation

The main idea of timed functional simulation is to provide a simulation
platform for invasive parallel applications written in X10. Here, the
simulator shall allow to model the underlying architecture at a high
abstraction level and to change quickly its parameters such as topology,
tile size and processor types. Furthermore, it allows to simulate the
effects of resource invasion to gain important insights into the execution
behaviour of invasive applications, like the interference with other
applications, etc. These interactions are depicted in Figure 4.26. In
summary, timed functional simulation shall allow for an early validation
of invasive programming concepts as well as the investigation of a broad
range of different invasive hardware platforms, but already with timing
information. First concepts of timed functional simulation for resource-
aware programming were published in [RHT12a] and a first case study

63

C2

C2

<Vision>

Timed Functional Simulation

Basic Idea

Slide 3

Parallel X10
Application

(async, at, finish)

Library of Invasive
Programming

(invade, infect, retreat)

Invasive Runtime
(agent system)

Results
• Functional Execution
• Execution latencies
• Blocking delays
• Network traffic
• Resource utilization
• Temperature evolution
• Aging effects
• Trace information
• Activity Spawn Tree
• …

Timed
Functional
Simulation

Virtual Platform
(#Tiles, #PEs, clock frequencies, CPI, iNoC)

Temp Errors Aging Timing

Figure 4.26: Overview of the resource-aware timed functional simulation approach.

of an architecture evaluation has appeared in [RHT12b]. Moreover, we
presented our simulation framework at the HiPEAC ACACES summer
school 2012 [RHT12c].

The main activities throughout the last year considered the integra-
tion of the simulation kernel into the X10 run-time system, the design
of an invasive Network-on-Chip (iNoC) simulation model in order to
determine also communication latencies between activities on different
tiles, and the implementation of a basic resource management interface.
This allows not only the integration of different resource management
strategies but also studying different physical effects such as temper-
ature, ageing and timing by simulation models in a modular manner.
Furthermore, we organised a simulation workshop where the partici-
pants got the opportunity to work with the simulator and contribute to
following developments with knowledge in their specific area.

The main reason for the integration of the simulation kernel into
the X10 run-time was that an invasive X10 application would be highly
restricted in the use of X10 constructs elsewise. For example, no blocking
statements (e. g., finish, when, or clocks), no communication primitives
(e. g., at, dist array, remote arrays), and no parallel constructs (e. g.,
async) were allowed. The integration of the simulation kernel into
the X10 run-time allows to handle all of these constructs within the
simulation, because each X10 language construct is mapped to an X10
run-time call and can therefore directly trigger the simulation primitives.
Details about the simulation kernel, which is composed of a) a timing
model based on performance counters, b) analytic models (physical
models such as temperature), and c) a synchronisation mechanism
were presented in [RHT12a]. Now, all of the X10 constructs can be
directly used within an application and the result of the simulation is a

64

C2

timed execution of the application on the modelled invasive architecture
with respect to the heterogeneous characteristics of different processing
resources including communication latencies between tiles over the
iNoC.

The latter was achieved through the design and implementation of
a timed simulation model of an invasive network that provides simi-
lar communication latencies like in a real iNoC. The communication
demand of an application is given by the program itself as follows: In
X10, at statements represent the transport of data to remote places. The
resulting amount of data that is transmitted to another tile (place in X10)
is obtained from an X10 run-time call to the X10 communication library
(X10RT) and fed into the simulation model to calculate the latency of
the corresponding data transfer. The interference of several activities
communicating over the network concurrently is also taken into account
in our simulation model.

Another ongoing work, in cooperation with Project C1, is the design
and implementation of a distributed agent-based resource management
at X10-level. Here, different invasion strategies are implemented and
evaluated in terms of the quality of resulting claims, e. g., the average
speedup of all applications.

Summarising, the simulation of the interplay between invasive pro-
gram behaviour and the resulting states of the underlying processing
resources such as their temperature, load or faultiness in dependence
of their state of invasion is the key feature of this timed functional
simulation framework. As experiments in [RHT12b] show, our simula-
tion is much faster than cycle-accurate simulation and thus allows the
investigation of the behaviour of invasive applications with hundreds of
i-lets running on parameterised heterogeneous invasive architectures.

Integrated Simulation Methodology

The integrated simulation methodology allows to model and simulate
resource-aware applications on heterogeneous invasive architectures
by integrating different architectural simulators in a modular way. In
contrast to the functional simulator, this methodology gives much more
detailed insights in the considered target architectures (e. g., mem-
ory and bus transactions, accurate timing). Separating the invasive
control flow from the non-invasive parts of an invasive application is
the most distinctive feature of the applied simulation methodology.
It works by providing centrally defined interfaces to a controlling in-
stance, which will separate the different modules of the simulation
framework from each other. The details of this methodology were de-

65

C2

scribed in [GHHH+12]. This enables to transparently exchange single
modules without the need of adapting any other module. The develop-
ers can combine simulation methods with a varying level of complexity
or granularity without modifying any other attached module. This en-
ables to investigate the exact influences of certain algorithms or invasive
hardware features.

Integrated Invasive Simulation Framework The part of the framework,
which captures the invasive control flow of applications, consists of
Abstract Invasive Machines (AIM) and a Resource Manager module
(RM). An AIM is associated to an instance of an invasive program and
executes its appropriately abstracted representation. For this purpose, it
interacts with the RM, which takes care of invasion requests.

The non-invasive parts of invasive applications are simulated on
Platform-Specific Engine modules (PSE), which represent different tar-
get architectures. The specific input required by a PSE is provided by
the AIMs depending on the outcome of invasion requests.

The central component of the simulation framework is a centralised
instance, which takes care of controlling the attached modules, synchro-
nising the simulation steps and offering an abstracting communication
layer to the simulation modules.

In the course of the last year, we specified a C++ API and built an
implementation of the aforementioned concept in form of a centralised
daemon (invasicd). This implementation includes a library (libiisf),
which encapsulates all the communication channels between the differ-
ent modules as shown in Figure 4.27.

In addition, a first prototype of a generic AIM implementation was
built during the last year; the work in the following year will focus on
creating a basic RM, providing the possibility of easily manipulable but
transparent resource awareness to the applications running on top of
the integrated invasive simulation framework.

After finishing the implementation of the synchronisation mechanisms
inside invasicd, a transparent communication layer for data exchange
between the simulation modules and the invasicd, running indepen-
dently on the simulation host, will be developed. The modules need to
adapt their communication interfaces to the new API. This will also be
finished in the following year.

Platform Simulation Modules In close cooperation with Project B2, we
have extended the platform-specific simulator for TCPAs in order to in-
vestigate different hierarchical power gating techniques. More specific,

66

C2

iOMP iX10

AIM iOMP AIM iX10 AIM iX10

invasicd

Scenario

Scenario Arch.

LoggingPSE TCPA PSE MPSoC

Resource
Manager

Loader

RM'

PSE NUMA

RM' RM'

Figure 4.27: The architecture of the Integrated Invasive Simulation Framework from a developer’s
point of view as described in [GHHH+12].

we studied how processor invasion can be directly exploited for power
management in TCPAs. Here, several hierarchical power gating tech-
niques with different power domain granularity have been developed
and evaluated with respect to latency and static power savings by using
the TCPA simulator [LMBH+12a; LMBH+12b].

Moreover, the architecture simulator for loosely-coupled MPSoC
(LCMPSoC) is currently being extended for inter-tile investigations.
For this purpose, a transaction level model of an iNoC is under develop-
ment, which will consider the communication at packet-level instead of
flit-level to achieve higher simulation performance. In order to support
simulation of real world applications on the LCMPSoC simulator, the
applications are analysed and represented in a graph that represents
the invasive control flow. For Example, an audio processing application
from Project D1 will be used for initial investigations. After the finalisa-
tion of the invasicd API, the LCMPSoC simulator interfaces are currently
being adapted for coupling it to the invasicd. This enables the LCMPSoC
simulator to communicate with other modules (e. g., AIM, RM).

A new module will be the HPC focused NUMA simulator whose
requirements were analysed in cooperation with Project D3. Application
developers require data determined by simulations to understand the
behaviour of their algorithms on invasive hardware. In 2012, the
implementation of the simulator front end, which is responsible for
tracing of a running application, was started and will now be refined to
estimate detailed costs per instruction stream. Running a full memory

67

C2

hierarchy simulation of a many core system in a serial simulator would
take a lot of time for each single instruction. In the course of the NUMA
simulator architecture development it became clear that such a full
simulation is not needed for most scientific codes, as long as the shared
memory stages are simulated in a synchronised or serialised matter.
Due to the characteristics of most scientific simulation codes in the HPC
area, the accuracy lost by this optimisation will be small compared to
the overall simulation time. Therefore, we will develop a fully parallel
non-shared cache simulation stage in the following year, which will
make use of all available compute resources on the simulation host.

Publications

[GHHH+12] M. Gerndt, F. Hannig, A. Herkersdorf, A. Hollmann, M. Meyer,
S. Roloff, J. Weidendorfer, T. Wild, and A. Zaib. “An Inte-
grated Simulation Framework for Invasive Computing”. In:
Forum on Specification & Design Languages (FDL). Vienna, Aus-
tria, Sept. 18–20, 2012, pp. 185–192. ISBN: 978-2-9530504-
5-5.

[LMBH+12a] V. Lari, S. Muddasani, S. Boppu, F. Hannig, and J. Teich.
“Design of Low Power On-Chip Processor Arrays”. In: Proceed-
ings of the 23rd IEEE International Conference on Application-
specific Systems, Architectures, and Processors (ASAP). Delft,
The Netherlands: IEEE Computer Society, July 9–11, 2012,
pp. 165–168. ISBN: 978-0-7695-4768-8. DOI: 10.1109/ASAP.
2012.10.

[LMBH+12b] V. Lari, S. Muddasani, S. Boppu, F. Hannig, M. Schmid, and J.
Teich. “Hierarchical Power Management for Adaptive Tightly-
Coupled Processor Arrays”. In: ACM Transactions on Design
Automation of Electronic Systems (TODAES), accepted for pub-
lication 18.1 (Dec. 2012).

[RHT12a] S. Roloff, F. Hannig, and J. Teich. “Approximate Time Func-
tional Simulation of Resource-Aware Programming Concepts
for Heterogeneous MPSoCs”. In: Proceedings of the 17th Asia
and South Pacific Design Automation Conference (ASP-DAC).
Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 187–192. ISBN:
978-1-4673-0770-3. DOI: 10.1109/ASPDAC.2012.6164943.

[RHT12b] S. Roloff, F. Hannig, and J. Teich. “Fast Architecture Evalu-
ation of Heterogeneous MPSoCs by Host-Compiled Simula-
tion”. In: Proceedings of the 15th International Workshop on
Software and Compilers for Embedded Systems (SCOPES). St.
Goar, Germany: ACM Press, May 15–16, 2012, pp. 52–61.

68

http://dx.doi.org/10.1109/ASAP.2012.10
http://dx.doi.org/10.1109/ASAP.2012.10
http://dx.doi.org/10.1109/ASPDAC.2012.6164943

[RHT12c] S. Roloff, F. Hannig, and J. Teich. “Simulation of Resource-
Aware Applications on Heterogeneous Architectures”. In: Pro-
ceedings of the 8th International Summer School on Advanced
Computer Architecture and Compilation for High-Performance
and Embedded Systems (ACACES). Fiuggi, Italy, July 8–14,
2012, pp. 127–130. ISBN: 978-90-382-1987-5.

69

C3

C3: Compilation and Code Generation
for Invasive Programs

Gregor Snelting, Jürgen Teich

Matthias Braun, Sebastian Buchwald, Frank Hannig, Manuel Mohr,
Ericles Sousa, Alexandru Tanase

Project C3 investigates compilation techniques for invasive architectures.
A compiler for the concrete X10-based language defined in Project A1
is being developed. Efficient code generation for invasive constructs is
essential. Back ends are developed based on the FIRM infrastructure
that generate code for SPARC architectures and tightly-coupled pro-
cessor arrays (TCPAs) targeting loop-level parallelism. Moreover, we
investigate symbolic mapping techniques which will allow to generate
invasive multi-processor programs that have the capability to correctly
synchronise their computations and communications at run-time on an
array of invaded processors.

Architectural Overview

Source code

Extended
X10 compiler

libFirmLoopInvader

Tightly-coupled
processor array

Extended AST

Candidates
for loop

parallelization

Machine code

...SPARC
other
backend

Figure 4.28: Compiler framework for Invasive Com-
puting.

In this project, we consider
compilation and code gen-
eration as well as program
transformation and optimi-
sation techniques for non-
regular (procedural) as well
as task-level and regularly-
structured (e. g., loop-level)
code. An overview of the
compiler framework is shown
in Figure 4.28. For the con-
crete language and its inter-
faces as defined in Project A1,
a compiler is being devel-
oped. Here, two compiler
back ends for both loosely-
and tightly-coupled invasive

70

C3

multi-processor architectures are distinguished. For SPARC-based pro-
cessors, the back end is based on the FIRM infrastructure for code
optimisation. FIRM provides static single assignment (SSA) form as
a basis for program analysis and optimisation. Due to the completely
different architecture of TCPAs and their massively parallel computing
capabilities, a dedicated back end for TCPAs needs to be developed.
This invasive loop compiler, called LoopInvader, implements symbolic
loop parallelization techniques as investigated here as well as code
generation techniques for TCPAs.

The compiler is based on the existing X10 compiler, but with front
end extensions for invasive constructs and a new back end for libFIRM to
support SPARC architectures, as well as optimisations for efficient utili-
sation of invasive hardware and operating system support, respectively.
In order to exploit invasive computing concepts at the level of loop pro-
grams, LoopInvader has the important task of extracting potential loop
candidates from X10, and then to convert them into single assignment
code (SAC), which will reveal the entire data parallelism in the loop.
Next, symbolic techniques are currently developed that describe sets of
processor mappings, schedules and synchronisations of loop computa-
tions in dependence on the number N of processors, which will only
be known after invasion, hence at run-time. Here, the main challenge
is to define such parameterised schedules and mappings together with
their proper mathematical foundations, as well as to derive compact
case-dependent processor and time mappings.

First prototype code generators for loosely-coupled RISC-type proces-
sors as well as for TCPAs have been successfully developed within the
last year. The output of the code generators produce assembly code for
the architectures investigated in Project B2 and Project B3.

Symbolic Loop Parallelization (LoopInvader)

In this part of the project, we focus on compiler transformations for the
parallel execution of invasive loop programs on processor arrays such
as TCPAs. A simplified drawing of a TCPA with 24 processor elements
(PEs) is sketched in Figure 4.29. Here, the different rectangular areas
denote three applications running simultaneously on the array. Whereas
static mapping and loop parallelization techniques for coarse-grained
reconfigurable and TCPA architectures are well studied, we proposed
and formalised for the first time symbolic tiling [THT12b] as an auto-
matic program transformation for symbolic parallelization of nested
loop programs with uniform data dependencies. As shown in [THT12a],
this symbolic loop parallelisation step is essential for invasive program-

71

C3

R
e

c
o

n
fi
g

u
ra

b
le

 B
u

ff
e

rs
/F

IF
O

s

Reconfigurable Buffers/FIFOs

 PE PE

 PE PE

 PE PE

 PE PE

Address & Status Generation Logic

Reconfigurable Buffers/FIFOs

R
e

c
o

n
fi
g

u
ra

b
le

 B
u

ff
e

rs
/F

IF
O

s

MPSoC On-Chip Interconnect

Controller

 PE PE PE PE

 PE PE PE PE

 PE PE PE PE

 PE PE PE PE

Figure 4.29: Tightly-coupled processor array (TCPA)

ming on MPSoCs, because the number of processors, which determines
the shape and size of tilings during parallelization, is not known until
run-time.

