
Sonderforschungsbereich/Transregio 89
Transregional Collaborative Research Center 89

Invasive Computing
Annual Report 2011

Friedrich-Alexander-Universität Erlangen-Nürnberg
Karlsruher Institut für Technologie
Technische Universität München

TRR 89

Transregional Collaborative Research Centre 89

Invasive Computing

Friedrich-Alexander-Universität Erlangen-Nürnberg
Karlsruher Institut für Technologie
Technische Universität München

Annual Report 2011
July 2010 - December 2011

Coordinator
Prof. Dr.-Ing. Jürgen Teich
Lehrstuhl für Informatik 12
Universität Erlangen-Nürnberg
Cauerstraße 11, 91058 Erlangen

Managing Director
Dr.-Ing. Jürgen Kleinöder
Lehrstuhl für Informatik 4
Universität Erlangen-Nürnberg
Martensstr. 1, 91058 Erlangen

Public Relations
Dr. rer. nat. Katja Lohmann
Lehrstuhl für Informatik 12
Universität Erlangen-Nürnberg
Cauerstraße 11, 91058 Erlangen

Preface

This report summarises the activities and scientific progress of the
Transregional Collaborative Research Centre 89 “Invasive Computing”
(InvasIC) in the first 18 months since its establishment in July 2010.

The main idea of InvasIC is to develop and investigate a completely
novel paradigm for designing and programming future parallel comput-
ing systems. To support these ideas of self-adaptive and resource-aware
programming, not only new programming concepts, languages, com-
pilers and operating systems are necessary but also revolutionary ar-
chitectural changes in the design of Multi-Processor Systems-on-a-Chip
(MPSoCs).

InvasIC is funded by the Deutsche Forschungsgemeinschaft for initially
four years and aggregates 58 of the best researchers from three excellent
sites in Germany (Friedrich-Alexander-Universität Erlangen-Nürnberg,
Karlsruher Institut für Technologie, Technische Universiät München).
This scientific team includes specialists in algorithm engineering for
parallel algorithm design, hardware architects for reconfigurable MPSoC
development as well as language, tool and application, and operating
system designers.

This report gives an overview of the current transregional activities
of InvasIC and summarises the scientific progress made in the projects
and working groups. Most important – not only, but especially in the
InvasIC starting phase – were meetings and workshops bringing together
scientists from the three sites. In the meantime, several meetings took
place and periodical project and working group meetings as well as the
regular plenary meetings were established.

A highlight – especially for the doctoral researchers – was the first
InvasIC Doctoral Researchers’ Retreat (DRR), held as a continuation of
the annual meeting from Oct. 5–7, 2011. The participants considered
the retreat as very productive and helpful for their daily work so that
they suggested to implement a semi-annual schedule for the DRR.

We hope that you will find the following report interesting and stim-
ulating. For a complete overview of our goals and current activities
please visit our website http://www.invasic.de.

Jürgen Teich
Coordinator

3

http://www.invasic.de

Contents

Preface 3

Contents 4

I Invasive Computing 7

1 About InvasIC 8

2 Participating University Groups 10

II Research Program 13

3 Overview of Research Program 14

4 Research Projects 17
A1: Basics of Invasive Computing 17
A3: Scheduling and Load Balancing 22
B1: Adaptive Application-Specific

Invasive Microarchitecture 25
B2: Invasive Tightly-Coupled Processor Arrays 30
B3: Invasive Loosely-Coupled MPSoCs 35
B4: Hardware Monitoring System and Design

Optimisation for Invasive Architectures 40
B5: Invasive NoCs – Autonomous,

Self-Optimising Communication
Infrastructures for MPSoCs 45

C1: Invasive Run-Time Support System (iRTSS) 49
C2: Simulation of Invasive Applications

and Invasive Architectures 56
C3: Compilation and Code Generation

for Invasive Programs 62
D1: Invasive Software–Hardware Architectures for Robotics . 71
D3: Multilevel Approaches and Adaptivity

in Scientific Computing 75
Z: Central Services . 83
Z2: Validation and Demonstrator 84

4

5 Working Groups 87
WG1: Working Group Architecture 87
WG2: Working Group System Software 92
WG3: Working Group Language

and Applications . 97

III Events and Activities 101

6 Internal Meetings 103

7 DRR 2011 in Lauterbad 105

8 Trainings and Tutorials 111

9 Industrial and Scientific Board 112

10 InvasIC Activities 113

11 Publications 117

5

Invasive Computing

I

1 About InvasIC

The Idea of Invasive Computing

The main idea and novelty of invasive computing is to introduce resource-
aware programming support in the sense that a given program gets the
ability to explore and dynamically spread its computations to neighbour
processors similar to a phase of invasion, then to execute portions
of code of high parallelism degree in parallel based on the available
(invasible) region on a given multi-processor architecture. Afterwards,
once the program terminates or if the degree of parallelism should
be lower again, the program may enter a retreat phase, deallocate
resources and resume execution again, for example, sequentially on
a single processor. To support this idea of self-adaptive and resource-
aware programming new programming concepts, languages, compilers
and operating systems are necessary as well as architectural changes in
the design of MPSoCs (Multi-Processor Systems-on-a-Chip) to efficiently
support invasion, infection and retreat operations by involving concepts
for dynamic processor, interconnect and memory reconfiguration.

Decreasing feature sizes have already led to a rethinking in the design
of multi-million transistor system-on-chip (SoC) architectures, envision-
ing dramatically increasing rates of temporary and permanent faults
and feature variations. The major question will be how to deal with
this imperfect world in which components will become more and more
unreliable. As we can foresee SoCs with 1000 or more processors on a
single chip in the year 2020, static and central management concepts to
control the execution of all resources might have met their limits long
before and are therefore not appropriate. Invasion might provide the
required self-organising behaviour to conventional programs for being
able to provide scalability, higher resource utilisation numbers and,
hopefully, also performance gains by adjusting the amount of allocated
resources to the temporal needs of a running application. This thought
opens a new way of thinking about parallel algorithm design. Based
on algorithms utilising invasion and negotiating resources with others,
we can imagine that corresponding programs become personalised ob-
jects, competing with other applications running simultaneously on an
MPSoC.

8

Scientific Goals of InvasIC

In the Transregional Collaborative Research Center InvasIC, we provide
the necessary extensions to support invasive programming efficiently by
introducing and investigating new concepts of dynamic and resource-
aware programming as well as required new architectural processor,
interconnect and memory structures providing the necessary extensions
to support invasive programming efficiently – in particular through
concepts of dynamic hardware reconfiguration. Legacy programs shall
still be executable within an invasive computing architecture, thus we
will show a migration path from traditional programming to the new
invasive programming paradigm.