For executing loop programs on a processor array of fixed size, tiling
is needed as a compiler transformation that assigns iterations within a
tile of a loop to one available processing element each. For illustration,
consider the nested loop program in Figure 4.30(a) and its iteration
space visualised for N = 6 and M = 4. Each node represents an itera-
tion of the loop program, that is, the execution of the loop body for an
iteration vector (i1, i2). Data dependencies between different iterations
are depicted by directed edges. Now, tiling increases the depth of the
loop nest, in our example from a 2-deep nest to a 4-deep nest and the
tile size is typically chosen statically to reflect the number of available
processors in the architecture. For instance, let the number of tiles
reflect the number of processors, then all the intra-iterations need to
be executed by one processor sequentially. The size and shape of a
tile can be represented by a so-called tiling matrix P . Figure 4.30(b)
shows the resulting code of a statically tiled loop with 3× 2 tiles. After
tiling, the innermost loop iterates over the iterations contained in a
tile and the outer loop iterates over the origins of the tiles. However,
when the number of available processors in the array is not known at
compile-time, different possibilities might be considered: The first one
is to store a program configuration for each possible array size and

72

C3

to select the appropriate one at run-time. Following this approach is
obviously not feasible as the number of different configurations and thus
the amount of necessary instruction memory would explode easily. The
other possibility might be just-in-time compilation. However, a compiler
framework could consume easily dozens to hundreds of megabytes of
memory. In addition, parallelization and mapping of a loop program
is a time-consuming process. Therefore, this approach is usually also
not viable for embedded architectures. Due to the aforementioned ar-
guments, we study the idea of symbolic loop tiling. Here, we consider
a tiling transformation to be specified by a parametric tiling matrix
P = diag(pi). For example if at run-time, a processor array of size n×m
has been successfully invaded, a tiling of size p1 = dN/ne, p2 = dM/me
would be then needed to map the loop program onto the considered
processor array. An example of a symbolically tiled C loop and the corre-
sponding symbolic tiling matrix P are shown in Figure 4.30(c). Whereas
tiling is used mainly for iterations to processor assignment, the next
task we are currently investigating is symbolic scheduling. A schedule
is a mapping which assigns a time of execution to each computation
of the nest in such a way that dependencies are preserved. In other
words, scheduling is the process where to each loop iteration a start
time of execution is assigned. Finally, like for tilings, symbolic schedules
are parameterised in terms of tile sizes. For a given symbolically tiled

for(j1=0;j1<=p1-1;j1++)
 for(j2=0;j2<=p2-1;j2++)
 for(k1=0;k1<=N/p1-1;k1++)
 for(k2=0;k2<=M/p2-1;k2++){
 if(j1>=1)
 y[j1][j2][k1][k2]=y[j1-1][j2][k1][k2];
 if(j1==0 and k1>=1)
 y[j1][j2][k1][k2]=y[j1+p1-1][j2][k1-1][k2];}

for(j1=0; j1<=2; j1++)
 for(j2=0; j2<=1; j2++)
 for(k1=0; k1<=1; k1++)
 for(k2=0; k2<=1; k2++){
 if(j1>=1)
 y[j1][j2][k1][k2]=y[j1-1][j2][k1][k2];
 if(j1==0 and k1>=1)
 y[j1][j2][k1][k2]=y[j1+2][j2][k1-1][k2];}

0

0

1

1

k1

j1

3 0
0 2

Static(fixed)
tiling

P=

p1 0
0 p2

Symbolic
tiling

P=

i1

i2

0

0
0

1

1

0

k2

j2

(a)

(b)

(c)

for(i1=0;i1<=N-1;i1++)
 for(i2=0;i2<=M-1;i2++){
 y[i1][i2]=y[i1-1][i2];
}

Figure 4.30: Tiling of a loop program (a), static tiling (b) for p1 = 3 and p2 = 2, symbolic tiling
(c).

73

C3

iteration space, a linear symbolic schedule denotes a 2n-dimensional
schedule vector λ = (λJ λK), where each schedule vector may involve
arbitrary expressions including the tile parameters pi. In the following,
λJ is called intra-tile schedule, and λK inter-tile schedule, respectively.
A symbolic schedule vector is finally called feasible, if it satisfies all
data dependencies d of the tiled algorithm. In the case of symbolic
tiling, unfortunately, it is not possible to solve the problem of finding
both a latency optimising inter-tile and intra-tile schedule vector easily
because of products of tile parameters in corresponding scheduling
constraints. Similar products of parameters and variables appear in
the objective function. We therefore propose a four-step procedure as
follows: First, we determine so-called first tiles, respectively last tiles of
the iteration space of the symbolically tiled code. This step is of great
importance because the latency L of a schedule λ is determined solely
by the difference between the maximal time step (reached in a last tile)
and the minimal time step (reached in the first tile). In the next step, we
determine the set of all so-called tight intra-tile schedule vectors λJ that
schedule all det(P) iterations of a tile P sequentially. Then, for each
feasible intra-tile schedule λJ , we subsequently determine a latency-
minimising inter-tile schedule λK such that the overall dependency L of
the combined schedule λ = (λJ λK) is minimised. This will prove that
only latency-optimal schedule candidates are determined. As a last step,
we derive a set of conditions that choose the best statically determined
schedule at run-time depending on the size of the invaded processor
array.

Hence, at run-time, only a few latency expressions need to be evalu-
ated, and the corresponding minimal latency schedule determines then
uniquely also the processor array loop codes that need to be loaded
and executed. The presented symbolic tiling methodology has already
been developed and implemented in LoopInvader. In 2013, we expect
to finish the mathematical foundations for symbolic scheduling as well
as integration and testing.

Code Generation for TCPAs and Resource Management for Other
Targets

In order to map loop programs onto TCPAs, an appropriate code gen-
eration (assembly codes) is also needed. In close collaboration with
Project B2, we studied first non-symbolic code generation techniques.
In 2012, we managed to release the first version of a code generator as
part of the back end of LoopInvader, and we are currently working on
graph-based code optimisation techniques.

74

C3

Feature Status

firm java integration (jFirm) completed
sequential code generation completed
data structure layout completed
firm object orientation support (liboo) completed
dynamic dispatch completed
interface calls completed
generic code, name mangling completed
intra-tile parallelism (async, finish) completed
inter-tile dispatch (at) ongoing
serialisation completed
cross-compilation support completed
garbage collection ongoing
testsuite 125 tests

Table 4.2: iX10 Front End Feature Matrix

Furthermore, we have investigated invasion overheads for tightly-
coupled processor arrays (TCPAs) that avoid the creation of threads and
use hardware-based signalling concepts to invade processing elements.
This results where compared with the overheads of invasion on existing
MPSoC platforms, namely the Tilera TilePro64 architecture and on
Intel’s SCC [TWOS12].

X10 Front End and Intermediate Representation

We use the existing X10 front end which is available as open-source
software. This allows us to reuse the existing syntax and semantic
checking code. A compiler targeting invasive computing architectures
has to support a range of architectures including SPARC, TCPA and the
i-Core. It has to use the iRTSS operating system and leverage the iNoC
for DMA transfers.

We tackle these requirements by writing a custom back end for the
existing X10 compiler front end. We call this extended X10 front end
iX10. We transform the programs analysed by this front end into the
libFIRM intermediate representation to facilitate generating SPARC code
and supporting the i-Core extensions. This transformation also lowers
parallel programming constructs like async, at, invade and infect
into the lower level APIs provided by the iRTSS. We demonstrate this
mapping from X10 language constructs to the iRTSS API using the
following example:

75

C3

main calc1 calc2

infect

infect

signal

signal
blocked

wait for signal

resume

Figure 4.31: i-let interaction

finish {
async { calc1(); }
async { calc2(); }

}

The X10 code calls the functions calc1 and calc2 asynchronously within
a finish statement. The X10 front end compiles the code to the follow-
ing calls to the X10 run-time library:

x10.lang.Runtime.finishBlockStart();
x10.lang.Runtime.executeParallel(()=>{calc1()});
x10.lang.Runtime.executeParallel(()=>{calc2()});
x10.lang.Runtime.finishBlockEnd();

Since the X10 run-time library implements partly functionality that is
already provided by the iRTSS, we adapted the X10 run-time library to
use the iRTSS API instead. For instance, the methods of our example
look like this:

x10.lang.Runtime.finishBlockStart() {
...
currentState.signal = simple_signal_init();
...

}

76

C3

x10.lang.Runtime.executeParallel(closure) {
...
infect(currentState.claim, closure);
signal_add_callers(currentState.signal)
...

}

x10.lang.finishBlockEnd() {
...
simple_signal_wait(enclosing.signal);
...

}

Figure 4.31 shows the interaction of the involved i-lets at run-time.
Table 4.2 details the current state of the front end. The compiler

now correctly transforms X10 programs with all modern language fea-
tures such as closures, generic code, parallelization and synchronisation
through async, at and finish. We also support serialisation and deseri-
alisation, which is needed for inter-tile communication via at. Our next
milestones are the support of at on iRTSS and the integration of the
invadeX10 framework developed in Project A1.

Memory Hierarchy Optimisations

Compute tiles in the invasive architecture have tile local caches which
are not synchronised, so there is no globally coherent view on the
memory. This requires splitting the main memory into different regions
for each tile, so that each region is only written to by one tile. Sending
data from one tile to another requires using of the DMA support in the
iNoC. To achieve good performance programs have to be written in a
way that communication between tiles happens in bulked data transfers.
A form of read sharing is possible between multiple tiles, if the software
enforces a synchronised cache flushing protocol.

We developed multiple possibilities to avoid and optimise inter-tile
data transfers in X10 programs as described in [BBMZ12].

SPARC Back End

The general purpose cores found in our investigated invasive computing
system have a SPARC instruction set optionally with i-Core extensions.
There will be variants with and without floating-point support.

77

C3

To this end a new back end has been developed using the existing
infrastructure in libFIRM. This involved creating code-selection strate-
gies, and handling the SPARC calling convention which employs register
windows. Register allocation and scheduling is performed with the
generic infrastructure. We further developed peephole optimisations
and special code generation phases to fill delay slots and respect the
stack alignment requirements of the application binary interface. To
handle software floating-point a new pass which replaces arithmetic
operations with calls into an emulating library has been created. We
are in the process of extending our register allocator to support aliased
floating-point registers as found in the SPARC architecture. The back
end has matured to a point where efficient code is generated and the
SPEC CPU2000 benchmark suite is handled. We are ahead of schedule
giving us time to further tune the back end and explore instruction set
extensions (see next section).

Register Permutations

The collaboration with Project B1 allows us to explore extended instruc-
tion sets: Our previous work shows that register allocation for programs
in SSA form leads to an optimal assignment of registers. Translating
out of SSA form, however, requires parallel copy constructs, which are
traditionally implemented by sequences of register-register copy and
exchange instructions. In practice, minimising the number of needed
parallel copies is an NP-hard problem, which is why the remaining num-
ber of parallel copy operations can be quite high. We greatly reduce the
cost of implementing parallel copies with an instruction set extension
that adds additional instructions to permute the register contents within
a single cycle.

The extended instruction set has been defined in its final form in col-
laboration with Project B1. We have developed an efficient compilation
approach that is able to generate optimal code for all practically rele-
vant parallel copy constructs using the additional instructions. Multiple
register allocators that were already implemented have been adapted
to support the generation of permutation instructions. Furthermore,
we have modified the CPU emulator QEMU to support the additional
instructions in order to get accurate measurements on the number of
saved instructions.

With the modified QEMU version and the FPGA-based hardware
implementation provided by Project B1, we were able to conduct bench-
marks using real programs. We used the programs from the SPEC
CPU2000 benchmark as inputs to the compiler and evaluated the qual-

78

ity of the generated code. To find out under which circumstances the
permutation instructions offer the biggest benefit, we tested different
compiler configurations. We varied the used register allocator and its
parameters as well as the used coalescing strategy. It seems that the per-
mutation instructions are especially useful in just-in-time compilation
scenarios because here, the compiler cannot apply a computationally
costly algorithm to minimise the number of parallel copies.

We plan to test more compiler configurations, where we artificially
restrict the register allocator to use fewer registers and try to simulate
more register constraints in the instruction set. This will hopefully allow
us to predict how architectures that are different from SPARC would
benefit from permutation instructions.

Publications

[BBMZ12] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau. An X10
Compiler for Invasive Architectures. Tech. rep. 9. Karlsruhe
Institute of Technology, 2012. URL: http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000028112.

[THT12a] A. Tanase, F. Hannig, and J. Teich. “Symbolic Loop Paralleliza-
tion of Static Control Programs”. In: Proceedings of the 8th
International Summer School on Advanced Computer Archi-
tecture and Compilation for High-Performance and Embedded
Systems (ACACES). Fiuggi, Italy, July 8–14, 2012, pp. 33–36.
ISBN: 978-90-382-1987-5.

[THT12b] A. Tanase, F. Hannig, and J. Teich. “Towards Symbolic Loop
Parallelization for Tightly-Coupled Processor Arrays”. Work-
In-Progress Presentation at the 49th Design Automation Con-
ference (DAC), San Francisco, USA. June 3–7, 2012.

[TWOS12] J. Teich, A. Weichslgartner, B. Oechslein, and W. Schröder-
Preikschat. “Invasive Computing - Concepts and Overheads”.
In: Forum on Specification & Design Languages (FDL). Vi-
enna, Austria, Sept. 18–20, 2012, pp. 193–200. ISBN: 978-2-
9530504-5-5.

79

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112

D1

D1: Invasive Software–Hardware Architectures
for Robotics

Rüdiger Dillmann, Tamim Asfour, Walter Stechele

Manfred Kröhnert, Johny Paul

In Project D1 we focus on exploring benefits and restrictions of inva-
sive architectures in challenging real-time embedded systems and in
particular in humanoid robotics. We focus on implementing a cognitive
robot control architecture with its different processing hierarchies. The
goal is to explore techniques of self-organisation to efficiently allocate
available resources for the timely varying requirements of robotic appli-
cations. Compared to traditional resource allocation at compile time the
resource-aware computing methodology is expected to lead to better
load balancing and efficient resource utilisation. To demonstrate the
above aspects we focus on algorithms used on the humanoid robot
ARMAR-III which depend heavily on the current task and range from
stereo vision, object recognition and obstacle detection to higher level
functionality such as object grasping, motion planning or autonomous
navigation. During the operation of ARMAR-III the underlying comput-
ing architecture faces varying load conditions over time.

During the first year, the optical flow algorithm for robot navigation
was implemented on TCPA with inbuilt resource-aware techniques. The
implementations are described in the PAULA programming language
and by now the complete algorithm runs on the TCPA simulator (Proj-
ect C2). Additionally, an algorithm for calculating disparity maps was
implemented in X10 using invasive methods.

In the second year, Project D1 focused on implementing algorithms
which can be run on an FPGA-based demonstrator. The disparity map
and object recognition are needed by the robot in order to recognise and
grasp objects. An invasive algorithm for audio equalising was added to
demonstrate the benefits of invasive computing on audio applications.
In addition, a hardware monitoring framework was implemented to
monitor behaviour and performance of algorithms on an FPGA. Work
has also been started on motion planning and colour segmentation.
Progress of the work is described in detail in the following sections.

80

D1

Object Recognition on MPSoC

The robot ARMAR-III currently uses an object recognition application
consisting of three main stages. These include Harris Corner Detection,
SIFT (Scale Invariant Feature Transform) feature extraction and SIFT
feature matching. During the 2nd year of the project, Harris Corner De-
tection and SIFT feature extraction were converted to a multi-threaded
parallel model capable of running on the proposed InvasIC hardware.
The applications are now able to express their resource requirements to
the run-time system. Currently, they execute on a single-tile hardware
(standard Gaisler design) and are structured to be easily portable to the
proposed multi-tile invasive hardware.

Application programs were profiled to understand their behaviour on
single tile hardware. Also, evaluations were performed on how to effi-
ciently use the core-local and tile-local memory blocks like scratchpad
memories and tile local memories (TLM). A concept based on passing
hints to the operating system (OctoPOS) for allocating stacks and heaps
has appeared to be effective and results in simple and portable applica-
tion code. Figure 4.32 shows how the execution time for Harris Corner
Detection changes with available resources (only Leon3 PEs are used).
AHB bus load and CPU usage (efficiency) are also provided along with
execution time. It can be seen that the application scales well up to 10
cores and the execution time gets reduced when more resources (PEs)
are being used. But the efficiency of the cores comes down as more
cores operate in parallel due to the rising AHB bus load.

0

20

40

60

80

100

1 2 4 6 8 10

Exec time Core Efficiency Bus Load

P
er

ce
nt

ag
e

(%
)

Core Count:

Figure 4.32: Performance plots for Invasive Harris Corner Detection application

81

D1

Audio Processing

Speech synthesis and recognition are two important tasks for humanoid
robots. An invasive version of such applications would result in better
evaluation of invasive concepts. As the speech synthesis and recognition
are very complex tasks and difficult to implement in the first phase of
the project, a more suitable and simple audio application was selected.
A multi-channel audio equaliser was used to demonstrate the benefits
of invasive computing in audio applications. The application can react
to changing resource conditions and adapt itself in order to deliver the
best audio output.

Disparity Map on MPSoC

In the first year an invasive version of the Disparity Map algorithm
was implemented using the InvadeX10 framework (Project A1) and
simulated using the functional simulator of Project C2. Results were
published in [PSKA+12].

In the second year, the application has been ported to C++ and
adapted to run on the invasive OctoPOS operating system (Project C1).
Using this approach makes it possible to run the application on real
hardware to extract execution time and other metrics. This information
can then be used to influence the design of invasive hardware and
software components.

A single tile containing 6 Leon PEs was used to measure the perfor-
mance of the implementation. Results are shown in Table 4.3.

Table 4.3: Versions of Disparity Map running on FPGA (Execution time in [ms])

#PEs 1 2 3 4 5 6
V 1 (without TLM) 8950 5130 3850 3540 3580 3700
V 2 (with TLM) 8700 4890 3500 2830 2480 2300

Version 1 of the algorithm can only access global DDR memory
whereas Version 2 is capable of storing some of the data structures
in tile local memory (TLM). Using TLM yields a boost in performance
of up to 60 % (6 Cores) even on single-tile hardware. Additionally,
performance degrades faster in Version 1 which is not using TLM.

82

D1

Color Segmentation

Recognising and tracking of coloured objects can be realised using colour
segmentation. The object colour to detect is given in the Hue-Saturation-
Value (HSV) colourspace together with some margins. Region growing
is then used to extract same coloured regions which in turn are matched
against a database of known objects. If a pair of stereo cameras is used
it is possible to calculate position and orientation of detected objects
afterwards.

An initial version of the HSV segmentation, capable of segmenting
coloured regions in images, has been ported to the OctoPOS operating
system to run on a single PE. It can be run on the same FPGA hardware
than the Disparity Map.

Motion Planning

Visually guided grasping is the final demonstration scenario of the first
funding phase. So far, most presented algorithms are vision based. They
are responsible for visually detecting and tracking objects including
obstacles.

To complete the proposed scenario the robot needs to detect an object
using vision. Afterwards this goal object must be reached without
colliding with other objects. Collision free paths towards the goal object
are calculated by means of motion planning. We are going to use
randomised search trees, in particular Rapidly exploring Random Trees
(RRTs), for motion planning.

In the second year, an initial version of the RRT was ported to run on
OctoPOS. Motions between two positions can be planned and visualised
in a 3D viewer. Collision checking will be implemented in the near
future to allow for collision free paths.

Figure 4.33: Visualisation of a trajectory planned for a simple robot with 3 joints.

83

D1

Hardware Monitoring Framework

In addition to invasive applications, D1 also developed a monitoring
framework for InvasIC. It includes performance counters incorporated
into the existing hardware and additional visualisation tools that can
plot the performance values in real-time on a host-PC. This framework
is useful for evaluating the performance of application programs (count
cache misses, cache latencies, FPU operations, CPI, AHB bus load etc.)
and also helps to pin-point bottlenecks in the system. The present
monitoring framework architecture is shown in Figure 4.34. Output
from performance counters are read through the USB interface and
visualised on a host PC. More parameters like power monitoring, link
utilisation of the NoC, monitoring of the CiC rule evaluator and more
will be added in the future.

External Memory (DDR3)

Processor

L1

Processor

L1

L2

Cache Coherent Network

Processor

L1

Processor

L1

Processor

L1

Processor

L1

HW Monitors
(PMS)

Figure 4.34: HW based performance monitoring framework

Outlook

So far, several algorithms being used on the humanoid robot ARMAR-III
have been investigated. Some of them already run invasively. Others
were ported recently and do not take advantage of invasive computing.

In 2013, the benefits of resource aware programming will be studied
more thoroughly. All presented algorithms will be enhanced to fully
support invasive mechanisms. Once the applications are multi-tile ready,
more evaluations on multi-tile hardware (including distributed memory)
will be conducted early next year. Profiling information generated from
test runs will then translate to hints to be passed to the run-time system
(agents). Additionally, a more detailed evaluation of the Stack-/Heap-
Mapping technique will be performed on multi-tile hardware. Here,
more benefits are expected on hardware where external memory (DDR)

84

access is very expensive compared to the current single tile design with
external memory attached to a single AHB bus.

However, testing single algorithms is not a real use case since there
is no real competition for resources. Therefore, our plan is to combine
several algorithms into a bigger scenario. Depending on the use case,
some of the algorithms might run sequentially while others will run in
parallel competing for the limited resources of the FPGA hardware.

To complete the demonstration scenario a connection between the
robot ARMAR-III and the FPGA-based demonstrator hardware (CHIPit,
Project Z2) will be established next year. Once finished, a closed loop
between robot and the invasive architecture will be implemented on
top. Based on images and joint angles read from the robot, a collection
of invasive algorithms will calculate new commands which are then sent
back to the robot.

Publications

[PSKA+12] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, and R. Dillmann.
“Invasive Computing for Robotic Vision”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 207–
212.

85

D3

D3: Multilevel Approaches and Adaptivity
in Scientific Computing

Hans-Joachim Bungartz, Michael Gerndt

Michael Bader, Andreas Hollmann, Tobias Neckel, Martin Schreiber,
Josef Weidendorfer, Tobias Weinzierl

There are two major research areas which we focus on in this project:
The first one is to provide numerical core algorithms omnipresent in

scientific computing which are developed with the X10 programming
language. These algorithms are extended and modified to be invasive.
During this step, we give/receive feedback to/from other sub-projects
via application-driven requirements analysis.

Our second research area is to examine the potential of Invasive Com-
puting for state-of-the-art high-performance applications [BBGH+11;
GHHH+12] on standard HPC architectures. We are developing iOMP as
an invasive version of a standard programming model for HPC as well
as an invasive Tsunami simulation code. Our main algorithm is based
on a dynamical adaptive grid [SBB12] and is extended to make use of
an invasive API. During the execution of multiple simulations in parallel,
a resource manager [BBS12] determines an optimised distribution of
computing resources to each simulation for improved utilisation of the
hardware.

1) Demonstrator Platform: X10 Applications

For the activities on the demonstrator platform (Project Z2), for the
design of an invasion-enabled X10 programming language, and to iden-
tify requirements of the hardware and operating system, D3 provides
typical algorithms and algorithmic patterns from scientific computing.

In the 2nd year, we achieved our main goals for this year: We pro-
vided the basic scientific algorithms in X10 including utilisation of the
currently existing invadeX10 API:

• Multi-grid: Multi-grid algorithms are one of the core algorithms
in scientific computing to compute an approximated solution of
a system of linear equations. During execution of this algorithm,

86

D3

dynamically changing workload is created by restriction and in-
terpolation operations. Due to this highly dynamic behaviour and
changing resource demands of the multi-grid algorithm during
its execution, we expect the most challenging demands on the
invasive API—especially demands on data locality & migration
issues.

Results: We implemented a multi-grid algorithm in X10 which
computes the heat distribution of a laser beam on a metal plate 2.
This algorithm also makes use of the latest invadeX10 API features
using scalability graph hints as well as the max-core restrictions
on each multi-grid level.

Outlook: Our next steps for this algorithm are, among others, to
test the execution of multiple multi-grid algorithms in parallel
on standard HPC platforms, to optimise the stencil computations
of the algorithm with respect to halo-cells as well as to evaluate
scheduling strategies of the agent system.

• Quad-Tree: To approximate integrals of functions which cannot
be computed analytically, we use numerical quadrature. This
is usually done by using recursive function calls. For Invasive
Computing, this leads to the challenge of recursive invasions.

Results: We extended our previously developed version of this
algorithm to make use of the most recent invadeX10 API using
recursive invasion.

Outlook: To compute numerical integrals (quadrature) by mainly
evaluating computation intensive functions, this algorithm is
clearly compute bound. We highly expect to show benefits of inva-
sive computing by interleaving our computation bound quadrature
algorithm with bandwidth limited algorithms once we are able to
execute our algorithm on the demonstrator platform.

• Matrix-exponentials: Matrix-Matrix multiplications are one of
the basic linear algebra algorithms in scientific computing. For
invasive computing, we consider matrices of a size exceeding
current L2 cache sizes (» 1 MB) creating additional demand on
optimisation: Such optimisation are e. g. block-wise matrix-matrix
multiplication, data-locality by using a space-filling-curve but also
data-reutilisation by a software-managed Turing-cache.

2Video available @ http://www.youtube.com/watch?v=vRQDr3zkupI

87

http://www.youtube.com/watch?v=vRQDr3zkupI

D3

Results: We extended our matrix-matrix multiplication algorithm
to compute matrix-exponentials and used invadeX10 to extend the
block-recursive matrix-exponentials computation to an invasive
application: During each matrix-matrix multiplication, the algo-
rithm offers to be invaded (retreat) or to invade other resources.
Since the performance hints, e. g. the scalability graphs, are not
changing over time, this performance hints are provided to the
agent system by an invade call at the beginning. To reduce the
time for the serialisation of this constraints, a reinvade() without
any parameters was implemented in the invadeX10 API with con-
crete results previously shown in [BBS12] on HPC systems (see
below). This reinvade is used to (a) modify an existing claim
and (b) to avoid forwarding the constraints by assuming that the
previous constraints are reused.

Outlook: Next steps are further optimisation of this algorithm,
e. g., support for different instruction sets (Leon, i-Core) and thus
different performance on heterogeneous architectures while still
maintaining load-balancing.

We frequently update all algorithms to stay up-to-date with the latest
invadeX10 API provided by Project A1 and Project C2.

Performance measurements on the demonstrator platform and eval-
uation of the X10 compiler with smaller X10 programs are currently
done.

Once our algorithms are able to run on the simulator, further perfor-
mance optimisations in cooperation with other projects are done.

2) HPC Invasive Computing

A) Invasive OpenMP:
During the first year of the project we developed a first version of

iOMP which supports the specification of constraints in a similar way
as it is done in invadeX10. Experiments with iOMP applications run
in the 2nd year showed that hard constraints, e. g., fixed number of
cores, are difficult to accomplish if more then one application is running
in parallel. We also experimented with soft constraints, i. e., ranges of
cores, but this still is not sufficient for an effective resource management.
In case of two applications that both ask for 1 to N-1 cores on a system
with N cores, the first one will get nearly all cores while the second
would get only one core. This first come first serve strategy doesn’t work
well. To get better distributions, we realised a uniform distribution of
resources that gives the same number of cores to each application. This

88

D3

strategy has shown its benefits for running many parallel instances of
the tsunami simulation [GHMS+12]. This approach is, however, not
very efficient for running different applications in parallel, since their
scalability is different. The uniform distribution can be improved by
specifying scalability hints.

A detailed evaluation of the overheads of invasive resource manage-
ment in iOMP revealed that invade and retreat operations are expensive
due to the interprocess communication between the resource manager
and client and due to the pinning of threads to the process’ resources.
Therefore, a coarse grained invasion is important which can be realised
by exploiting the iterative behaviour of scientific applications. Fre-
quently a time stepping loop is executed where resource adaptation can
happen for each time step but not for individual parallel regions in the
time step execution. We extended the resource management to take the
specification of the requested number of cores at the beginning of a time
step as a hint for a request in the next time step, if it cannot be fulfilled
due to a shortage of resources. If during the time step execution other
applications retreat from resources, the resource management collects
some of the resources for the invade in the next time step.

The distribution of resources is guided by the scalability hints dis-
cussed above. Those hints have to be gathered before the invasive
execution and are clearly input dependent. In addition, the real scalabil-
ity depends on the overall resource usage of all the applications running
on the invasive computing system. For example, another application
using a core sharing the L3 cache might limit the number of cache lines
available to an application that invades another core sharing this cache.

Therefore we developed a concept to determine the hints or con-
straints for invasive operations dynamically at run-time. This approach
is based on measurements with the hardware performance counters
of modern processors. It takes into account the memory bandwidth
requirement of the application, its execution time as well as the re-
quirements of the other application competing for the resources. The
current version is based on the perf event subsystem of the Linux ker-
nel. The overall goal is to provide more information to the resource
managements in order to optimises the overall resource usage [HG12].

Additionally, we implemented a tracing library for iOMP. It generates
detailed trace files in the Open Tracing Format 2 (OTF2). This format
is a successor of OFT1 and is currently under development within the
BMBF-funded LMAC project. It is used as an input format for many
advanced performance analysis tools. The traces contain trace records
for invasive operations as well as for operations of the resource manager.

89

D3

We use Vampir for the visualisation and analysis of those trace files.
Vampir is a production quality visualisation tool for very large scale HPC
systems.

Figure 4.35: Time line diagram of an iOMP execution on the four socket Westmere EX server
funded by InvasIC.

Figure 4.35 shows the dynamic distribution of resources when four
iOMP application share the available resources. Each colour represents
one application and each bar represents one CPU core. The resource
management reacts on newly started applications. At first, CPU cores are
withdrawn from one applications. In a second step, they are assigned to
the requesting application. White gaps in the bars show that CPU cores
are idle for a time until the requesting application arrives again at the
invade command at the beginning of the time step loop. It demonstrates
the effect of the above described resource management approach to
take the constraint of an invade command as a hint, when not enough
resource are available.

B) Invasive resource management:
We also reached our main goal of the 2nd year: We implemented an

invasive resource manager [BBS12] for OpenMP as well as TBB which
is able to schedule resources in a globally optimised way with the help
of resource-aware applications:

Our resource-aware application sends its scalability information (one
slice in Figure 4.36) to the invasive resource manager. The resource
manager distributes computational resources among all applications
and ensures that CPUs are never oversubscribed. Resource manage-
ment decisions are enforced by setting processor affinity. Our current
implementation aims for optimisation of overall throughput by using
scalability graphs. We also implemented asynchronous invasion (see
[BBS12]) to reduce the overhead created by the latency of synchronous
invasions.

90

D3

Figure 4.36: Changing scalability behavior depending on current phase (severe different number
of cells) of simulation

C) Invasive application:
A fully-adaptive simulation [SBB12] based on shallow water equation

is executed (see Figure 4.37). Such an adaptive simulation has changing
demands on resources during the simulation due to adaptive refinement
and coarsening. Our parallelization of this simulation is achieved via
massive-tree splits and joins. With adaptivity, this leads to changing
workloads and scalability during the execution of simulation. This
different scalability is currently not considered by existing threading
tools (e. g., OpenMP, TBB).

The simulation makes use of the invasive API between each time-step
to provide necessary information about optimisation to the invasive
resource manager.

Further information on our fully-adaptive framework are available at
http://www5.in.tum.de/sierpinski/.

Figure 4.37: Changing number of grid-cells during the simulation. Red borders mark our smallest
serial execution unit for the massive-tree splitting parallelization.

D) Invasive execution:
Figure 4.38 shows the globally optimised distribution of computing

resources with respect to the scalability graphs of each application.

91

http://www5.in.tum.de/sierpinski/

D3

We developed a resource manager which distributes the cores to the
application to maximise global application throughput depending on
the current scalability graph and core limitations of the application.

Figure 4.38: Invasive execution of a multiple simulations: (1) Since there is no gain in performance
when application 1 is using more than 30 cores, the resource manager assigns only
30 cores for invasion. (2) During the start of the 2nd application (blue), less cores are
assigned to it compared to the first application (red) since the scalability is worse. (3)
Since resource redistribution of applications cannot be achieved synchronously, some
resources idle for a short period (white areas on top of graph). Amongst the cost of
the resource manager to search for the global optimum, this is the compromise to
make to be invasive.

Our next tasks are e. g. to focus on the resource-aware extension and
invasive execution of other standardised run-time-dynamical applica-
tions.

Collaboration within the SFB

We steadily extended our algorithms in close collaboration with C1
and C3 to support the most recent features of invadeX10 and to add
further features necessary to support invasion (see e. g. reinvade() in the
matrix exponential algorithm). To support invasion within the multi-
grid algorithm, we determined new requirements for the X10 API as
well as the operating system and discussed this with C1, C2 and C3 for
further improvements.

To make an early evaluation of the demonstrator hardware, we de-
veloped simplified non-invasive algorithms in X10 and C including
execution and evaluated this programs on the final demonstrator plat-
form in collaboration with C3 (Compilation), C1 (Operating system
OctoPOS) and Z2 (Demonstrator). This gave us better understanding of

92

D3

the underlying hardware for our algorithms.
Besides the before mentioned cooperations, others are e. g.:

• B3, B5, C1, D1: We updated the matrix-exponential description
including discussions about further demands.

• A1, C3: In order to optimise the algorithm by means of perfor-
mance and invasion concepts, we are in frequent contact with the
A1 and C3.