We believe that only a Transregional Collaborative Research Center
aggregating the best researchers from three excellent sites in Germany
will allow us to investigate these revolutionary ideas. Our InvasIC re-
searching team includes specialists in algorithm engineering for parallel
algorithm design, hardware architects for reconfigurable MPSoC devel-
opment as well as language, tool and application and operating system
designers. Invasive computing is the central theme of InvasIC that can
be found in each project. A carefully worked out validation concept
with an FPGA-based demonstrator has been proposed in order to fully
demonstrate the benefits of invasive computing quantitatively.

9

2 Participating University Groups

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Hardware-Software-Co-Design
– Prof. Dr.-Ing. Jürgen Teich

– Dr.-Ing. Frank Hannig

Lehrstuhl für Verteilte Systeme und Betriebssysteme
– Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

– Dr.-Ing. Daniel Lohmann

Karlsruher Institut für Technologie

Institut für Anthropomatik
– Prof. Dr.-Ing. Rüdiger Dillmann

– Dr.-Ing. Tamim Asfour

Institut für Technik der Informationsverarbeitung
– Prof. Dr.-Ing. Jürgen Becker

– Dr.-Ing. Michael Hübner

Institut für Programmstrukturen und Datenorganisation
– Prof. Dr.-Ing. Gregor Snelting

Institut für Technische Informatik
– Prof. Dr. Jörg Henkel

– Dr.-Ing. Lars Bauer

Institut für Theoretische Informatik
– Prof. Dr. Peter Sanders

Technische Universität München

Lehrstuhl für Integrierte Systeme
– Prof. Dr. Andreas Herkersdorf

– Prof. Dr.-Ing. Walter Stechele

– Dr.-Ing. Thomas Wild

Lehrstuhl für Wissenschaftliches Rechnen
– Prof. Dr. Hans-Joachim Bungartz

10

Lehrstuhl für Rechnertechnik und Rechnerorganisation
– Prof. Dr. Michael Gerndt

Lehrstuhl für Entwurfsautomatisierung
– Prof. Dr.-Ing. Ulf Schlichtmann

Lehrstuhl für Technische Elektronik
– Prof. Dr. Doris Schmitt-Landsiedel

11

Research Program

II

3 Overview of Research Program

To investigate the novel paradigms for designing and programming
future parallel computing systems the InvasIC is organised in 5 project
areas:

Area A: Fundamentals, Language and Algorithm Research

Research in project area A focuses on the basic concepts of invasion and
resource-aware programming as well as on language issues, algorithmic
theory of invasion and on load balancing and scheduling.

B:Architectural Research

Project area B investigates micro- and macroarchitectural requirements,
techniques and hardware concepts to enable invasive computing in
future MPSoCs.

C: Compiler, Simulation and Run-Time Support

The focus of project area C is on software support for invasive computing
including compiler, simulation and operating system functionality with
a special focus on run-time management.

D: Applications

Applications serve as demonstrators for the diverse and efficient de-
ployment of invasive computing. Therefore, the applications have been
chosen carefully from the domains of robotics and scientific computing
in order to demonstrate distinct and complementary features of invasive
computing.

Z2: Validation and Demonstrator

A hardware demonstrator will serve as the concept validation platform
for invasive computing. It will allow for co-validation and demonstra-
tion of invasive computing through tight integration of hardware and
software research results at the end of the first project phase and to de-
cide on the further roadmap of specific hardware for invasive computing.

The three working groups Language and Applications, System Soft-
ware and Architectures defined on top of these project areas support
the interdisciplinary research.

14

Research Area Project

A: Fundamentals,
Language and
Algorithm Research

Basics of Invasive Computing A1
Prof. Dr.-Ing. Jürgen Teich, Prof. Dr.-Ing. Gregor Snelting

Scheduling and Load Balancing A3
Prof. Dr. Peter Sanders

B:Architectural
Research

Adaptive Application-Specific Invasive Microarchitecture B1
Prof. Dr. Jörg Henkel, Dr.-Ing. Michael Hübner,
Dr.-Ing. Lars Bauer

Invasive Tightly-Coupled Processor Arrays B2
Prof. Dr.-Ing. Jürgen Teich

Invasive Loosely-Coupled MPSoCs B3
Prof. Dr. Andreas Herkersdorf, Prof. Dr. Jörg Henkel

Hardware Monitoring System and Design Optimisation for
Invasive Architectures B4
Prof. Dr. Doris Schmitt-Landsiedel,
Prof. Dr.-Ing. Ulf Schlichtmann

Invasive NoCs -– Autonomous, Self-Optimising Communica-
tion Infrastructures for MPSoCs B5
Prof. Dr.-Ing. Jürgen Becker, Prof. Dr. Andreas Herkersdorf,
Prof. Dr.-Ing. Jürgen Teich

C: Compiler, Simulation
and Run-Time Support

Invasive Run-Time Support System (iRTSS) C1
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat,
Dr.-Ing. Daniel Lohmann, Prof. Dr. Jörg Henkel,
Dr.-Ing. Lars Bauer

Simulation of Invasive Applications and Invasive Architectures C2
Dr.-Ing. Frank Hannig, Prof. Dr. Michael Gerndt,
Prof. Dr. Andreas Herkersdorf

Compilation and Code Generation for Invasive Programs C3
Prof. Dr.-Ing. Gregor Snelting, Prof. Dr.-Ing. Jürgen Teich

D: Applications

Invasive Software–Hardware Architectures for Robotics D1
Prof. Dr.-Ing. Rüdiger Dillmann, Dr.-Ing. Tamim Asfour,
Prof. Dr.-Ing. Walter Stechele

Multilevel Approaches and Adaptivity in Scientific Computing D3
Prof. Dr. Hans-Joachim Bungartz, Prof. Dr. Michael Gerndt

Z: Administration
Central Services Z
Prof. Dr.-Ing. Jürgen Teich, Dr.-Ing. Jürgen Kleinöder,
Dr. Katja Lohmann

Validation and Demonstrator Z2
Prof. Dr.-Ing. Jürgen Becker, Dr.-Ing. Frank Hannig,
Dr.-Ing. Thomas Wild

WG: Working Groups

Working Group Architecture WG1
Prof. Dr. Andreas Herkersdorf

Working Group System Software WG2
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Working Group Language and Applications WG3
Prof. Dr.-Ing. Gregor Snelting

15

16

A1

4 Research Projects

A1: Basics of Invasive Computing

Jürgen Teich, Gregor Snelting

Andreas Weichslgartner, Andreas Zwinkau

We investigate the basics of invasion – the fundamental programming
model for invasive and resource-aware computation. This includes a)
the functionality requirements and b) the development of a mathemati-
cal model for quantitative performance, resource efficiency (utilisation)
and overhead analysis for different types of invasive architecture targets.
We also research a programming notation for invasive programming:
Here, c) the syntax, semantics and type system of an abstract invasive
core language is defined, which is the basis for d) the definition of a con-
crete invasive language and its system interfaces. The goal of Project A1
is not to build a new programming language from the scratch, but to
make the invasive programming model usable for the programmer. For
this purpose, the abstract invasive constructs have been embedded as a
concrete language in the parallel computing language X10 from IBM.