• C3, C2: Due to the development of the multigrid algorithm, we
determined new X10 API features. E. g. an extension of the infor-
mation on data distribution with PEs as well as data migration
when re-infecting PEs different from the previous ones.

• B1: Acceleration of matrix-matrix sub-block multiplication using
i-Core.

• B3: Energy efficiency optimisations for dynamical adaptive algo-
rithms.

• C1, D1: Application driven considerations on tile- or core-granular
invasions.

Publications

[BBGH+11] M. Bader, H.-J. Bungartz, M. Gerndt, A. Hollmann, and J.
Weidendorfer. “Invasive Programming as a Concept for HPC”.
In: Proceedings of the 10h IASTED International Conference
on Parallel and Distributed Computing and Networks 2011
(PDCN). Feb. 2011.

[BBS12] M. Bader, H.-J. Bungartz, and M. Schreiber. “Invasive Com-
puting on High Performance Shared Memory Systems”. In:
Facing the Multicore-Challenge III. 2012.

[GHHH+12] M. Gerndt, F. Hannig, A. Herkersdorf, A. Hollmann, M. Meyer,
S. Roloff, J. Weidendorfer, T. Wild, and A. Zaib. “An Inte-
grated Simulation Framework for Invasive Computing”. In:
Forum on Specification & Design Languages (FDL). Vienna, Aus-
tria, Sept. 18–20, 2012, pp. 185–192. ISBN: 978-2-9530504-
5-5.

[GHMS+12] M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Wei-
dendorfer. “Invasive computing with iOMP”. In: FDL. 2012,
pp. 225–231.

93

[HG12] A. Hollmann and M. Gerndt. “Invasive Computing: An Appli-
cation Assisted Resource Management Approach”. In: MSEPT.
2012, pp. 82–85.

[SBB12] M. Schreiber, H.-J. Bungartz, and M. Bader. “Shared Mem-
ory Parallelization of Fully-Adaptive Simulations Using a Dy-
namic Tree-Split and -Join Approach”. In: Proceedings of HiPC
2012. 2012.

94

Z: Central Services

Jürgen Teich, Jürgen Kleinöder, Katja Lohmann

Ina Derr, Frank Hannig

The central activities and services in InvasIC are coordinated and organ-
ised by Project Z. These activities and services are subdivided into two
parts:

The first part is administrative support, organisation of meetings
(internal project meetings, PhD student retreats) and assistance for visits
of guest researchers and for researchers travelling abroad. Technical
support and tools for communication and collaboration are provided as
well as support and organisation of central publications. Last but not
least, financial administration and bookkeeping is one of the central
services.

The second part concerns public relations. Contacts with important
research sites are established as well as an international Industrial and
Scientific Board. Scientific ideas and results are discussed at various
workshops and conferences.

For detailed information on the general idea and organisation of
InvasIC as well as on the progress made in the different projects, the
InvasIC website http://www.invasic.de is maintained.

A detailed listing of the scientific meetings and events organised and
conducted by Project Z is provided in Part III of this report.

95

http://www.invasic.de

Z2

Z2: Validation and Demonstrator

Jürgen Becker, Frank Hannig, Thomas Wild

Srinivas Boppu, Stephanie Friederich, Ralf König, David May,
Shravan Muddasani

The goal of Project Z2 is to build a common FPGA-based demonstrator
for validating the principles of invasive computing on a real compute
platform. For this purpose the contributions of the different projects will
be integrated into an invasive compute architecture to demonstrate the
advantages of invasive computing such as improved quality of service,
resource utilisation and speed-up of applications.

As validation and demonstration platform, we use a Synopsys CHIPit
Platinum system (shown in Figure 4.39 on the right) at each site (FAU,
KIT, TUM) since the beginning of the collaborative research centre.
Thanks to its 6 FPGAs (Virtex5 LX330), the system allows for the proto-
typing of multi-million gate designs. In addition, the CHIPit platform
enables co-simulation/emulation and transaction-based verification.

Figure 4.39: InvasIC Demonstrator : a concept validation demonstrator of an NoC-based 3×3
tiled array, consisting of different compute tiles (Leon cores, tightly-coupled processor
arrays (TCPA), i-Core) as well as of memory and I/O tiles, will be prototyped on the
CHIPit system.

96

Z2

In general, the work of Project Z2 can be subdivided in the following
three major areas:

• Provisioning of a basic hardware infrastructure on the CHIPit
system, encompassing common peripherals and components as
well as the associated tool and design flow support.

• Integration of the different projects’ contributions, i. e., hardware
and software components, into the common demonstrator.

• Coordination work for definition and stepwise integration of the
contributions, including milestone planning.

In the past year the following major achievements have been accom-
plished by Project Z2, which make up first important steps towards the
final invasive computing demonstrator:

• A first demonstration, across all project areas (application, com-
pilation, architecture), in form of a matrix-matrix multiplication
algorithm running on a two tile Leon-based multiprocessor archi-
tecture was assembled and shown at Doctoral Researchers Retreat
in spring 2012.

• An invasive TCPA architecture, which processes in real-time3

video data from a DVI source and outputs the results as well
by DVI, has been designed and prototyped on the CHIPit system.
The design was demonstrated at the Invasive Computing annual
meeting in October 2012 as well as at the demo night of DASIP
2012 [MBHK+12].

• Whereas the above demonstrators are mapped only to one FPGA
of the CHIPit system, we can highlight also successful multi-FPGA
designs, including a 2×2 tiled architecture mapped onto four
FPGAs.

In the following sections, more detailed information is given on the
three work areas mentioned above and the associated achievements in
the last year.

3Processing of a video stream with a resolution of 1024 × 768 pixels and 60 frames per
second.

97

Z2

Transactor
HW

DualPort RAM

Data

nKx32

n BRAM

AHB slave

interface

Network
Adapter

LEON
Core

AHB Bus

I/O tile

host PC
Transactor

SW

HW2SW_CTRL_DATA

SW2HW_CTRL_DATA

ox00000000

ox00000001

ox00000002

ox00000402

Figure 4.40: I/O Transactor : Architectural Block Diagram

Basic Demonstrator Components and Design Flow

The development, customisation and integration of both virtual and
physical interfaces as well as drivers and controllers made up an ex-
tensive part of last year’s work in Project Z2. Given IP modules from
Synopsys and Gaisler had to be configured and appropriate wrapper
components had to be designed to enable integration into the common
demonstrator architecture. During the last year, special focus was put
on several interfaces and controllers, which are essential for the com-
munication between the host PC or peripherals and the actual FPGA
system of the CHIPit platform.

I/O Transactor An I/O transactor transfers data between the host PC
and the invasive compute architecture in the CHIPit system or vice
versa. The transactor based interaction opens up the possibility to
boot, configure and debug all processor cores in arbitrary tiles of the
architecture. Further on, it allows access of different memory locations
(global memory, tile local memory, etc.) within the architecture. The
transactor consists of a software and a hardware part as shown in
Figure 4.40. Currently, a slave I/O transactor design (see Figure 4.40)
has been released while the development of a master transactor, which
allows initiating data transfers from the host PC, is in progress.

DDR2 Controller Memory is one of the limited resources of the FPGAs
within the CHIPit system when we implement the invasive compute
architecture, which requires different memory (type, size) for caches,
TLM and main memory. In addition to the SSRAMs, which are already
located on the FPGA boards of the CHIPit system, we extended the
system with two DDR2 extension boards. As background for the memory

98

Z2

controller we are using the DDR2_SPA controller from Gaisler. Since the
pin placement of the CHIPit system is not as flexible as usual Virtex5
FPGAs, we needed to implement an appropriate physical interface for
the controller. This includes the insertion of an additional signal to
handle the bidirectional data and data strobe signals, because there is
a bidirectional level shifter placed between the FPGA and the memory
device on the CHIPit system. This signal indicates whether the signals
are used as inputs or outputs. In addition the data strobe signals are
required differential bidirectional signals for the memory device, but
the CHIPit pin placement does not allow differential signals. Hence
these signals are changed into inverted signals. Because of the limited
frequency of all extension boards, the DDR2 memory only operates at a
frequency of 50 MHz.

The DDR controller is now available as an additional package for the
GRLIB library and could be easily integrated into a design, independent
of the GRLIB version. Having a working DDR2 memory controller, we
implemented a memory tile for the invasive architecture. This enables
the provision of a big DDR2-based global memory, which is accessible
through the network from all other tiles.

L2 Cache The Level-2 cache controller has been integrated into a 4-
core Leon design and successfully tested. In this context we also had to
update our designs to use the commercial Gaisler Leon library, where
the L2 cache is a part of.

DVI Interface The CHIPit system can be extended by a DVI video ex-
tension board. Using this board, a DVI digital video input stream can
be converted from TMDS (transition minimised differential signalling)
to source-synchronous digital data in a DVI receiver (Rx, IC SiI-7171)
and raw pixels are obtained for further processing in the FPGAs of the
CHIPit system. The processed pixels are converted back to TMDS using
a transmitter (Tx, IC SiI-7170). Both the Rx and Tx ICs are shown in
Figure 4.41 and they can be configured using the Client Application
Programming Interface soft-IP Modules (CAPIM) provided by the CHIPit
infrastructure. The CAPIM modules are connected to the UMR-bus
for programming through the host PC. During the last year, we have
explored and gained the know-how of the DVI extension board. The
extension board is integral part of a first invasive TCPA demonstra-
tion, which has been developed in collaboration with Project B2 and is
described in the next section.

99

Z2

Partitioning of Designs For larger designs, like our common demon-
strator platform, which will be introduced later, it is necessary to map
the design onto several FPGAs. The partitioning of HDL sources onto
several FPGAs of the CHIPit requires a special tool-flow, invoking steps
and tools that are usually not required for one-FPGA designs. Although,
an automated partitioning algorithm exists for mapping parts of a design
on different FPGAs, it is unlikely that is gives the best results concerning
the final performance, or that is able to do a successful partitioning at
all. We studied the tool-flow and the hardware platform in detail and
developed a script based approach to simplify the partitioning of an
InvasIC tiled mesh. Almost all necessary steps are now automatically
invoked and only a few user interactions are required, which makes the
partitioning feasible for people without detailed knowledge about the
system and tools.

Invasive Demonstrator Architecture and Integration

Another major part of Project Z2’s work was devoted to the evolution of
the common demonstration platform (3×3 heterogeneous tiled archi-
tecture [BFHK+12]) and first proof-of-concept demonstrations on the
CHIPit system. Major achievements were the successful integration of a
TCPA to perform video processing with DVI interface and the successful
steps towards planning and implementing the tiled invasive compute
architecture.

Invasive TCPA Video Demo Together with Project B2, we have imple-
mented a first invasive TCPA prototype, which was demonstrated at the
Invasive Computing annual meeting in October 2012 as well as at the
demo night of DASIP 2012 [MBHK+12].

In general, a TCPA as shown in Figure 4.41 is a highly parameterisable
coarse-grained processor architecture with an N ×M array of weakly
programmable processor unit (PU). TCPAs are well suited to serve
as accelerators for numerous of computationally intensive tasks. In
the research of Project B2, each PU in a TCPA was augmented with an
invasion controller (iCtrl in Figure 4.41), which can invade neighbouring
processors in a linear, meander walk, or rectangular fashion. The
number of invaded processors can be dynamically increased or reduced
depending on the requirements of the application. For further details,
we refer to the section of Project B2 in this report.

As a first prototype architecture, an array of size 5 × 5 has been
designed (see Figure 4.41). In this demonstrator prototype, depending

100

Z2

on the requirements of an application as well as the available amount
of resources, the number of invaded PUs can be increased and reduced
on-the-fly at run-time, which results in different quality of the output
video stream while the frame rate remains the same. In order to visually
demonstrate the trade-off between the number of invaded processors
and the image quality, an entire processing chain has been set up,
including a DVI source, which is fed into the prototype in the CHIPit
system, and the DVI output from the prototype is connected to a display
in order to visualise the benefits of invasive computing.

The targeted video applications on the invasive TCPA prototype are
several real-time 1-D and 2-D image filters (e. g., FIR filtering, 2-D
convolutions, edge and feature detection) on a streaming input video.
Such image filters have many applications in imaging and video process-
ing. The range of applications vary from very precise medical imaging
systems to low precision industrial imaging and consumer video appli-
cations. Depending on the number of invaded PUs, the convolution
window size can be varied, which results in a different quality of the out-

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrlConfiguration

Controller

Pixel Buffer

Invasive TCPA

DVI Extension Board

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

Video

Source
Display MonitorHOST PC

UMRBus

L
in

e
 B

u
ff

e
r

CAPIMCAPIM CAPIM CAPIM

Configuration

Controller

Configuration

Memory

Rx (SiI-7171) Tx (SiI-7170)

Figure 4.41: Prototype Architecture: Invasive TCPA performing 2-D image filtering on an input
video stream

101

Z2

ChipIt

FPGA1 FPGA2 FPGA3

FPGA4 FPGA5 FPGA6

L/i

L

i

L

T

T

IO

IO

M

M

100/220 100/220 100/220

100/251 100/251

200/251200/251

SRAM SRAM

DDR

DVI

Leon3/iCore

TCPA

I/O tile

Memory tile

L i L

InvasIC 3x3 Demo

Figure 4.42: Overall architecture of the InvasIC Demonstrator

put images. As shown in Figure 4.41, the image in the green coloured
box is filtered with four processors has better quality than the picture in
the blue coloured box, which is filtered with only one processor.

Common Demonstrator for Invasive Computing In order to demon-
strate the concepts and benefits of invasive computing in hardware,
a common demonstrator architecture had to be defined. The configura-
tion of this architecture, on the one hand had to fulfil the needs of the
single sub-projects as well as the given constraints of the demonstrator
platform, with respect to resource utilisation and interconnections. In
consultation with the other sub-projects, a common demonstrator ar-
chitecture has been defined. The proposed demonstrator architecture
can be seen in Figure 4.42. The blue boxes in the figure represent the 6
FPGAs available on the CHIPit prototyping platform. Partitioned onto
the FPGAs is a 3×3 tiled architecture, consisting of 4 regular Leon tiles,
2 i-Core tiles, one TCPA tile, one I/O tile and one memory tile. The
memory tile is connected to a 256 MB DDR2 memory on an extension

102

Z2

AHB0

CPU0 CPU1 CPU2 CPU3 DSU

TLM L2

AHB1

NA

Figure 4.43: Block diagram of a Leon compute tile

board. The I/O tile will be connected to the DVI extension board. The
Leon and i-Core tiles consist of 4 CPU cores, L2 cache, local memory,
a debug support unit and the network adapter. A block diagram of
a Leon tile is shown in Figure 4.43. Note that auxiliary blocks, like
timers and interrupt controllers, are not shown here. Each CPU core has
8 KB instruction cache and 32 KB data cache. The level 2 cache will be
128 KB. The tile-local memory (TLM) is connected to SSRAM extension
boards on the CHIPit system offering 8 MB per tile. The debug-support
unit (DSU) will be used to debug the tile using the transactor presented
afore.

The placement and the configuration of the individual tiles on the
FPGAs is well conceived, as the possibilities are limited due to the con-
straints of the prototyping platform and the FPGAs themselves. The two
main limiting resources are the amount of interconnections between
the FPGAs and the amount of memory on the FPGAs. The structure
shown in Figure 4.42, basically represents the largest architecture possi-
ble on the CHIPit platform, without making major compromises in the
performance of the interconnections and the memory architecture.

The 3×3 demonstrator architecture is still a work in progress. How-
ever, a 2×2 mesh on 4 FPGAs has already been successfully tested. The
resource utilisation of one Leon tile on an FPGA is roughly 40 % of Block-
RAM and 25 % of Look-up tables. We expect that the tiles will be able
to run at 50 MHz on the CHIPit platform, while the interconnections
will be able to run at 100 MHz.

Demonstrator Coordination

The third major work of Project Z2 in close cooperation with all other
projects is the definition of common demonstration scenarios that will
be shown on the CHIPit platform in order to demonstrate the benefits

103

Z2

InvasIC Demonstration Setup

This document explains the applications scenarios (D1-robotics) proposed for the InvasIC demonstration

and also the data flow between the robot and the CHIPit system.

Subproject D1 focus on implementing cognitive robot control architecture with its different processing

hierarchies, on invasive TCPA, iCore and RISC-based MPSoC. Various invasive applications that execute

on the CHIPit system are shown in the below flow diagram. The overall aim is to demonstrate object

grasping using the humanoid robot named ARMAR. The goal is to explore techniques of self-

organization to efficiently allocate available resources for the timely varying requirements of robotic

applications. Such a resource-aware computing methodology will lead to better load balancing and

efficient utilization of resources compared to traditional resource allocation at compile time.