Concrete Language Design

The concrete language must exploit modern language theory, respect the
above-mentioned abstraction levels, and provide interfaces to dynamic
resource parameters as well as to existing technology for parallel pro-
gramming. It should utilise generic mechanisms, instead of introducing
lots of low-level, adhoc syntactic constructs. The concrete language
must be exercised on real algorithms and problems. Expressiveness
and usability must be evaluated for all different types of potential tar-
get architectures ranging from tightly- over loosely-coupled MPSoC
architectures to high-performance computing (HPC) machines.

A language developed in isolation is unlikely to meet the needs of
actual programmers of a diverse project, like InvasIC, which includes

17

A1

hardware and software design. So we used an iterative process, where
everybody could participate to identify required functionality for each
project. For the first Language Working Group Workshop on December
10th, 2010 in Karlsruhe, each project produced invasive pseudo code
examples, which demonstrated their vision. Project A1 integrated this
data in a cohesive framework called invadeX10.

For an example, consider the following program fragment, which
shows the three basic constructs invade, infect and retreat:

val claim = Claim.invade(constraints);
claim.infect(ilet);
claim.retreat();

The static method Claim.invade takes constraints and returns a claim
object, which represents the allocated resources, typically a set of pro-
cessing elements (PEs). A claim provides an infection method to dis-
tribute computations across the PEs. The argument of infect is an ilet
object, which contains the code to execute together with initial data.
The infect call blocks, until all ilet computations finish. Afterwards,
the retreat method frees all resources within a claim, such that the
claim is empty. While such a claim can still be infected, this would
do nothing. Now consider the ilet variable of the example above. A
hello-world ilet could be declared as follows:

val ilet = (id: IncarnationID) => {
Console.OUT.println("Hello! ("+id+")");

};

Since the invadeX10 framework provides a concrete X10 API, the
pseudo code examples may then be translated into actual X10 code,
which was presented at the second Language Working Group Workshop
in July 4th, 2011 in Karlsruhe. This API provides a common basis on the
language level. Project C2 currently develops a functional simulation
implementation of the invasive API, it is possible to execute invasive
applications like those developed within the project area D. The interplay
of concrete invasive language and functional simulation was published
in [HRST+11].

Constraints

While the API demonstrated in the example above is very generic,
the constraints variable provides access to specific hardware and
operating system features. To avoid a hodgepodge of syntactic constructs

18

A1

the constraints were modelled as an extensible class hierarchy. The set
of constraints can be classified as follows.

The first class of constraints we identified were so-called predicate con-
straints, which specify predicates for processing elements to be claimed.
An application might require the demanded processing elements to (1)
be under a certain load, (2) be under a certain temperature, (3) have
an FPU, (4) have certain amount of local memory, (5) have a scratch
pad memory, (6) be of a certain type, (7) have a certain cache size, (8)
be migratable, or (9) not be scheduled preemptively. Such constraints
impose a simple filter operation over the set of available processing
elements within an invade operation. The second class of constraints
are order constraints, which provide an ordering of processing elements
according to (1) load, (2) temperature, (3) memory, or (4) speed. Us-
ing these constraints an application can communicate its preferences,
whether it is IO- or CPU-bound. By giving multiple of these constraints,
the programmer can impose a secondary or tertiary ordering.

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

MaximumLoad
MaximumTemperature

FpuAvailable
LocalMemory

ScratchPadSize
TypeConstraint

CacheConstraint
Migratable

NonPreemptible
TcpaLayout

OrderConstraints

OrderedByLoad
OrderedByTemperature

OrderedByMemory
OrderedBySpeed

SetConstraints

PEQuantity
PartitionConstraints

PlaceCoherence
TypeHomogenity

CacheHomogenity

Hint

EfficiencyCurve

Figure 4.1: Constraint class hierarchy

The third class of constraints are set constraints, as they specify con-
ditions for a set of processing elements as a whole. The most common
constraint is the (1) quantity of processing elements to be claimed, but
there are also partition constraints, (2) a certain physical layout of the
PEs, (3) place coherence, which means that the PEs have shared mem-
ory, (4) type homogeneity, in terms of the instruction set architecture,

19

A1

(5) cache type homogeneity. Additionally, there are the two operators
AND and OR to combine constraints. At last, the programmer can give
so-called nonbinding hints, which can be used to hand complex infor-
mation like efficiency curves of parameters to the run-time system of
the underlying MPSoC architecture. These constraints are implemented
as a class hierarchy as shown in Figure 4.1, which is available to the
programmer. The constraints above form the leafs of the hierarchy tree
and abstract classes, drawn as boxes, partition the tree into categories.

Overhead Analysis

When considering benefits of invasive programing, also a mathematical
model for performance and overhead analysis is a must. Dynamic deci-
sions about invasion will depend on data distribution, load balancing
and the dynamic state of resources. The definition of corresponding
overhead functions for resource utilisation and efficiency is important
to show if invasive programming allows to achieve utilisation close to
100%. Such overhead functions can be used in the design of invasive
algorithms and help to dynamically decide if and where invasion should
happen.

To achieve these goals, Project A1 worked on an overhead calculus
and obtained first results for the many-core architectures Intel’s 48-core
Single-Chip Cloud Computer (SCC) and the Tilera’s 64-core TILEPro64.
These results were based on experimental evaluations and were pub-
lished in [MTKB+11] and [KHLT11]. Also investigations of the invasive
overheads for invasion in TCPAs (cooperation with Project B2) and in
single RISC tiles, with a shared memory and a minimal implementation
of the invasive core primitives, are ongoing. Until now, heterogeneous
targets and complex communications structures are not considered, so
we will focus on these challenges in cooperation with the Project B5 in
the next year.

Outreach

For the Summer School of HiPEAC 2010 in Autrans (Grenoble), Teich
held a tutorial on invasive computing [Tei10]. He also presented inva-
sive computing at ParLab (UC Berkeley) [Tei11a] and PPL (Stanford)
[Tei11b]. An overview book chapter [THHSL+11] on the goals of the
TCRC was also published.

20

Publications

[HRST+11] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau.
“Resource-Aware Programming and Simulation of MPSoC Ar-
chitectures through Extension of X10”. In: Proceedings of the
14th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). St. Goar, Germany: ACM Press,
June 27–28, 2011, pp. 48–55. ISBN: 978-1-4503-0763-5. DOI:
10.1145/1988932.1988941.

[KHLT11] G. Kouveli, F. Hannig, J. Lupp, and J. Teich. “Towards
Resource-Aware Programming on Intel’s Single-Chip Cloud
Computer Processor”. In: 3rd Many-core Applications Research
Community (MARC) Symposium. Vol. 7598. KIT Scientific Re-
ports. Ettlingen, Germany: KIT Scientific Publishing, July 5–6,
2011, pp. 111–114. ISBN: 978-3-86644-717-2.

[MTKB+11] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S.
Ha, C. Lee, Q. Xu, and L. Huang. “Mapping of Applications
to MPSoCs”. In: Proceedings of the IEEE International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). Taipei, Taiwan, Oct. 9–14, 2011, pp. 109–
118.

[Tei10] J. Teich. “Invasive Computing – Basic Concepts and Foreseen
Benefits”. Artist Network of Excellence on Embedded System
Design Summer School Europe 2010, Autrans, France, Invited
Tutorial. Sept. 7, 2010.

[Tei11a] J. Teich. “Invasive Parallel Computing – An Introduction”. Par
Lab and AMP Lab Seminar Talk, UC Berkeley, CA, USA. July 22,
2011.

[Tei11b] J. Teich. “Programming Invasively Parallel – An Introduction”.
Pervasive Parallelism Laboratory (PPL) Seminar Talk, Stanford
University, CA, USA. July 25, 2011.

[THHSL+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W.
Schröder-Preikschat, and G. Snelting. “Invasive Computing:
An Overview”. In: Multiprocessor System-on-Chip – Hardware
Design and Tool Integration. Ed. by M. Hübner and J. Becker.
Springer, Berlin, Heidelberg, 2011, pp. 241–268.

21

http://dx.doi.org/10.1145/1988932.1988941

A3

A3: Scheduling and Load Balancing

Peter Sanders

Jochen Speck

Newly introduced computer systems usually have CPUs with many
cores and many jobs can be executed in parallel. Usually there is more
than one job executing in parallel on one machine. Lots of different
measuring devices are implemented in hard- and software in order to
get a picture of the system status. To use this information to efficiently
utilise the computing power of the parallel cores is an important task
usually called scheduling and load balancing.

The research goal of this project is to provide theoretically and practi-
cally efficient scheduling algorithms for the parallel and flexible invasive
systems. We are also working on fundamental algorithms for the inva-
sive systems.

Figure 4.2: Energy Efficient Malleable Schedule

For the first step we considered an easier scheduling problem – the
scheduling of malleable tasks where only computing resources are
considered. A task is called malleable if it is possible to change the
number of cores on which the task runs during its run time. In [SS11] we
sped up an existing algorithm for the scheduling of malleable tasks and
gave a parallel scheduling algorithm for the same problem. Currently
we are working on the inclusion of energy efficiency into our solution

22

A3

of the scheduling problem of malleable tasks. In the energy efficient
setting the tasks are malleable and additionally the speed of execution
of the cores can be changed. Additionally we have a time interval in
which all tasks have to be processed. Our goal is to minimise the energy
used for the processing of all tasks in this time interval. A core which
works with a higher clock frequency uses more energy. If the power
consumption grows superlinearly in the speedup of a core one can save
energy if one parallelises a task on more slower cores which process
the task in the same time interval. So the challenge in this setting is to
distribute the resources (cores) among jobs in order to save energy.

We are considering energy efficiency as important for computer archi-
tectures in the future. So more work on energy efficient scheduling is
planned in the future.

Figure 4.3: NUMA-System

In a joint work with SAP we considered modelling problems and
NUMA-awareness1. NUMA means non-uniform-memory-architecture
(see figure 4.3) NUMA-systems are systems where the memory access
time depends on the memory location relative to a processor. Hence it
is important to do work on a processor for which most of the needed
data is available on a local memory. We did this based on a real-life
problem which was the scheduling of queries in a database system.
The problem comes from databases of middle sized companies where
one NUMA-system runs the entire database of the company and the

1See also the diploma thesis of Jochen Seidel: http://algo2.iti.kit.edu/1883.php

23

http://algo2.iti.kit.edu/1883.php

complete database can be stored in the main memory of that machine.
Usually there are several employees working on the database so usually
there are several database queries running at the same time. The NUMA-
awareness brought an improvement in query time. For the modelling we
considered a two resource problem with the resources computing power
and memory bandwidth. In our point of view the problems encountered
in this work are very similar to problems which will arise in Invasive
Computing.

A further important area is the scheduling of task-DAGs (DAG =
directed acyclic graph). Many applications can be modelled as small task
with dependencies. Especially numerical applications from Project D3 fit
into this model. Here we work together with Michael Bader and others
from Project D3. Additionally we are working on the parallelization of
some basic dense linear algebra algorithms.

As a first example of fundamental algorithms we developed a mal-
leable sorter which is a flexible sorting algorithm that can handle
changes in the number of assigned processors very well. On a typi-
cal system with many parallel applications there always is an amount of
unused resources but this amount changes frequently. This application
will be able to use the idle resources left unused by other applications.
Currently this sorter is slower than the fastest parallel sorters from the
MCSTL if run on a system without other tasks but it shows an improve-
ment if some cores are blocked. Our goal is to be nearly as fast as the
MCSTL sorters in all circumstances and to be much faster in a scenario
where the number of available processors changes very frequently. This
application raised some interest among researchers of Project C1 and
will lead to a collaboration.

Our next steps are to finish the malleable sorter and some of the base
dense linear algebra algorithms. We will also further try to modell a
real system. Together with Project D3 we plan to work on scheduling
problems arising with the iOpenMP.

Publications

[SS11] P. Sanders and J. Speck. “Efficient Parallel Scheduling of Mal-
leable Tasks”. In: International Parallel and Distributed Process-
ing Symposium (IPDPS). Anchorage, AL, USA: IEEE Computer
Society, 2011, pp. 1156–1166. DOI: 10.1109/IPDPS.2011.
110.

24

http://dx.doi.org/10.1109/IPDPS.2011.110
http://dx.doi.org/10.1109/IPDPS.2011.110

B1

B1: Adaptive Application-Specific
Invasive Microarchitecture

Jörg Henkel, Michael Hübner, Lars Bauer

Lars Braun, Artjom Grudnitsky, Florian Thoma

Current trends in many-core architectures go towards heterogeneity at
core-level to allow efficient use of resources by applications with differ-
ing computing requirements. The invasive architecture [HHBW+12]
is a many-core platform, designed to support software systems that
manage computing resources dynamically.

The goal of this project is the research of concepts for an adaptive
Microarchitecture (µArch) and Instruction Set Extension (ISE), culmi-
nating in the design of a processing element that is reconfigurable at
run time– the i-Core, shown in Figure 4.4, and its integration into the
invasive hardware architecture. In particular, we focus on applying the
invasive paradigm on the hardware resources of the i-Core itself, thus
allowing applications to invade the different components of the i-Core.