The Robot-PC is responsible for robot control and for capturing the images from the cameras mounted

on the robot head. The images from the robot head will be transferred to the CHIPit-PC over the

Ethernet interface (standard TCP/IP channel) as shown in figure above. An application running on the

CHIPit-PC will receive the images; convert them to VGA resolution (color/grayscale or both, as required).

These preprocessed images will be loaded to the DDR memory on the CHIPit system using the Gaisler

Ethernet Interface (through burst transfers). The images will be loaded to predefine locations in the

CHIPit DDR memory or to the address specified by the invasive application, through message passing

CHIPit PC

Robot PC

ARMAR Robot

InvasIC HW

CHIPit System

Figure 4.44: Robot demo scenario configuration

of invasive computing. These scenarios are driven by applications from
Project D1 and Project D3.

Project D1 focus is on implementing a cognitive robot control ar-
chitecture with its different processing hierarchies, on invasive TCPA,
i-Core and RISC-based MPSoC. Various invasive applications that ex-
ecute on the CHIPit system are shown in the flow diagram in Fig-
ure 4.45. The overall aim is to demonstrate object grasping using the
humanoid robot named ARMAR. The goal is to explore techniques of
self-organisation to efficiently allocate available resources for the timely
varying requirements of robotic applications. Such a resource-aware
computing methodology will lead to better load balancing and efficient
utilisation of resources compared to traditional resource allocation at
compile-time.

The Robot PC is responsible for robot control and for capturing the
images from the cameras mounted on the robot head. The images
from the robot head will be transferred to the CHIPit PC over the
Ethernet interface (standard TCP/IP channel) as shown in Figure 4.44.
An application running on the CHIPit PC will receive the images and
convert them to VGA resolution (colour/greyscale or both, as required).
These preprocessed images will be loaded to the DDR memory on

104

Z2

Camera-
Images

Execution
(Grab object)

Disparity-
Map

Feature-
Detection

Motion-
Planning

Object-
Localization

Optical-
Flow

Leon3 iCore TCPA

Application Mapping

Figure 4.45: Robotic grasping application scenario

the CHIPit system using the Gaisler Ethernet Interface (through burst
transfers). Either predefined locations or the address specified by the
invasive application will be used. Short messages can be used to inform
the application program (invasive applications running on CHIPit) about
the availability of new frames.

The applications can execute on different types of processing ele-
ments (PEs) as shown in Figure 4.45. The coloured boxes represent
various mapping schemes (TCPA/i-Core/Leon3). A particular type of PE
is selected at run-time based on its availability, available power budget,
reliability aspects etc. At first, the object to be grasped is located (SIFT
based algorithm) and the distance to the object is calculated (dispar-
ity map). Simultaneously, the optical flow application can be used to
detect any movements and avoid collision with other moving objects
around the robot. In the next stage, the motion planning application is
responsible for planning the movements of the robot’s arm to grab the
object. Once the motion planning is complete the results are transferred
to the Robot PC (over the Ethernet interface), which will issue control
commands to the servo motors on the robot.

Project D3 provides typical algorithms and algorithmic patterns from
scientific computing and evaluates them on the common demonstrator
platform. Amongst others, algorithms such as numerical quadrature
and matrix-exponentials are considered. For more details and expec-
tations how to show benefits of invasive computing, we refer to the
corresponding pages of Project D3 in this annual report.

105

In order to ensure the interplay of all participating projects for demon-
strator integration, the following actions have been performed.

• Definition of road maps, milestone plans, and interfaces to guaran-
tee the timely availability of components and their consolidation.

• Project Z2 takes care of monitoring and updating of the afore-
mentioned documents and reports the progress to the individual
entities of the collaborative research centre.

• Organisation of several physical and virtual meetings as well as
bi-lateral or multi-literal interaction with projects. Major physical
meetings were the Winter of Code at TUM in January 2012, the
Demonstration Workshop at FAU in May 2012, the Autumn of Code
at KIT in September 2012 as well as sessions at the two Doctoral
Researchers Retreats in 2012.

Publications

[BFHK+12] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D. May.
“Hardware Prototyping of Novel Invasive Multicore Archi-
tectures”. In: Proceedings of the 17th Asia and South Pacific
Design Automation Conference (ASP-DAC). Sydney, Australia,
Jan. 30–Feb. 2, 2012, pp. 201–206.

[MBHK+12] S. Muddasani, S. Boppu, F. Hannig, B. Kuzmin, V. Lari, and
J. Teich. “A Prototype of an Invasive Tightly-Coupled Proces-
sor Array”. In: Proceedings of the Conference on Design and
Architectures for Signal and Image Processing (DASIP). Karl-
sruhe, Germany: IEEE, Oct. 23–25, 2012, pp. 393–394. ISBN:
978-1-4673-2089-4.

106

WG1

5 Working Groups

WG1: Working Group Architecture

Coordinators: Andreas Herkersdorf, Jörg Henkel

During 2011, the main objective of the working group was dedicated
to the definition and fixation of a tiled invasive architecture platform,
which allows a flexible composition of application-specific invasive archi-
tecture instances. This process implied a consolidation of requirements
and perspectives between the architecture related B-projects, the Z2
demonstrator project and A-, C- as well as D-projects. In 2012, the
architecture has been enhanced by a level 2 cache within the RISC-
based compute tiles to improve performance for the demonstrators
under discussion. The memory hierarchy has been finalised in terms
of structure and size of the different types of memory. Please see sub-
section "Progress Summary of B Projects" for a concise description of
the progress which has been achieved during 2012 in the individual
architecture projects.

Tiled Invasive Architecture

As a reminder, one instance of a tiled invasive architecture is depicted
in Figure 5.1. Hardware resources are partitioned into tiles which are
connected by an invasive network-on-chip (iNoC). There are four types
of tiles: i) invasive TCPAs compute tiles acting as accelerators for stream-
based computations on a massively parallel array of low-complexity
processing elements, ii) RISC compute tiles perform general-purpose
computation on open source Leon3 SPARC V8 cores, iii) I/O tiles serve
as interfaces towards external peripherals (e. g., video, IP networking,
serial port, debugging) and iv) memory tiles that either provide access
to external DDR memory or are comprised of on-chip SRAM memory.

The way how and where the level 2 cache has been integrated in the

107

WG1

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU iCore

iCore CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

N
A N

A Memory
N
A

N
A Memory

N
A

N
A Memory

N
A Memory

N
A

N
A

Figure 5.1: Tiled InvasIC Architecture

RISC-based compute tiles is depicted in Figure 5.2. The Gaisler level
2 cache has two AMBA AHB interfaces. Hence, locating the L2 cache
between cores and the AHB0 bus wasn’t an option. In consequence,
the L2 cache doesn’t cache content of the tile local memory (TLM), but
data from tile-external global memory only. This is advantageous for
the L2 cache efficiency as managed TLM accesses can be assumed to be
as fast as L2 Cache accesses. The 256 KiB L2 cache is a "write-back" type
cache which can be configured to either be direct mapped or support
multi-way associativity of 2, 3 or 4 ways.

AHB0

CPU0 CPU1 CPU2 CPU3 DSU

TLM L2

AHB1

NA

Figure 5.2: RISC compute tile with level 2 cache

A summary of the different memory types and their respective sizes
within the memory hierarchy are depicted in Table 5.1 below.

2012 Architecture Projects Accomplishments

The following paragraphs summarise the main progress and accomplish-
ments within the Invasic Architecture B-projects. A detailed description

108

WG1

Memory type Size Remarks

Scratchpad 8 KiB Local variables, stack, frequently used

L1 cache 8 KiB I-cache
32 KiB D-cache

Coherency is guaranteed within a tile

L2 cache 128 KiB Only global memory cached (no TLM)

Tile Local Memory
(TLM)

8 MiB Shared among all cores within a tile;
remote access possible through message
passing

On-Chip SSRAM 8 MiB Partitioned on-chip memory accessible
via ld/st over NoC

Off-Chip DDR2 SDRAM 256 MiB Partitioned off-chip memory accessible
via ld/st over NoC

Table 5.1: Memory hierarchy of a tiled invasive many-core

for each B project is found in Chapter 4, Research Projects.

Project B1 – Adaptive Application-Specific Invasive Architectures Proj-
ect B1 implemented the first version of the reconfigurable fabric on
a stand-alone Virtex-5 based platform. In particular this included the
development of the dedicated interconnect between the fabric and the
tile-local memory, the IP Core for the Reconfiguration Port, the integra-
tion of the i-Core into a multi-core system (one Leon and one i-Core
on a shared bus, which can be viewed as a minimal tile configuration),
and a demonstrator of the i-Core capabilities using a video encoder
demo, which was presented to the InvasIC industrial board. The adap-
tive pipeline has been implemented onto a Leon core. Investigation
into cache-adaptivity has been started using a stand-alone cache im-
plementation. In collaboration with the other architecture projects
a partitioning of the CHIPit demonstrator has been defined, with i-
Core tiles placed onto their own FPGAs due to their higher memory
requirements. Additionally, this demo was shown at the demo night at
ReConFig conference 2012. A presentation on the invasive hardware
architecture and its concept was given.

Project B2 – Invasive Tightly-Coupled Processor Array (TCPA) Architec-
tures As part of the overall heterogeneous tiled invasive computing
architecture, TCPAs are well suited to serve as accelerators for a myriad
of computationally intensive tasks. In the first two years of research,
Project B2 has proved that an invasion of an array of processing elements
can be accomplished at an overhead of only a few clock cycles per pro-

109

WG1

cessor by exploiting regularity and by developing necessary hardware
support (so-called invasion controllers). On this architectural foundation,
two major highlights in TCPA research, which demonstrate the benefits
of invasive computing, can be reported for 2012: The first one is the
ability to directly exploit processor invasion for power management
in TCPAs. Several hierarchical power gating techniques with different
power domain granularity have been developed and evaluated with
respect to latency and static power savings. As a second highlight, an
invasive TCPA architecture that processes real-time video data from a
DVI source and outputs the results as well by DVI, has been designed
and prototyped on the CHIPit system. This was the first time that the
trade-off between the number of invaded processors and image quality
could be visually demonstrated. The demo was given at the Invasive
Computing annual meeting in October 2012 as well as at the demo
night of DASIP 2012.

Project B3 – Invasive Loosely-Coupled MPSoCs In Project B3, a) con-
ceptual and architectural enhancements were performed to the CiC’s
functionality and b) a self-adaptive, hybrid DPM scheme for many-core
architectures has been presented in the ViPG part. The CiC offloads i-let
infections from the run-time system software (iRTSS) into the hardware
by means of i-let FIFOs within its i-let mapper. Moreover, a scheme to
classify applications based on their desired/expected monitoring condi-
tions is proposed in order to achieve a better i-let to core mapping by
the CiC using current sensor data. We presented a ViPG-based dynamic
power management (DPM) scheme exploiting application’s invade/re-
treat patterns to increase the energy efficiency of invasive applications.
Dispensable cores are virtually power gated by local ViPG managers.
Our cycle-accurate simulation infrastructure was extended to evaluate
this DPM scheme. The Leon3 processor has been enhanced to support
application-triggered clock gating. It was ported to an FPGA board with
built-in power meters and presented to the industrial board.

Project B4 – Hardware Monitoring System and Design Optimisation for
Invasive Architectures Project B4 investigates different hardware mon-
itor types and systems. Temperature distributions of cores in different
scenarios in a multicore system were evaluated. Different in-situ delay
monitor types were analysed and their performance for use in adap-
tive voltage scaling was evaluated. Timing behaviour of circuits was
investigated by evaluating statistical timing performance of circuits
level-sensitive latches and by analysing challenges in timing analysis

110

considering process variations. A modelling framework for flipflop tim-
ing behaviour was introduced, that makes it possible to do static timing
analyses at gate level.

Project B5 – Invasive NoCs An agent-based resource management strat-
egy is part of the invasive concept. A given multicore architecture is
divided into regions. Here, strategies for region-based communication
resource management have been investigated in Project B5. One of
the implemented strategies enables to adjust the communication infras-
tructure on a region basis according to the QoS requirements of the
application using the region. Another strategy enables to define regional
virtual networks which can be used for autonomous communication
of single applications. A region based data collection mechanism was
implemented to support the CiC and the agent system in collecting
status resp. monitoring information.

The investigations of Project B5 showed that so-called guaranteed
service (GS) connections, which are supported by the iNoC to enable
QoS, can also be used to reduce the energy consumption compared to
packet switching. Thus we are currently investigating two strategies
to automatically increase the amount of GS traffic in the network, to
reduce energy consumption. One strategy is located inside the NA.
It sets up GS connections automatically if frequent communication
is detected. Another strategy is implemented inside the routers. It
replaces existing GS connections by new connections having higher
communication demands.

In addition, Project B5 put a lot of effort in getting the first invasive
iNoC architecture running on the CHIPit platform in collaboration with
Project Z2. A 2x2 mesh could be synthesised and used successfully on a
single FPGA.

In Summary

A 128 KiB write-back level 2 cache has been integrated into the Leon3
RISC compute tiles. Other than that, the invasive architecture platform
remained unchanged and stable since its consolidation in 2011. Archi-
tecture projects participated and contributed to discussions with System
Software and Language working groups on the subject of granularity
of invasion / infection. Progress within the individual architecture B
projects has been according to program internal milestone planning.

111

WG2

WG2: Working Group System Software

Coordinator: Wolfgang Schröder-Preikschat

The AKSS (abbr. Ger. “Arbeitskreis Systemsoftware”) working group
is involved in the entirety of all programs which control function and
operation of invasive computing systems on behalf of invasive-parallel
application processes. It provides a forum for hardware and (applica-
tion/system) software developers to jointly discuss topics related to
these programs from the perspective of the individual research areas
A, B, C, D and Z. In addition, AKSS bundles requests and requirements
related to system software as stated by the projects, produces proposals
for solutions of problems arising in the outer field of hardware, compiler
and application software, and communicates achievements, recommen-
dations and obligations back to the projects. In the reporting year, the
following meetings took place:

2012-05-11 FAU Erlangen, host team Schröder-Preikschat

2012-09-17 FAU Erlangen, host team Schröder-Preikschat

Besides the definition of common terms, subjects of debate of the work-
ing group on the one hand comprised demonstrator-specific topics such
as the memory bandwidth and the location of dynamic program memory
(i. e., stacks and heaps) against the background of the CHIPit hardware
and on the other hand fundamental questions regarding the granularity
of invasion. Materials in preparation for the working group meet-
ings as well as for the documentation of their results are maintained
at https://invasic.informatik.uni-erlangen.de/intern/wiki/ak_
systemsoftware. Some of the results generated by the working group
that have a particularly broad relevance for the overall project are briefly
summarised in the following paragraphs.

Common Terms Discussions within the collaborative research centre
revealed that the generally usual notion of “application” has quite differ-
ent meanings in the diverse technical disciplines. The range goes from

112

https://invasic.informatik.uni-erlangen.de/intern/wiki/ak_systemsoftware
https://invasic.informatik.uni-erlangen.de/intern/wiki/ak_systemsoftware

WG2

a single “thread” within a (non-sequential, multi-threaded) program
looking into a very dedicated task to a (possibly complex formation of
a) logically self-contained assembly of programs that jointly performs
a certain computation or control function. By way of example, the
former case relates to read-out of a sensor device and the latter case
to some feedback control system consisting of many sensors, actuators,
and (hardware/software) means for human-computer interaction. AKSS
defined that, for InvasIC, “application” much more corresponds to the
latter than the former.

For other common terms used in this report and relevant to InvasIC
such as i-let (including its sub-classification into candidate, instance,
incarnation and execution), claim, and team, refer to [TKL12, p. 93].

Granularity of Invasion and Infection The question of the adequate
granularity—namely core or tile—of invasion, as significant at invade-
time, and infection, as significant at infect-time, in terms of the hard-
ware units affected by the respective measures was a central issue of
several meetings over the year. These two actions while executing an
invasive (parallel) program establish the moment of allocation of hard-
ware units requested by an application (entity) and dispatching of i-lets
to some processing element (i. e., core), respectively. A common under-
standing was to differentiate between these moments (“separation of
concerns”) and, as a further consequence, to accept different granularity
depending on the level of abstraction considered.