Instruction-Set
Architecture (ISA)

Processor Pipeline

Adaptive Number of
Pipeline Stages etc.

Microarchitecture

Application-/System-
specific Instruction-Set Extension

(ISE), realized as Special
Instructions (SIs)

Cache /
Scratchpad

Reconfigurable Fabric

Adaptive Branch
Prediction etc.

i-Core

is execu-
ted byis executed by

Control-
flow

Data
Transfers

Core Instruction-Set
Architecture (cISA)

Reconfigurable Fabric may be used for:
● SIs of user tasks
• potentially multiple tasks compete for the
reconfigurable fabric

● SIs of Operating System tasks
● ISE-independent microarchitectural optimizations

Figure 4.4: i-Core Architecture

A common technique for performance improvement of microarchitec-
tures is pipelining. Splitting instructions in smaller and smaller oper-

25

B1

ations allows higher clock frequencies resulting in higher throughput.
However, pipelining requires discarding of partially executed instruc-
tions in case of branches and other control hazards. This fundamental
trade-off between throughput and latency is normally decided at design
time. The adaptive µArchof the i-Core overcomes this problem with
the concept of dynamically fusing and splitting pipeline stages during
run-time under control of the executed application.

We have modelled this concept in the architecture description lan-
guage LISA for evaluation purposes. First step was the modelling of the
integer pipeline of the basic LEON processor. This LEON model was also
provided to Project C2 for evaluation of integration into the simulator.
In a second step this model was extended with the required instructions
and infrastructure for pipeline fusion. Additionally, it allows to choose
between two simple branch prediction strategies and to configure some
cache strategies. Benchmarking with different applications showed an
improvement of up to 10% but mostly between 4% and 7% in terms
of cycle counts over the unmodified seven stage pipeline. Execution of
quicksort as benchmark is displayed in Figure 4.5 as an example and
demonstrates the influence of branch prediction, write allocation, and
write back strategies on performance. These promising results have
been presented in [HTGB+11].

As a preview for a possible ASIC implementation of i-Core the concept
of virtual FPGA cores has been evaluated for integrating in a heteroge-
neous MPSoC architecture [FHGB+11; HFGS+11].

Figure 4.5: Comparison of various combinations of branch prediction and cache write strategies
with a fused fetch/decode stage against an unmodified pipeline running an example
program [HTGB+11]

As the experiments and benchmarks with the LISA modelling of
pipeline fusion have shown potential benefit we are currently working
on an implementation in VHDL. This will include extensive benchmark-

26

B1

ing to find characteristic code features which can be used as guide for
optimisation strategies for pipeline fusion. This concludes our work on
the i-Core µArch. We will now discuss the reconfigurable fabric and
Instruction Set Extension (ISE).

The ISE provides applications with access to run-time reconfigurable
hardware accelerators located in the reconfigurable fabric of the i-Core.
The ISE consist of Special Instructions (SIs), which serve as the interface
for the applications to the accelerators on the fabric. In [HBHG11] we
have provided an overview of a first version of the fabric architecture
and ISE, as well as an application case study of an H.264 Video Encoder
utilising accelerators in the fabric.

SIs are described as data-flow graphs (DFGs, see Figure 4.6a), and
do not include the exact configuration of the fabric (i.e. the locations
where accelerators are loaded on the fabric, see Figure 4.6b), as this
information would severely constrain the amount of SIs that can be
present on the fabric at the same time, thus impairing the efficient use of
the fabric. Instead, we have investigated placement of accelerators and
binding of the DFG to the placed accelerators by the fabric management
system (Figure 4.6c) online. To compare our online approach against
an offline approach, a multi-tasking scenario was used, resulting in a
speedup of 1.79x (Figure 4.7). These results have been published in
[GBH12].

Special Instruction
scheduled DFG

Fabric Configuration

i-Core
Runtime
System

Special Instruction
executable on the fabric

0

1

2

3

C
o
n

tr
o
l
S

te
p

s

t1

t1

t0 t0

t2

0

1

2

3

5

4

C
y
cl

e
s

t0 t0 t2 t1

(a)

(b)

(c)

Figure 4.6: Tasks of a fabric management system

As part of the joint effort of defining the invasive language, we have
provided pseudo-code which utilises the capabilities of the i-Core and
allows management of the fabric through the use of basic invasion
primitives (invade, infect, retreat).

We are currently implementing the i-Core on a Virtex-5 based demon-
strator, in preparation for the joint architecture demonstration. Research

27

B1

Mean Speedup when using
our online approach

in comparison to
an offline technique: 1.79x

Figure 4.7: Evaluation of our approach

of the fabric hardware architecture is currently focused on intercon-
nect structures for accelerators, and for the fabric management system
we are investigating the reconfiguration sequence for accelerators in
multi-tasking environments.

Based on our ongoing cooperation with Project C3, we have designed
and implemented an extension of the i-Core, that was not foreseen in
the proposal. It provides hardware support for the fast resolution of
the static single assignment form used during compilation. This feature
is used by the compiler from Project C3, therefore applications benefit
from improved execution speed transparently.

Publications

[FHGB+11] P. Figuli, M. Hübner, R. Girardey, F. Bapp, T. Bruckschlögl, F.
Thoma, J. Henkel, and J. Becker. “A heterogeneous SoC Archi-
tecture with embedded virtual FPGA Cores and runtime Core
Fusion”. In: NASA/ESA 6th Conference on Adaptive Hardware
and Systems (AHS). San Diego, CA, USA, June 2011.

[GBH12] A. Grudnitsky, L. Bauer, and J. Henkel. “Partial Online-
Synthesis for Mixed-Grained Reconfigurable Architectures”.
In: IEEE/ACM 15th Design Automation and Test in Europe Con-
ference (DATE). to appear. Dresden, Germany, Mar. 2012.

[HBHG11] J. Henkel, L. Bauer, M. Hübner, and A. Grudnitsky. “i-Core:
A run-time adaptive processor for embedded multi-core sys-
tems”. In: Proceedings of the International Conference on En-
gineering of Reconfigurable Systems and Algorithms (ERSA).
invited paper. Las Vegas, NV, USA, July 2011.

28

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200.

[HFGS+11] M. Hübner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and
J. Becker. “A Heterogeneous Multicore System on Chip with
Run-Time Reconfigurable Virtual FPGA Architecture”. In: Pro-
ceedings of the International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). Anchorage, AK, USA,
May 16–17, 2011.

[HTGB+11] M. Hübner, C. Tradowsky, D. Göhringer, L. Braun, F. Thoma, J.
Henkel, and J. Becker. “Dynamic Processor Reconfiguration”.
In: Proceedings of the International Conference on Reconfig-
urable Computing and FPGAs (ReConFig). Cancun, Mexico:
IEEE Computer Society, Nov. 30–Dec. 2, 2011.

29

B2

B2: Invasive Tightly-Coupled Processor Arrays

Jürgen Teich

Srinivas Boppu, Frank Hannig, Vahid Lari, Shravan Muddasani

In this project, fundamental architectural (hardware) concepts to sup-
port invasion by clock cycle-based hardware signalling for tightly-coupled
processor arrays (TCPAs, as shown in Figure 4.8) are investigated includ-
ing the development of proper hardware controller circuitry.

Architectural Overview

Such processor arrays shall be designed to support a certain type or
class of application-specific or domain-specific functions in image and
signal processing domains. It is our goal to show that such processor
arrays are particularly well-suited for implementing invasive nested loop
programs and other computationally intensive kernels.

In the first year of research, we have proven that an invasion of an
array of processing elements can be accomplished at an overhead of
only a few clock cycles by exploiting regularity and by inventing and
providing necessary hardware structures to support invasion efficiently
in hardware and avoiding the overheads of thread creation at this
level [LNHT11], which we expect to be at least two to three order
of magnitude slower. In the InvasIC tiled-architecture [HHBW+12],
TCPAs are used as a hardware accelerator for computationally intensive
tasks. A simplified drawing of a TCPA with 36 processor elements (PEs)
is sketched in Figure 4.8. The different rectangular areas denote two
applications running simultaneously on the array.

Hardware-Supported Invasion

In order to determine and claim resources at run time, we investigated
different invasion strategies suitable for invasion of PEs at the hardware
level. As a result, we proposed two classes of strategies, namely linear
and rectangular invasion [LNHT11]. A linear invasion reserves a linearly
connected set of PEs, suitable for one-dimensional signal processing

30

B2

Reconfiguration

and

Communication

Processor

N
etw

ork Adapter

to/from
 iN

oC

Configuration

Memory

Global

Controller

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

 PE

 iCtrl

R
e
c
o
n
fi
g
u
ra

b
le

 B
u
ff
e
rs

/F
IF

O
s

Reconfigurable Buffers/FIFOs

Address & Status Generation
Logic

Reconfigurable Buffers/FIFOs

R
e
c
o
n
fi
g
u
ra

b
le

 B
u
ff
e
rs

/F
IF

O
s

Figure 4.8: Tightly-Coupled Processor Array (TCPA)

applications like filters for digital signal processing in the time domain.
A rectangular invasion reserves rectangular regions of PEs, suitable for
image processing algorithms such as optical flow or Harris corner detec-
tion, which are used in the computer vision applications of Project D1.
Figure 4.8 depicts a rectangular invasion of an area of 3×3 PEs and a
linear array with 6 PEs in green and yellow, respectively. Both types
of investigated invasion strategies run in a distributed way using local
propagation of invade instructions.

We designed hardware circuits for orchestrating such distributed
invasion procedures, that are called invasion controllers (iCtrl in the
figure). Two variants of invasion controllers were proposed, namely
FSM-based and programmable invasion controllers. On these, we ported
and evaluated various 1D and 2D invasion strategies with respect to
invasion time, area, power and flexibility [LNHT11]. Briefly, we can
summarise:

• FSM-based invasion controllers are hardwired, implementing a
single invasion strategy. They are very fast since they can invade
a linear array of PEs in time O(N) (i.e., two clock cycles per PE).

31

B2

In addition, they require only little area and power overheads.
However, they lack the flexibility and extendability to support
potentially other and more complex invasion strategies.

• Programmable invasion controllers, as the name suggests, are
programmable small processors that enable to implement different
invasion strategies. Their flexibility, however, comes at the cost of
increased invasion time, area and power.

Furthermore, we developed concepts for efficiently signalling the claim
results (i.e., information about the number of invaded PEs and their
locations) of invasions back to the PE, originating an invasion [LHT11].
This information is crucial for calculating the interconnect configuration
of the invaded PEs, specially for architectures with local connectivity like
TCPA architectures. For exploring various design options and invasion
strategies, a cycle-accurate C++ simulator for invasive TCPA architec-
tures was developed also in close cooperation with Project C2. This
simulator is capable of modelling both FSM-based and programmable
invasion controllers at the functional and architectural abstraction levels.
It was extensively used to develop and validate the above mentioned
invasion strategies and to study the aforementioned signalling concepts
published in [LHT11; LNHT11].

Using the simulator, we finally investigated a self-adaptive hierarchi-
cal power gating methodology [KGSH+11] to reduce the power con-
sumption of TCPAs. In this approach, PEs and invasion controllers are
grouped into different switchable power domains, whose power control
signals are derived from the invade, claim and retreat signals. In the pro-
posed strategy, we also explored the grouping of different a number of
invasion controllers into one power domain in order to study the trade-
off between the power consumption and invasion time [LBMH+11].
We developed initial ideas for code generation and symbolic reconfig-
uration of TCPAs in cooperation with Project C3 [BHTP11]. An FIR
filter application running on a first small TCPA array configuration was
successfully implemented on the CHIPit system in cooperation with
Project Z2, and was demonstrated at the InvasIC “Summer of Code”
meeting in August 2011.

Outlook

Our current work and future activities include developing a back end for
TCPA code generation in cooperation with Project C3, investigating and
designing missing architectural components like the global controller,

32

B2

which controls the program execution on the TCPA based on the itera-
tion bounds of a loop program, development of address generators to
support data access from/to buffers with in order and out of order access
capabilities, and interface modules for the efficient coupling of TCPA
tiles to the iNoC (invasive Network-on-a-Chip developed in Project B5).
Our future research will also include the investigation of invadable and
reconfigurable buffer architectures for efficient decoupling of incoming
and outgoing data-rates between TCPA tiles and other tiles, which is
crucial for the performance.

Publications

[BHTP11] S. Boppu, F. Hannig, J. Teich, and R. Perez-Andrade. “To-
wards Symbolic Run-Time Reconfiguration in Tightly-Coupled
Processor Arrays”. In: Proceedings of the International Con-
ference on Reconfigurable Computing and FPGAs (ReConFig).
Cancun, Mexico: IEEE Computer Society, Nov. 30–Dec. 2,
2011, pp. 392–397. ISBN: 978-1-4577-1734-5. DOI: 10.1109/
ReConFig.2011.91.

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200.

[KGSH+11] D. Kissler, D. Gran, Z. Salcic, F. Hannig, and J. Teich. “Scalable
Many-Domain Power Gating in Coarse-grained Reconfigurable
Processor Arrays”. In: IEEE Embedded Systems Letters 3.2 (June
2011), pp. 58–61. ISSN: 1943-0663. DOI: 10.1109/LES.2011.
2124438.