Granularity of invasion is interlinked with the guarantees the hard-
and software system has to give to applications. This depends on
(1) the resource-allocation constraints of the application specified by
invade, (2) the scheduling criteria implemented by the iRTSS and (3)
the assertiveness of the system-software/hardware stack to enforce the
claimed constraints. Several artefacts of the system software and the
hardware may be the cause of failure to comply with the constraints
stated by an application. Besides temporal unavailability of a certain
hardware unit (e. g., due to overheating or transient errors), typical
cases of such artefacts come with coordinated sharing of system-level
(hard-/software) resources such as cores, caches, busses or memory,
and with the interference of otherwise unrelated application processes.
Further anomalies may arise through the kind of (process) scheduling
criteria that form the basis of design and implementation of (parts of) an
operating system. Here, user-oriented criteria (e. g., response time, cycle
time) are in opposition to system-oriented criteria (e. g., utilisation). The
latter imply potential hazard to applications that assume a predictable

113

WG2

run-time behaviour of the underlying computing system; they are typical
of general-purpose systems. The former are likely to let hardware
resources rest in favour of deterministic operation, they are typical
for a special-purpose system. Being in charge of juggling with both
kinds of scheduling criteria at the same time (in practice within an
operating system) means, however, to give priority to either of them.
This breeds interference of the other, respectively. As predictable run-
time behaviour is an important aspect of InvasIC, in iRTSS, user-oriented
criteria dominate system-oriented criteria. This is reflected by an API that
demands the specification of (mandatory/optional) constraints from an
application process in order to claim (i. e., invade) hardware resources.

For iRTSS, the meaning of constraints is two-fold and distinguishes
mandatory from optional specifications on the part of a particular appli-
cation process. Mandatory constraints of invasion declare the resource
demands of an imminent computation phase and provide an indication
of the expected benefit of resource allocation, in functional and non-
functional terms. Optional constraints qualify the willingness to share
the allocated resources with competing processes of other (unrelated)
applications, in spatial and temporal terms, and notify toleration of
temporary under-/oversupply of spare cores for i-let dispatching. The
former are for the quantification of application requirements, while
the latter are for immunisation of (parts of) an application. By default,
resources are exclusively allocated to applications, but the exclusiveness
may gradually be loosened by way of optional constraints.

In the reporting year, the focus of resource allocation was on phys-
ical processing elements such as cores or tiles (of cores), respectively.
But note that this focus also depends on the position taken within a
multi-layer computing system such as InvasIC. At a lower (i. e., more
hardware-oriented) level of abstraction, OctoPOS operates in a coarse-
grained manner and allocates tiles to the agent system upon request. On
a higher (i. e., more application-oriented) level, the agent system works
in a fine-grained fashion and allocates the cores of one or more tiles to
the (C/C++, X10) run-time system upon request. Such an approach of
task sharing in resource management is very common in today’s com-
puting systems and has proved itself. Thus, core granularity of resource
allocation is seen at application level even though tile granularity forms
the basis on a lower level within the system.

An important influencing factor on the granularity of resource alloca-
tion is given with the (optional) constraint of application immunisation
as mentioned above. Assume that an application wants to exclusively
use a compute tile in order to avert interference by some other applica-

114

WG2

tion as far as possible. In such a situation, which reflects the default case,
core allocation to the latter application always starts from a “virgin” tile
even if the (last) tile that was allocated to the former has one or more
cores to spare. That is to say, iRTSS tolerates internal fragmentation of a
tile for the benefit of a more predictable run-time behaviour. As a conse-
quence, this means a tile granularity of resource allocation, namely to
assure immunisation of (parts of) an application. Thus, tile granularity
will be the (default, but overridable) praxis although core granularity is
logically seen at application level.

Granularity of infection largely depends on the nature and configura-
tion of the claim of hardware that is going to be infect-ed by (a team
of) i-lets in order to initiate a parallel computation. At that point in
time, iRTSS (more specifically, OctoPOS) deploys i-let incarnations with
the aid of the CiC. At the lowest (i. e., hardware) level of abstraction,
the i-let dispatching according to the constraints of the team’s claim
always takes place at a core granularity. The CiC makes its (rule-based)
dispatching decisions on the basis of the claim identification associated
with the deployed i-lets. Only in case of an i-let tagged with a “wild-
card” identifier (null) will the CiC select any core of the compute tile,
adhering to system-oriented optimisation criteria (such as utilisation)
for tile-wide load balancing at i-let arrival time. In case of a valid (“non-
null”) claim identifier, however, the CiC first and foremost adheres to
user-oriented optimisation criteria (such as response or cycle time), and
dispatches the i-lets to the cores of the tile as constrained by that very
identifier. That is to say, if resource allocation—by means of invade and
overriding the system default of exclusive use—resulted in the sharing
of a single compute tile amongst (entities of) different applications, the
CiC will send i-lets only to those cores that belong to the claim of the
respective i-let. In that case, system-oriented optimisation criteria come
after user-oriented ones, if at all.

This claim-based differentiation is made for better control of interfer-
ence in case of multi-programmed compute tiles that are claimed (i. e.,
shared) by applications of different and possibly conflicting quality re-
quirements in terms of non-functional properties (such as timing, jitter,
energy or noise). In the process of setting out a claim (invade), the
agent system of iRTSS establishes the appendant CiC dispatching rule
that later on gets activated by OctoPOS in the process of i-let deployment
(infect). When a team of i-lets is assorted for a specific claim—after
return from a successful call to invade, but before the call to infect for
that very claim—the association between i-let and claim identifier or
wildcard, respectively, is established. During infection, OctoPOS then

115

tags all i-lets with the identifying information related to the claim of
their team.

For the purpose of better system utilisation, the CiC will be capable of
dispatching i-lets of an application to spare cores even of an exclusively
taken compute tile that, however, was not entirely allocated to the
application. The number of spare cores then corresponds to the portion
of internal fragmentation (of such a tile) as result of application immu-
nisation as explained above. Utilisation of these cores then leads to a
temporary oversupply of computing resources to the application running
on the respective compute tile. This also brings about interference and
causes unpredictable run-time behaviour of an application. Just like
oversupply, also a temporary undersupply of computing resources may
occur. An example of this is an over-heated core that will be masked by
the CiC and, thus, excluded from further i-let processing until its oper-
ating temperature has dropped below a certain threshold. Both over-
and undersupply affect application processing in non-functional terms.
By default, iRTSS will not instruct the CiC to oversupply an application
with spare cores, but this presetting may be overridden by means of
optional constraints specified by an application (at invade-time). The
same goes for the undersupply of (computing) resources, which is also
considered an optional constraint of invasion to give application-side
toleration notice to iRTSS.

Outlook for 2013 The upcoming focus of work on systems software
will be the connection between the X10 run-time system and iRTSS.
Aspects such as the representation of blocking X10 activities on the
basis of run-to-completion i-lets to be managed by OctoPOS, creating an
assortment of teams of i-lets, and bottom-up signalling of exceptional
events to X10 applications will be in the fore. In addition, rule-based
interaction with the CiC and integration of TCPA-like compute tiles are
on the agenda.

Publications

[TKL12] J. Teich, J. Kleinöder, and K. Lohmann, eds. Invasive Comput-
ing. Annual Report 2011. DFG Transregional Collaborative
Research Centre 89, 2012.

116

WG3

WG3: Working Group Language
and Applications

Coordinator: Gregor Snelting

Goals of the Working Group. Resource-aware and invasive program-
ming is not possible without language support. To start with, the
language must support parallel programming in distributed, heteroge-
neous memory architectures. The language must support fundamental
invasive operations (invade infect, retreat), as well as a full-fledged
spectrum of parameters and constraints for different types of invasion.
To demonstrate the benefits of invasive computing, the language must
support fully dynamic resource-aware programming, as well as recursive
invasion. The language must finally also provide interfaces for dynamic
resource parameters and system state.

After the fundamental decision in 2010, namely to base the language
on IBM’s X10 language, a programming framework called InvadeX10
was defined and evaluated in a sequence of revisions and extensions.
The language is defined in Project A1, and its compiler is developed in
Project C3. All language decisions were discussed with other projects
(in particular D3, C1, C2). The language is exercised and validated on
real algorithms and problems. By the end of 2012, the language runs
on the simulator, and the compiler (which compiles InvadeX10 down
to the CHIPit hardware demonstrator) is nearing completion. Several
demonstrator programs are available.

InvadeX10 examples. For the demonstrator, it is planned to first present
a pedagogical example which explains fully dynamic resource awareness
as well as recursive invasion. We chose invasive Quicksort that decides
dynamically whether it recursively invades an additional core to sort
one of the two created partitions. The corresponding decision tree is
depicted in Figure 5.3. The dynamic decision is made strictly locally
and depends on the subproblem size and the expected invasion over-
head, which takes into account whether the invaded core is tile-local
or on another tile. Thus, the smaller the subproblem, the stronger are

117

WG3

the constraints on “invade” used in the invasive Quicksort shown in
Figure 5.4. Often, the code can deduce that additional invades are not
sensible (e. g., subproblem too small, or invasion overhead too high).

is invade() for right part worthwhile?

handle left locally
invade() succeeded?

right remotely

true

right locally

false

true

is invade() for left part worthwhile?

invade() succeeded?

left remotely

true

left locally

false

true

left locally

false

false

Figure 5.3: Decision tree for invasive Quicksort example in Figure 5.4. First, the algorithm checks
whether the right partition is worth an invasion and, if so, invades an additional core. If
the invade succeeds, the invaded core recursively sorts the right partition. Otherwise,
the partition is sorted locally. If the invasion of an additional core for the left partition is
not beneficial from the beginning, the algorithm checks the right partition instead.

Note that in this pedagogical example the partitioning is still se-
quential. More realistic examples, such as a multigrid solver based on
recursive invasion, are described in Project D3.

Granularity of invasion and OS issues. From an operating system point
of view, invasion is a complex and expensive operation, where generality
and/or usability must be balanced against performance and implemen-
tation simplicity. Furthermore, future hardware will perhaps offer a
very high number of tiles with a small number of cores on each tile.
Therefore, some PIs argued that an invade should always acquire at
least a complete tile, rather than individual cores on a tile. Other PIs
argued that often one wants to exploit shared memory on a tile after an
invasion. Other questions concerned the strictness of invade constraints.
For example, after a successful invade of 3 PEs, may the resulting i-lets
be scheduled to 2 or 4 PEs instead of 3? Arguments of practicality
and simplicity vote for the latter, but dynamic resource-awareness may

118

WG3

require that constraints are 100% respected. Furthermore, often it is im-
portant to base dynamic resource-awareness strictly on locally available
data, instead of manipulating global claims via “reinvades”.

A meeting in early December solved these questions as follows:

• some applications perform their own load-balancing, based on
functions which estimate the net gain of an additional invasion vs.
invasion (overhead) costs. If such applications successfully obtain
a claim according to specific constraints (e. g., n PEs on the current
tile), they must rely that the constraints are 100% respected at
“infect” time1. Neither oversupply nor undersupply is allowed, as
both would destroy the load balancing estimations. Of course,
other applications may be satisfied with less strict constraints, and
allow that the n i-lets are (temporarily) scheduled to, say, n− 1 or
n+ 1 PEs.

• some applications need recursive invasion, where subtasks decide
locally about benefits of additional invasions (see, e. g., the inva-
sive Quicksort example). In such cases, it may again be necessary
that all (recursive) constraints are 100% respected. Other applica-
tions do load balancing not locally, but more globally, and to this
end exchange information between subtasks; such applications
may use re-invades instead of recursive invades.

• some applications require that additional i-lets (e. g., created by
recursive invades/infects) run on the same tile as other i-lets of the
same application, in order that they can exploit shared memory
on a tile. Hence, it may well be possible that several claims of an
application are dispatched to the same tile.

• On the other hand, it is preferable to allocate PEs tile-wise, not
core-wise. This may result in wasted cores, but simplifies the OS
tasks. For future hardware, where a lot of tiles with few cores
each are available, wasted cores may be acceptable – for the
demonstrator, the situation is certainly different, and core-wise
invasion will be common.

To provide hardware support by the CiC for the above issues, it
was decided to extend the i-let information blocks by claim- and/or
application-identification tags (“tagged CiC”). The AK language strongly
supports this decision, even though it makes the CiC slightly more
complex.

1If they cannot be respected any more later, e. g., due to hardware failure, an exception
must be thrown.

119

Related projects. The core projects contributing to the working group
are Project A1 and Project C3. Project A1 defines and validates the lan-
guage resp. the framework. This includes reference examples and case
studies for invasive programming. Project C3 develops the compiler;
it generates code for SPARC processors and will use specific optimisa-
tions for invasive constructs, based on the libFirm code optimisation
framework.

There are important interfaces to the simulator (Project C2) and to
the operating system (Project C1). The simulator allows to execute
invasive programs on traditional hardware for purposes of study and
evaluation. In fact, the simulator may execute programs written in the
InvadeX10 framework and approximate the timing behaviour depending
on an architecture model. The interface to the iRTSS includes support
for resource-aware programming (in particular functions for monitoring
the hardware state, including core temperature and availability), as well
as support for fundamental invasic constructs such as invade, infect,
and retreat. Applications in Project D3 will use the InvadeX10 frame-
work, thus they are integrated into the language design and validation
process. Even the architectural projects in area B need coordination
with the working group, because fundamental questions concerning,
e. g., memory model or invasion-specific instructions affect the design
of language, compiler, and run-time system; but cannot be solved by
the Projects A1, C1 and C3 alone. The compiled InvadeX10 programs
will eventually run on the CHIPit demonstrator platform, thus there is
an ongoing interaction and integration with Project Z2.

Outlook for 2013. It is expected that the language design will stabilise,
that the compiler (non-optimising version) will be completed, and
that several pedagogical examples as well as realistic applications will
demonstrate the benefits of invasive programming. The latter requires
extensive measurements and evaluations.

120

val p = partition(data, left, right);
val i = p.first;
val j = p.second;
val leftsize = j - left;
val rightsize = right - i;
finish {
if (isInvasionWorthwhile(rightsize)) {
if (leftsize > 0) async {
leftresult = qsort(data, left, j); }

val constraints = new AND();
constraints.add(new PEQuantity(0, 1));
if (!isOtherPlaceWorthwhile(rightsize)) {
constraints.add(new ThisPlace());
constraints.add(new ScalabilityHint([0, 90]);

} else {
constraints.add(new ScalabilityHint([0, 60]);

}
val claim = Claim.invade(constraints);
if (claim.size() == 1) {
val ilet = (id: IncarnationID)
=> qsort(data, i, right);

rightresult = claim.infect(ilet)(0);
} else { rightresult = qsort(data, i, right); }
claim.retreat();

} else {
if (rightsize > 0) async {
rightresult = qsort(data, i, right); }

if (isInvasionWorthwhile(leftsize)) { /* see above */ }
}

}
return combine(leftresult, rightresult);

Figure 5.4: An InvadeX10 Quicksort program exploiting dynamic resource awareness and re-
cursive invasion. Note that this is a pedagogical example as it uses a sequential
partitioning algorithm. The predicates isInvasionWorthwhile() and isOther-
PlaceWorthwhile() are used to decide locally if a new invasion is worthwhile and
which constraints will be used for the invasion, based on parameters such as the input
size.

121

Events and Activities

III

Summary

The central activities and services in InvasIC are coordinated and con-
ducted by Project Z.

In the following sections we summarise major events and activities in
2012. These events include Internal Meetings (Section 6), Trainings and
Tutorials (Section 7) as well as further scientific activities (Section 8).
Last but not least, we present the current constitution of the Industrial
and Scientific Board and provide a short summary of the Board’s meeting
in October 2012 in Section 9.

Figure 5.5: At the annual meeting in Kloster Irsee, October 2012

124

6 Internal Meetings

Collaboration between the researchers of the three sites Karlsruhe,
München and Erlangen is essential for the success of the TCRC 89 –
InvasIC. In 2012, researchers met at the following opportunities:

Event Date

InvasIC
"Winter of Code"

Jan. 20, 2012,
Munich

At the InvasIC Winter of Code Workshop,
researchers from all projects met to present
the status of their work for validating and
demonstrating Invasive Computing on the
common CHIPit platform.

Semi-annual
Meeting 2012

Feb. 13/14, 2012,
Erlangen

At the semi-annual meeting the status quo
of projects and the three working groups
(architecture, languange and applications,
system software) was summarised

Doctoral Researcher
Retreat

Feb. 15–17, 2012,
Obertrubach

This year the doctoral researchers gathered
in Obertrubach to discuss further challenges
on the way to the invasive SoC and to show
up solutions.

Workshop
Systemsoftware
Group

May 11, 2012,
Erlangen

Subjects of debate of the working group
were memory bandwidth, dynamic program
memory (i. e., location of stacks and heaps),
and benchmarking of invasion (before/after
scenarios).

Demonstrations
Workshop

May 30, 2012,
Erlangen

Project-specific demonstrations and a first
common demonstration scenario on the
FPGA-based prototyping platform were
refined.

Workshop
Systemsoftware
Group

Sep. 17, 2012,
Erlangen

Subjects of debate of the working group
were the definition of common terms (here:
application), granularity of invasion, and
benchmarking of invasion (system software
basis for before/after scenarios).

InvasIC
"Autumn of Code”

Sep. 25, 2012,
Karlsruhe

In the Autumn of Code Meeting the current
state of the works for the invasive compute
platform was discussed along with the defi-
nition of next steps targeting the integration
activities of the common demonstrator sce-
narios.

Doctoral Researcher
Retreat

Oct. 8–10, 2012,
Kloster Irsee

The 3rd InvasIC DRR took take place in
connection with the Annual Meeting 2012 in
Kloster Irsee, Germany.

125

Annual Meeting 2012 Oct. 11/12, 2012,
Kloster Irsee

Projects and working groups presented their
progress with focus on the next working
packages and first project ideas for the
second funding phase. On the meeting’s
second day members of the "Industrial
and Scientific Board" attended to evaluate
the ideas and progress of the presented
projects.

Workshop "Nicht nur
für Simulanten"

Dec. 5, 2012,
Erlangen

Project C2 organised an one-day workshop
on the usage and the application areas of
the functional simulator

Expertentreffen "Gran-
ulatität der Invasion"

Dec. 7, 2012,
Karlsruhe

The Expertentreffen was convened to clarify
core- vs. tile-granularity.

Workshop
Architecture Group

Dec. 17, 2012,
Munich

The main topic of the meeting was a continu-
ation of the discussion on the granularity of
invade / infect operations with the emphasis
on aspects affecting the invasive-specific
hardware architecture.

Figure 6.1: Demonstrations Workshop May 2012 in Erlangen

126

7 Trainings and Tutorials

Workshops and trainings were organised under the coordination of
Project Z, to give InvasIC members the opportunity to to strengthen their
soft-skills, train their key qualifications, and improve their knowledge
on invasive computing related topics.

Event Date

Leadership Qualities Mar. 29, 2012
Erlangen

The trainers Marion Bredebusch and Martin
Conrath conducted a basic training on
leadership qualities for the scientific staff
and professors of InvasIC.

HiPEAC Summer
School ACACES

Jul. 8–14, 2012
Fiuggi, Italy

Prof. Dr.-Ing. J. Teich (FAU) gave a one
week lecture on the subject of "Domain-
specific and resource-aware computing on
multi-core architectures"

Figure 7.1: Lecturers of the HiPEAC European Network of Excellence Summer School ACACES
2012, Fiuggi, Italy

127

8 Industrial and Scientific Board

For the promotion of our ideas to the industrial community and for the
discussion with peer colleagues world-wide, we established the InvasIC
Industrial and Scientific Board. Members of the board in its current
constitution are 7 experts from four institutions industry and university:

IBM

Dr. Peter Roth (IBM Böblingen)

Dr. Patricia Sagmeister (IBM Rüschlikon)

Intel

Hans-Christian Hoppe (Intel Director of ExaCluster Lab Jülich,
Intel Director of Visual Computing Institute Saarbrücken)

Elmar Maas (Intel Braunschweig)

Siemens

Urs Gleim (Head of Research Group Parallel Systems Germany,
Siemens Corporate Technology)

University of Edinburgh

Prof. Dr. Michael O’Boyle
(Director Institute for Computing Systems Architecture)

Georg-Simon-Ohm Hochschule Nürnberg

Prof. Dr. Christoph von Praun
(Faculty Member and Associate Department Chair)

128

The members of the InvasIC Industrial and Scientific Board are period-
ically informed about progress and news of the TRR InvasIC. In October
2012, the members of the Board met during the Annual Meeting in
Kloster Irsee. In talks and demonstrations given by the different projects
as well as during a poster session, the Board’s members could get an
idea about the current state of research in InvasIC. In a concluding
plenary session, the opinions and suggestions of the Board’s members
were collected and discussed.

Figure 8.1: Members of the Industrial and Scientific Board during the plenary session at the
Annual Meeting in Kloster Irsee, October 2012. From left to right: Urs Gleim (Siemens),
Elmar Maas (Intel), Michael O’Boyle (University of Edinburgh), Klaus-Dieter Schubert
(IBM), Peter-Hans Roth (IBM), Hans-Christian Hoppe (Intel)

129

9 InvasIC Activities

To promote the ideas and results of InvasIC and discuss them with lead-
ing experts from industry and academia, guest speakers were invited to
the "InvasIC Seminar". Moreover, PIs of InvasIC gave talks at important
research sites ("Invited Talks") or organised workshops ("Workshops and
Conferences) on the topics of Invasive Computing.
The "InvasIC Seminar" is a series of talks given alternately at one of
the three sites. A live-stream of the respective talk is transmitted
to the other sites. For further information, we refer to our website
http://www.invasic.de.

Figure 9.1: Dr. Alain Darte giving a talk at the InvasIC Seminar

Figure 9.2: Prof. Norbert Wehn together with Prof. Jürgen Teich

130

http://www.invasic.de

InvasIC Seminar

Time and Place Title Speaker

Erlangen, Feb. 10,
2012

Kernfragen: Multicore-Prozessoren in der
Industrie

U. Gleim
(Siemens Corp. Techn.)

Erlangen, Feb. 17,
2012

Efficiency Metrics and Bandwidth - A
Memory Perspective

Prof. Dr.-Ing. N. Wehn
(TU Kaiserslautern)

Erlangen, Apr. 4,
2012

New and old Features in MPI-3.0: The
Past, the Standard, and the Future

Dr. T. Hoefler
(University of Illinois)

Erlangen, Apr. 20,
2012

Expanding the Envelope – European Intel
Research in Visual Computing, Exascale
and Parallelism

H.-C. Hoppe
(Intel ExaCluster Lab)

Erlangen, May 18,
2012

Kernel Offloading for FPGA with Optimized
Remote Accesses

Dr. A. Darte
(CNRS)

Erlangen, May 21,
2012

HOPES: A Model-Based Design Frame-
work of Parallel Embedded Systems

Prof. Dr. Soonhoi Ha
(Seoul National University)

Erlangen, May 24,
2012

Robust System Design Prof. S. Mitra
(Stanford University)

Erlangen, Jun. 22,
2012

Programmability and Performance Portabil-
ity for Heterogeneous Many-Core Systems

Prof. Dr. S. Benkner
(University of Vienna)

Erlangen, Jun. 29,
2012

Software System Engineering: Was fehlt
noch?

Prof. Dr. David L. Parnas
McMaster University,
Hamilton Canada

Erlangen, Jun. 29,
2012

Application-driven Embedded System
Design

Prof. Dr. A. Fröhlich
(UFSC / LISHA)

Erlangen, Jul. 6,
2012

When does it get hot Prof. Dr. L. Thiele
(ETH Zurich)

Erlangen, Jul. 25,
2012

Organic Computing – Quo vadis? Prof. Dr.-Ing. C. Müller-
Schloer
(LU Hannover)

Erlangen, Sep. 14,
2012

Embedded Multicore Design Technologies:
The Next Generation

Prof. Dr. R. Leupers
(RWTH Aachen)

Erlangen, Oct. 19,
2012

Large Scale Multiprocessing: From SoCs
to Supercomputers

S. Sarkar
(Intel Exascience labs)

Erlangen, Nov. 20,
2012

Building Future Embedded Systems –
Internet of Things and Beyond

Prof. Z. Salcic
(University of Auckland)

Munich, Nov. 27,
2012

Massively parallel simulations on Octree
based meshes

J. Zudrop
(GRS-Sim, Aachen)

Munich, Nov. 27,
2012

Efficiency and scalability on SuperMUC:
Lattice Boltzmann Methods on complex
geometries

S. Zimny
(GRS-Sim, Aachen)

131

Munich, Nov. 28,
2012

Modelling of microscopic flows using
particle-based methods

S. Strobl
(FAU)

Erlangen, Nov. 30,
2012

Design and Analysis for Timing Critical
Systems

Prof. Dr. Jian-Jia Chen
(KIT)

Figure 9.3: Prof. Teich spent four weeks as a visiting Professor at the University of Auckland, New
Zealand

132

Invited Talks

Date and Place Title Speaker

May 18, 2012,
Hong Kong

i-Core: Adaptive Computing for
Multi-core Architectures

Prof. Dr.
J. Henkel (KIT)

Jun. 12, 2012,
CSAIL - MIT

Proactive Energy-Aware Program-
ming

T. Hönig (FAU)

Aug. 9, 2012,
University of Auckland

Invasive Computing - or -
How to Tame 1000+ Cores on a
Chip?

Prof. Dr.-Ing.
J. Teich (FAU)

Sep. 20, 2012,
Intel Braunschweig

Invasive Computing - or -
How to Tame 1000+ Cores on a
Chip?

Prof. Dr.-Ing.
J. Teich (FAU)

Sep. 20, 2012,
Intel Braunschweig

Automatic Code Generation for
Image Processing Algorithms on
Accelerators in Heterogeneous
Architectures

Richard Membarth
(FAU)

Sep. 28, 2012,
Paris (UPMC, LIP6)

Invasive Computing: A Systems-
Programming Perspective

Prof. Dr.-Ing.
W. Schröder-
Preikschat (FAU)

Oct. 26, 2012,
IBM Böblingen

Invasive Computing - or -
How to Tame 1000+ Cores on a
Chip

Prof. Dr.-Ing.
J. Teich (FAU)

Nov. 9, 2012,
University of California, Riverside

Guest Lecture: Why do we see
more and more domain-specific
accelerators in multi-processor
systems?

Dr.-Ing. F. Hannig
(FAU)

133

Workshops and Conferences

Date and Place Title Speaker

Feb. 1, 2012, Sydney, Australia
(Special Session 3: Design and
Prototyping of Invasive MPSoC
Architectures, ASP-DAC 2012)

Talk: Approximate Time Functional
Simulation of Resource-Aware
Programming Concepts for Hetero-
geneous MPSoCs

Prof. Dr.-Ing.
J. Teich (FAU)

Feb. 1, 2012, Sydney, Australia
(Special Session 3: Design and
Prototyping of Invasive MPSoC
Architectures, ASP-DAC 2012)

Talk: Invasive Manycore Architec-
tures

Prof. Dr.
J. Henkel (KIT)

Feb. 1, 2012, Sydney, Australia
(Special Session 3: Design and
Prototyping of Invasive MPSoC
Architectures, ASP-DAC 2012)

Talk: Hardware Prototyping of
Novel Invasive Multicore Architec-
tures

Prof. Dr.-Ing.
J. Becker (KIT)

Feb. 1, 2012, Sydney, Australia
(Special Session 3: Design and
Prototyping of Invasive MPSoC
Architectures, ASP-DAC 2012)

Talk: Invasive Computing for
Robotic Vision

Prof. Dr.-Ing.
W. Stechele (TUM)

Feb. 29, 2012, Munich
(3rd Workshop on Parallel Pro-
gramming and Run-Time Man-
agement Techniques for Many-
core Architectures, ARCS 2012)

Introduction to Invasive Comput-
ing and Overhead Analysis for a
Shared-memory MPSoC

Prof. Dr.-Ing.
J. Teich (FAU)

Mar. 16, 2012, Dresden
(Workshop Quo Vadis, Virtual
Platforms? Challenges and So-
lutions for Today and Tomorrow,
Date 2012)

Actor-Based Virtual Prototype
Generation

Prof. Dr.-Ing.
J. Teich (FAU)

May 20–25, 2012, Schloss
Dagstuhl
(Seminar 12212)

Talk: Resource Aware Program-
ming

Prof. Dr.
M. Gerndt (TUM)

Sep. 18, 2012, Wien, Austria
(Special Session Invasive Pro-
gramming of Heterogeneous
Multi-core Systems, FDL 2012)

Talk: An Integrated Simulation
Framework for Invasive Computing

Marcel Meyer
(TUM)

Sep. 18, 2012, Wien, Austria
(Special Session Invasive Pro-
gramming of Heterogeneous
Multi-core Systems, FDL 2012)

Talk: Invasive Computing - Con-
cepts and Overheads

Prof. Dr.-Ing.
J. Teich (FAU)

Sep. 18, 2012, Wien, Austria
(Special Session Invasive Pro-
gramming of Heterogeneous
Multi-core Systems, FDL 2012)

Talk: Invasive Computing with
iOMP

Prof. Dr.
M. Gerndt (TUM)

134

Oct. 15, 2012, Ghent, Belgium
("Models and Assistive Tools for
Programming Emerging Architec-
tures", HiPEAC CSW 2012)

Talk: Invasive Computing - or -
How to Tame 1000+ Cores on a
Chip

Prof. Dr.-Ing.
J. Teich (FAU)

Nov. 8, 2012, San Jose, CA, USA
(ICCAD 2012)

1st International Workshop on
Domain-Specific Multicore Comput-
ing (DSMC)

Prof. J. Teich (FAU)
Prof. V. Narayanan
(PSU)

Nov. 8, 2012, San Jose, CA, USA
(DSMC at ICCAD 2012)

Talk: Invasive Tightly-Coupled
Processor Arrays

Dr.-Ing. F. Hannig
(FAU)

Figure 9.4: Participants of DSMC during ICCAD 2012 in San Jose, USA

135

10 Publications

[BBGH+11] M. Bader, H.-J. Bungartz, M. Gerndt, A. Hollmann, and
J. Weidendorfer. “Invasive Programming as a Concept
for HPC”. In: Proceedings of the 10h IASTED Interna-
tional Conference on Parallel and Distributed Computing
and Networks 2011 (PDCN). Feb. 2011.

[BBS12] M. Bader, H.-J. Bungartz, and M. Schreiber. “Invasive
Computing on High Performance Shared Memory Sys-
tems”. In: Facing the Multicore-Challenge III. 2012.

[BGSH12] L. Bauer, A. Grudnitsky, M. Shafique, and J. Henkel.
“PATS: a Performance Aware Task Scheduler for Run-
time Reconfigurable Processors”. In: 20th Annual Inter-
national IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). Toronto, Canada,
May 2012.

[BFHK+12] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D.
May. “Hardware Prototyping of Novel Invasive Multi-
core Architectures”. In: Proceedings of the 17th Asia and
South Pacific Design Automation Conference (ASP-DAC).
Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 201–206.

[BBMZ12] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau. An
X10 Compiler for Invasive Architectures. Tech. rep. 9.
Karlsruhe Institute of Technology, 2012. URL: http:
//digbib.ubka.uni-karlsruhe.de/volltexte/1000
028112.

[CLS12] N. Chen, B. Li, and U. Schlichtmann. “Iterative timing
analysis based on nonlinear and interdependent flipflop
modelling”. In: Circuits, Devices Systems, IET 6.5 (Sept.
2012), pp. 330–337. ISSN: 1751-858X. DOI: 10.1049/
iet-cds.2011.0347.

[GHHH+12] M. Gerndt, F. Hannig, A. Herkersdorf, A. Hollmann,
M. Meyer, S. Roloff, J. Weidendorfer, T. Wild, and A.
Zaib. “An Integrated Simulation Framework for Inva-
sive Computing”. In: Forum on Specification & Design
Languages (FDL). Vienna, Austria, Sept. 18–20, 2012,
pp. 185–192. ISBN: 978-2-9530504-5-5.

136

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://dx.doi.org/10.1049/iet-cds.2011.0347
http://dx.doi.org/10.1049/iet-cds.2011.0347

[GHMS+12] M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and
J. Weidendorfer. “Invasive computing with iOMP”. In:
FDL. 2012, pp. 225–231.

[GS13] E. Glocker and D. Schmitt-Landsiedel. “Modeling of
Temperature Scenarios in a Multicore Processor Sys-
tem”. 2013.

[Han12] F. Hannig. “Invasive Tightly-Coupled Processor Arrays”.
Talk, 1st International Workshop on Domain-Specific
Multicore Computing (DSMC) at International Confer-
ence on Computer-Aided Design (ICCAD), San Jose,
CA, USA. Nov. 8, 2012.

[HKB12] J. Heisswolf, R. König, and J. Becker. “A Scalable NoC
Router Design Providing QoS Support Using Weighted
Round Robin Scheduling”. In: Parallel and Distributed
Processing with Applications (ISPA), 2012 IEEE 10th
International Symposium on. July 2012, pp. 625 –632.
DOI: 10.1109/ISPA.2012.93.