[LBMH+11] V. Lari, S. Boppu, S. Muddasani, F. Hannig, and J. Teich. “Hi-
erarchical Power Management for Adaptive Tightly-Coupled
Processor Arrays”. Talk, International Workshop on Adaptive
Power Management with Machine Intelligence at International
Conference on Computer-Aided Design (ICCAD), San Jose,
CA, USA. Nov. 10, 2011.

[LHT11] V. Lari, F. Hannig, and J. Teich. “Distributed Resource Reserva-
tion in Massively Parallel Processor Arrays”. In: Proceedings of
the International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Anchorage, AK, USA: IEEE Computer
Society, May 16–17, 2011, pp. 313–316. ISBN: 978-0-7695-
4385-7. DOI: 10.1109/IPDPS.2011.157.

33

http://dx.doi.org/10.1109/ReConFig.2011.91
http://dx.doi.org/10.1109/ReConFig.2011.91
http://dx.doi.org/10.1109/LES.2011.2124438
http://dx.doi.org/10.1109/LES.2011.2124438
http://dx.doi.org/10.1109/IPDPS.2011.157

[LNHT11] V. Lari, A. Narovlyanskyy, F. Hannig, and J. Teich. “Decentral-
ized Dynamic Resource Management Support for Massively
Parallel Processor Arrays”. In: Proceedings of the 22nd IEEE
International Conference on Application-specific Systems, Archi-
tectures, and Processors (ASAP). Santa Monica, CA, USA: IEEE
Computer Society, Sept. 2011, pp. 87–94. ISBN: 978-1-4577-
1291-3. DOI: 10.1109/ASAP.2011.6043240.

34

http://dx.doi.org/10.1109/ASAP.2011.6043240

B3

B3: Invasive Loosely-Coupled MPSoCs

Andreas Herkersdorf, Jörg Henkel

Lars Bauer, Ravi Kumar Pujari, Benjamin Vogel, Thomas Wild

Performance-optimised and energy-efficient invasive computing on
loosely-coupled RISC processing elements (PEs) is the major goal of this
project. Functionalities with computational overhead within the i-let
assignment process will be offloaded to dedicated macroarchitectural
hardware extensions. These dynamic Many-Core i-let Controllers (CiCs)
supplement the software-based invasive run-time system (iRTSS). To
increase the energy efficiency of invasive computing, the application
knowledge provided by the invasive language is used to determine the
resource requirements of the applications. By abstracting the power
management decisions from the hardware towards the software layer,
additional leakage power savings become possible. We call this approach
Virtual Power Gating (ViPG).

CPU CPU

CPU CPU

Mem
N
A

CiC
EM

ST

ST

ST

ST

OctoPOS

Agents ViPG

Applications

(a) Tiled architecture

 Energy
Manager

ilet Mapper

 Infection
 Support

 CiC

 Hardware Monitor Sensors

 C
om

m
un

ic
at

io
n

 I
nt

er
fa

ce

 Sleep
 Signal

 Interrupt

 Network Adapter Interface

 Local Bus Interface

 Monitor Aggregator /
 Distributor

 Abstracted
 Global

 Detailed
 Local

 Rule Configurator
 Rule Base/Hash Table

(b) Core i-let Controller

Figure 4.9: Envisaged architecture

Figure 4.9a gives an overview of the envisaged architecture of a RISC-
based compute tile [HHBW+12]. The i-let mapping decisions are CiC-
accelerated and cooperate with the operating system (OctoPOS/iRTSS,
Project C1). The agent system/iRTSS and the ViPG are tightly-coupled

35

B3

and receive the applications’ resource and performance requirements.
To support power gating in hardware, each CiC has an energy manager
(EM) module to control the sleep transistors (ST) for each PE. The CiCs
aggregate the monitor data (e.g., performance counters or temperature
values) provided by Project B4.

CiC

5

10

15
0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80

90

n
l
/(n

l
+n

r
) (Y)

τ
ilet

 in cycles (X) x10
4

O
v
e
r
h
e
a
d

τ
d

/
(

τ
d

+

τ
i
l
e
t
)

i
n

%

(
Z
) A

 X: 100000
 Y: 0.2
 Z: 32.65

 B
 X: 100000
 Y: 1.0
 Z: 9.157

Figure 4.10: Reduction in i-let assignment decision overhead on prefetching the monitor data of
cores from neighbouring tiles

The invasion overhead due to the monitoring data aggregation in
the i-let assignment process is studied using an empirical formulation
as a function of access delays for fetching the monitor data over the
bus and the iNoC. The processing time overhead during the i-let map-
ping is above 30% for an average thread run-time of 100 kcycles when
performed solely in software as depicted in Figure 4.10. By offloading
certain functionalities from software (SW) into hardware (HW), this
invasion overhead can be reduced to under 10%.

In order to let the invasion concept scale to over hundreds of cores
connected over the iNoC, a HW–SW co-design for the i-let assignment
policy is performed. Concretely, the i-let distribution strategy is hierar-
chically partitioned wherein (a) the coarse level i-let mapping decisions
are performed by the agent system/iRTSS and (b) the fine-grained i-let
assignments to individual cores within a tile are done by a dedicated
HW extension block, the CiC. The complete analysis of the overhead
along with the details of the hierarchical i-let assignment strategy and
the functional block description (Figure 4.9b) of the CiC is presented in
[PWHV+11].

36

B3

Following a design review and refinements of the functional blocks of
the CiC and network adapter (iNA), the DMA feature for transparent
and fast transportation of i-lets across tiles is moved into the iNA. As
a first step for building these HW extensions, an initial version of the
CiC (CiC_v0) is prototyped on an FPGA. In this prototype design, i-let
assignments are influenced by simulated temperature sensors per core
within a tile. An i-let generator block is also built in the design to
simulate the i-lets inflow over the iNoC.

Further work is under progress on building a rule based evaluator to
perform fast i-let assignment decisions based on up-to-date monitor val-
ues and a monitor aggregation block to abstract and accumulate monitor
data within the CiC. Collaboration with iRTSS developers (Project C1)
for defining and synchronising the interaction between the i-let-mapper
within the CiC and the OctoPOS is ongoing.

ViPG

In the ViPG part, the application knowledge about the current and antic-
ipated resource requirements drive the power gating decisions. It is to
be noted that shutting down and waking up PEs requires considerable
energy and time. This wakeup overhead has to be hidden from the
applications to increase the performance as well as the savings potential.
While an incomplete shutdown only hampers the power savings, an
incomplete wakeup has an unsolicited impact on the applications perfor-
mance. To hide the wakeup overhead from the applications, the resource
requirements have therefore to be expressed as early as possible.