[HZWK+12] J. Heisswolf, A. Zaib, A. Weichslgartner, R. König,
T. Wild, J. Teich, A. Herkersdorf, and J. Becker.
“Hardware-assisted Decentralized Resource Manage-
ment for Networks on Chip with QoS”. In: Proceedings
of the 19th Reconfigurable Architectures Workshop (RAW
2012). Shanghai, China, May 2012, pp. 1 –8.

[Hen12] J. Henkel. “i-Core: Adaptive Computing for Multi-core
Architectures”. Embedded System Design from Mul-
tiMedia to Cloud, Hong Kong, Invited Talk. May 18,
2012.

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hüb-
ner, R. Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib, B.
Vogel, V. Lari, and S. Kobbe. “Invasive Manycore Archi-
tectures”. In: Proceedings of the 17th Asia and South Pa-
cific Design Automation Conference (ASP-DAC). Jan. 30–
Feb. 2, 2012, pp. 193–200. ISBN: 978-1-4673-0770-3.
DOI: 10.1109/ASPDAC.2012.6164944.

[HDMS+12] W. Hofer, D. Danner, R. Müller, F. Scheler, W. Schröder-
Preikschat, and D. Lohmann. “Sloth on Time: Efficient
Hardware-Based Scheduling for Time-Triggered RTOS”.
In: Proceedings of the 33rd IEEE International Sympo-
sium on Real-Time Systems (RTSS ’12). (To appear).

137

http://dx.doi.org/10.1109/ISPA.2012.93
http://dx.doi.org/10.1109/ASPDAC.2012.6164944

IEEE Computer Society Press, Dec. 2012. URL: http:
//www4.cs.fau.de/Publications/2012/hofer_12_

rtss.pdf.

[HG12] A. Hollmann and M. Gerndt. “Invasive Computing: An
Application Assisted Resource Management Approach”.
In: MSEPT. 2012, pp. 82–85.

[HEKSP12] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-
Preikschat. “SEEP: exploiting symbolic execution for
energy-aware programming”. In: ACM SIGOPS Operat-
ing Systems Review 45.3 (Jan. 2012), pp. 58–62. ISSN:
0163-5980. DOI: 10.1145/2094091.2094106.

[HKSP12] T. Hönig, R. Kapitza, and W. Schröder-Preikschat. ProS-
EEP: A Proactive Approach to Energy-Aware Program-
ming. Poster. June 13–15, 2012, Boston, MA, USA,
2012.

[HGTH12] M. Hübner, D. Göhringer, C. Tradowsky, and J. Henkel.
“Adaptive Processor Architecture”. In: 12th Interna-
tional Conference on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS XII). July
2012.

[JH13] J. Jahn and J. Henkel. “Pipelets: Self-Organizing Soft-
ware Pipelines for Many Core Architectures”. In: Design
Automation and Test in Europe Conference (DATE) (to
appear). Grenoble, France, Mar. 2013.

[JKPC+12] J. Jahn, S. Kobbe, S. Pagani, J.-J. Chen, and J. Henkel.
“Work in Progress: Malleable Software Pipelines for
Efficient Many-core System Utilization”. English. In:
Proceedings of the 6th Many-core Applications Research
Community (MARC) Symposium. Ed. by E. Noulard
and S. Vernhes. Toulouse, France: ONERA, The French
Aerospace Lab, July 2012, pp. 30–33. URL: http://hal.
archives-ouvertes.fr/hal-00719027.

[KBHL+11] S. Kobbe, L. Bauer, J. Henkel, D. Lohman, and W.
Schröder-Preikschat. “DistRM: Distributed Resource
Management for On-Chip Many-Core Systems”. In:
Proceedings of the IEEE International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS). Taipei, Taiwan, Oct. 9–14, 2011,
pp. 119–128.

138

http://www4.cs.fau.de/Publications/2012/hofer_12_rtss.pdf
http://www4.cs.fau.de/Publications/2012/hofer_12_rtss.pdf
http://www4.cs.fau.de/Publications/2012/hofer_12_rtss.pdf
http://dx.doi.org/10.1145/2094091.2094106
http://hal.archives-ouvertes.fr/hal-00719027
http://hal.archives-ouvertes.fr/hal-00719027

[LMBH+12a] V. Lari, S. Muddasani, S. Boppu, F. Hannig, and J. Teich.
“Design of Low Power On-Chip Processor Arrays”. In:
Proceedings of the 23rd IEEE International Conference
on Application-specific Systems, Architectures, and Pro-
cessors (ASAP). Delft, The Netherlands: IEEE Computer
Society, July 9–11, 2012, pp. 165–168. ISBN: 978-0-
7695-4768-8. DOI: 10.1109/ASAP.2012.10.

[LMBH+12b] V. Lari, S. Muddasani, S. Boppu, F. Hannig, M. Schmid,
and J. Teich. “Hierarchical Power Management for
Adaptive Tightly-Coupled Processor Arrays”. In: ACM
Transactions on Design Automation of Electronic Systems
(TODAES), accepted for publication 18.1 (Dec. 2012).

[LCS12] B. Li, N. Chen, and U. Schlichtmann. “Statistical Tim-
ing Analysis for Latch-Controlled Circuits with Reduced
Iterations and Graph Transformations”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems. Nov. 2012, pp. 1670–1683.

[LCXS13] B. Li, N. Chen, Y. Xu, and U. Schlichtmann. “On Timing
Model Extraction and Hierachical Statistical Timing
Analysis”. to appear in: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. 2013.

[LSHSP12] D. Lohmann, O. Spinczyk, W. Hofer, and W. Schröder-
Preikschat. “The Aspect-Aware Design and Implemen-
tation of the CiAO Operating-System Family”. In: Trans-
actions on AOSD IX. Ed. by G. T. Leavens and S. Chiba.
Lecture Notes in Computer Science 7271. Springer-
Verlag, 2012, pp. 168–215. DOI: 10.1007/978-3-642-
35551-6_5.

[MFGSP12] T. R. Mück, A. A. M. Fröhlich, M. Gernoth, and W.
Schröder-Preikschat. “Implementing OS Components
in Hardware using AOP”. In: ACM SIGOPS Operating
Systems Review 46.1 (Jan. 2012). Best Papers from 2011
Brazilian Symposium on Computing Systems Engineer-
ing (SBESC), pp. 64–72.

[MBHK+12] S. Muddasani, S. Boppu, F. Hannig, B. Kuzmin, V.
Lari, and J. Teich. “A Prototype of an Invasive Tightly-
Coupled Processor Array”. In: Proceedings of the Confer-
ence on Design and Architectures for Signal and Image
Processing (DASIP). Karlsruhe, Germany: IEEE, Oct. 23–
25, 2012, pp. 393–394. ISBN: 978-1-4673-2089-4.

139

http://dx.doi.org/10.1109/ASAP.2012.10
http://dx.doi.org/10.1007/978-3-642-35551-6_5
http://dx.doi.org/10.1007/978-3-642-35551-6_5

[PSKA+12] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, and R.
Dillmann. “Invasive Computing for Robotic Vision”. In:
Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC). Sydney, Australia,
Jan. 30–Feb. 2, 2012, pp. 207–212.

[PHWAA+13] C. Pham, J. Heisswolf, S. Wenner, Z. Al-Ars, J. Becker,
and K. Bertels. “Hybrid Interconnect Design for Het-
erogeneous Hardware Accelerators”. In: Proc. Design,
Automation & Test in Europe Conference & Exhibition, to
appear. Grenoble, France, Mar. 2013.

[PHSG+12] N. Pour Aryan, L. Heiss, D. Schmitt-Landsiedel, G. Geor-
gakos, and M. Wirnshofer. “Comparison of in-situ delay
monitors for use in Adaptive Voltage Scaling”. In: Ad-
vances in Radio Science (ARS). Vol. 10. 2012, pp. 205
–208.

[RHT12a] S. Roloff, F. Hannig, and J. Teich. “Approximate Time
Functional Simulation of Resource-Aware Program-
ming Concepts for Heterogeneous MPSoCs”. In: Pro-
ceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC). Sydney, Australia,
Jan. 30–Feb. 2, 2012, pp. 187–192. ISBN: 978-1-4673-
0770-3. DOI: 10.1109/ASPDAC.2012.6164943.

[RHT12b] S. Roloff, F. Hannig, and J. Teich. “Fast Architec-
ture Evaluation of Heterogeneous MPSoCs by Host-
Compiled Simulation”. In: Proceedings of the 15th In-
ternational Workshop on Software and Compilers for
Embedded Systems (SCOPES). St. Goar, Germany: ACM
Press, May 15–16, 2012, pp. 52–61.

[RHT12c] S. Roloff, F. Hannig, and J. Teich. “Simulation of
Resource-Aware Applications on Heterogeneous Ar-
chitectures”. In: Proceedings of the 8th International
Summer School on Advanced Computer Architecture and
Compilation for High-Performance and Embedded Sys-
tems (ACACES). Fiuggi, Italy, July 8–14, 2012, pp. 127–
130. ISBN: 978-90-382-1987-5.

[SZSA+13] F. Sampaio, B. Zatt, M. Shafique, L. Agostini, S. Bampi,
and J. Henkel. “Energy-Efficient Memory Hierarchy for
Motion and Disparity Estimation in Multiview Video
Coding”. In: Design Automation and Test in Europe

140

http://dx.doi.org/10.1109/ASPDAC.2012.6164943

Conference (DATE) (to appear). Grenoble, France, Mar.
2013.

[SS11] P. Sanders and J. Speck. “Efficient Parallel Scheduling
of Malleable Tasks”. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS). Anchorage, AL,
USA: IEEE Computer Society, 2011, pp. 1156–1166.
DOI: 10.1109/IPDPS.2011.110.

[SS12] P. Sanders and J. Speck. “Energy Efficient Frequency
Scaling and Scheduling for Malleable Tasks”. In: Euro-
Par 2012 Parallel Processing. Vol. 7484. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 167–178. ISBN: 978-3-642-32819-0. DOI: 10.1007/
978-3-642-32820-6_18. URL: http://dx.doi.org/
10.1007/978-3-642-32820-6_18.

[SBB12] M. Schreiber, H.-J. Bungartz, and M. Bader. “Shared
Memory Parallelization of Fully-Adaptive Simulations
Using a Dynamic Tree-Split and -Join Approach”. In:
Proceedings of HiPC 2012. 2012.

[SVH13] M. Shafique, B. Vogel, and J. Henkel. “Self-Adaptive
Hybrid Dynamic Power Management for Many-Core
Systems”. In: Design Automation and Test in Europe
Conference (DATE) (to appear). Grenoble, France, Mar.
2013.

[THT12a] A. Tanase, F. Hannig, and J. Teich. “Symbolic Loop
Parallelization of Static Control Programs”. In: Pro-
ceedings of the 8th International Summer School on Ad-
vanced Computer Architecture and Compilation for High-
Performance and Embedded Systems (ACACES). Fiuggi,
Italy, July 8–14, 2012, pp. 33–36. ISBN: 978-90-382-
1987-5.

[THT12b] A. Tanase, F. Hannig, and J. Teich. “Towards Symbolic
Loop Parallelization for Tightly-Coupled Processor Ar-
rays”. Work-In-Progress Presentation at the 49th Design
Automation Conference (DAC), San Francisco, USA.
June 3–7, 2012.

[TSDSP+12] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-
Preikschat, and D. Lohmann. “Revealing and Repair-
ing Configuration Inconsistencies in Large-Scale Sys-
tem Software”. In: International Journal on Software

141

http://dx.doi.org/10.1109/IPDPS.2011.110
http://dx.doi.org/10.1007/978-3-642-32820-6_18
http://dx.doi.org/10.1007/978-3-642-32820-6_18
http://dx.doi.org/10.1007/978-3-642-32820-6_18
http://dx.doi.org/10.1007/978-3-642-32820-6_18

Tools for Technology Transfer (STTT) 14.5 (Feb. 2012),
pp. 531–551. DOI: 10.1007/s10009-012-0225-2.

[Tei12] J. Teich. “Hardware/Software Co-Design: The Past,
Present, and Predicting the Future”. In: Proceedings of
the IEEE 100.Centennial-Issue (May 2012), pp. 1411–
1430. DOI: 10.1109/JPROC.2011.2182009.

[TKL12] J. Teich, J. Kleinöder, and K. Lohmann, eds. Invasive
Computing. Annual Report 2011. DFG Transregional
Collaborative Research Centre 89, 2012.

[TWOS12] J. Teich, A. Weichslgartner, B. Oechslein, and W.
Schröder-Preikschat. “Invasive Computing - Concepts
and Overheads”. In: Forum on Specification & Design
Languages (FDL). Vienna, Austria, Sept. 18–20, 2012,
pp. 193–200. ISBN: 978-2-9530504-5-5.

[TCDH+12] C. Tradowsky, E. Cordero, T. Deuser, M. Hübner, and
J. Becker Jürgen. “Determination of On-Chip Tempera-
ture Gradients on Reconfigurable Hardware”. In: Pro-
ceedings of the International Conference on Reconfig-
urable Computing and FPGAs (ReConFig). Cancun, Mex-
ico: IEEE Computer Society, Dec. 5–7, 2012.

[TTHB12a] C. Tradowsky, F. Thoma, M. Hübner, and J. Becker.
“LISPARC: Using an architecture description language
approach for modelling an adaptive processor microar-
chitecture (Best Work-in-Progress (WiP) Paper Award)”.
In: 7th IEEE International Symposium on Industrial Em-
bedded Systems (SIES’12). June 2012.

[TTHB12b] C. Tradowsky, F. Thoma, M. Hübner, and J. Becker.
“On Dynamic Run-Time Processor Pipeline Reconfigu-
ration”. In: Proceedings of the International Parallel and
Distributed Processing Symposium Workshops (IPDPSW).
May 2012.

[WZT13] S. Wildermann, T. Ziermann, and J. Teich. “Game-
Theoretic Analysis of Decentralized Core Allocation
Schemes on Many-core Systems”. In: Proceedings of De-
sign, Automation and Test in Europe Conference (DATE).
Mar. 18–22, 2013.

142

http://dx.doi.org/10.1007/s10009-012-0225-2
http://dx.doi.org/10.1109/JPROC.2011.2182009

[WHAP+12] M. Wirnshofer, L. Heiss, A.N.Kakade, N. Pour Aryan,
G. Georgakos, and D. Schmitt-Landsiedel. “Adaptive
voltage scaling by in-situ delay monitoring for an image
processing circuit”. In: IEEE 15th International Sympo-
sium on Design and Diagnostics of Electronic Circuits
& Systems (DDECS). Apr. 2012, pp. 205 –208. DOI:
10.1109/DDECS.2012.6219058.

[Zwi12] A. Zwinkau. Resource Awareness for Efficiency in High-
Level Programming Languages. Tech. rep. 12. Karl-
sruhe Institute of Technology, 2012. URL: http://pp.
info.uni-karlsruhe.de/uploads/publikationen/
zwinkau12high.pdf.

143

http://dx.doi.org/10.1109/DDECS.2012.6219058
http://pp.info.uni-karlsruhe.de/uploads/publikationen/zwinkau12high.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/zwinkau12high.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/zwinkau12high.pdf

	annual-report_cover2.pdf
	InvasiveComputing-Annual-Report.pdf
	Preface
	Contents
	I Invasive Computing
	About InvasIC
	Participating University Groups

	II Research Program
	Overview of Research Program
	Research Projects
	A1: Basics of Invasive Computing
	A3: Scheduling and Load Balancing
	B1: Adaptive Application-Specific Invasive Microarchitecture
	B2: Invasive Tightly-Coupled Processor Arrays
	B3: Invasive Loosely-Coupled MPSoCs
	B4: Hardware Monitoring System and DesignOptimisation for Invasive Architectures
	B5: Invasive NoCs – Autonomous, Self-Optimising CommunicationInfrastructures for MPSoCs
	C1: Invasive Run-Time Support System (iRTSS)
	C2: Simulation of Invasive Applicationsand Invasive Architectures
	C3: Compilation and Code Generationfor Invasive Programs
	D1: Invasive Software–Hardware Architectures for Robotics
	D3: Multilevel Approaches and Adaptivityin Scientific Computing
	Z: Central Services
	Z2: Validation and Demonstrator

	Working Groups
	WG1: Working Group Architecture
	WG2: Working Group System Software
	WG3: Working Group Languageand Applications

	III Events and Activities
	Internal Meetings
	Trainings and Tutorials
	Industrial and Scientific Board
	InvasIC Activities
	Publications