This application knowledge is expressed by the invasive programming
language based on X10 (Project A1/Project C2), by either constraints
and hints or by the reinvade() command. Constraints express static
resource requirements (e.g., no FPU necessary) while the hints express
dynamic workload classifications. Whenever the applications resource
requirements change, a reinvade() instruction informs the agent sys-
tem (Project C1) and the ViPG system cooperatively. An example of
changing workload requirements for an application is depicted in Fig-
ure 4.11. The information ‘how often’, and when, the application
expresses their resource requirements is key for the ViPG system. We
currently evaluate different prediction schemes about their applicability
for the ViPG system.

To determine the applicability as well as the exploitable savings po-
tential, a simulation infrastructure has been built. We combined a cycle
accurate performance simulator (gem5) with a power model (McPAT)
in a tool chain. To justify our work, we present a case study of different

37

B3

Invade()
Infect()
Reinvade(+)
Reinvade(-)
Retreat()

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Used PE

Free PE

CiC CiC CiC CiC CiC

#P
Es

time

Figure 4.11: Changing workload requirements of an application and its impact on the PE usage.

video sequences encoded with H.264/AVC, a computational intensive
application with input-dependent run-time behaviour. Exemplary, a
very static scene (news spokesman, akiyo) and a scene with very high
movement (sports game, football) are analysed on a 2 PE system. We
can consider these video sequences as corner cases, real-world video
sequences contain static and high movement scenes in quick succession.
While the computing power of one PE may be sufficient for the static
scenes, real-time encoding for high-movement scenes may not be possi-
ble. The question therefore is, when and for how long the idle second
PE can be put into a sleep mode.

The determined fraction of idle cycles in these two video sequences
are presented in Figure 4.12. Underlying our assumptions, the static
scene doesn’t need the second PE most of the time and even the first
PE is often idle. Therefore, the second PE can be power gated while
unused. This knowledge is available at the application level and can be
provided to the ViPG. If it is not provided, the power management has
to rely on a prediction and the changing PE requirements are likely to
be detected too late. As pointed out, this would lead to performance
degradation on the one hand and energy waste on the other hand.

akiyo
100%

80%in
 %

nc
e

60%

40%qu
e

20% se CPU 0

s o
f

CPU 1
0%

m
e

fr
a

fraction of idle cycles in %

(a) akiyo

football
100%

%

80%in

nc
e

60%

40%qu
e

CPU 0
20% se

s o
f

CPU 1
0%

m
e

fr
a

fraction of idle cycles in %

(b) football

Figure 4.12: Fraction of idle cycles in two video sequences

38

Furthermore, the LEON3 processor is currently enhanced with clock
gating capabilities. The halt instruction of the LEON3, which is ex-
ecuted in the idle loop, is used to trigger the clock gating. Ongoing
work will capacitates applications to directly influence the power gating
decisions. An FPGA board with power meters in the voltage regulators
is used to determine the achievable savings. As power gating cannot be
presented on the multi-FPGA demonstration platform (Project Z2) for
technical reasons, we want to mimic the behaviour with clock gating
and estimate the savings with the simulation infrastructure.

Publications

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200.

[PWHV+11] R. K. Pujari, T. Wild, A. Herkersdorf, B. Vogel, and J. Henkel.
“Hardware Assisted Thread Assignment for RISC based MP-
SoCs in Invasive Computing”. In: Proceedings of the 13th Inter-
national Symposium on Integrated Circuits (ISIC). Singapore,
Dec. 2011.

39

B4

B4: Hardware Monitoring System and Design
Optimisation for Invasive Architectures

Doris Schmitt-Landsiedel, Ulf Schlichtmann

Ning Chen, Elisabeth Glocker, Christoph Knoth, Dominik Lorenz,
Martin Wirnshofer

Resource-aware programming and operation is one of the essential
innovative points of Invasive Computing. In this context the decision
on where to execute an application should be based on actual physical
hardware properties. This becomes even more important when consid-
ering the fact, that integrated circuits today and even more in the future
are subject to significant variations - between different manufactured
components (resulting from fluctuations in manufacturing process) and
also over space (e.g., “hot spots”) and time (short-term: resulting from
fluctuations in operating conditions, long-term: resulting from degrada-
tion effects due to ageing).
The research goal of Project B4 is to provide means to measure, pre-
process and communicate the specific status of a processing element
to higher hardware layers, the operating system and applications. So
these other layers are able to act considering the monitor data when,
for example, choosing processing elements to execute applications on,
or react when a critical status is detected. In turn the actions taken may
influence the status of involved processing elements. This feedback-loop
is shown in Figure 4.13. Therefore different monitor types are necessary.
These include power consumption and temperature evolution, maxi-
mum performance in terms of speed or maximum clock frequency, also
regarding age-dependent performance capabilities and reliability.
This project considers optimisation strategies and design of a moni-
toring system and corresponding circuits and interfaces including the
demonstration by simulation, emulation on the FPGA hardware proto-
type platform and later on by preparing the implementation on ASIC
hardware prototypes.

In [WHGSL11a] and [WHGSL11b] we demonstrated the monitoring
of the maximum performance by in-situ delay monitors. These monitors
are enhanced flip-flops that observe the timing of the circuit. Critical,

40

B4

i-let

- invade

- infect

- retreat

- …

- permission

- speed

- utilization

- power/

temp

- fault/error

- permission

- speed

- utilization

- power/

temp

- fault/error

Figure 4.13: Resource-aware programming is a main feature of Invasive Computing. By providing
a feedback-loop between the underlying physical hardware and higher layers the
current state of the underlying parallel hardware platform may be taken into account
when deciding if and which resources to invade, infect or retreat.

but not yet erroneous signal transitions, are detected as pre-errors. The
pre-error rate is used as indicator for the remaining timing slack of the
circuit. By use of these in-situ delay monitors, all kinds of variation and
ageing effects are determined inside the real circuit and thus reliable
performance information is provided. In [AGSLW11] different designs
to implement these monitors are presented and the reliability of the
timing information as well as the power overhead are carefully analysed.
Our next research activities target further optimisation of these in-situ
monitors especially for all kinds of ageing effects.

In [LBS11], we demonstrate an innovative approach to periodically
monitor the ageing of ICs during operation. The basic concept is to iden-
tify all paths that potentially might become critical during the lifetime
of an IC. As different paths can age at different rates, the critical path
can change during the life of an IC. Ageing depends on operating and
environmental conditions and therefore cannot be determined exactly
before an IC is actually being used. But it is possible to identify a range
within which the delay of a path will always be, regardless of where
specifically it resides within the manufacturing window and what op-
erating conditions (Temperature, Supply Voltage, Switching Activity)
it will experience. It turns out that if this window is considered, for
many circuits the number of paths that can potentially become critical
is reduced significantly. Therefore it appears to be an option to test
these paths periodically during the operation of an IC to detect any
ageing that might endanger correct computation. This approach can be

41

B4

considered as an alternative to the methods discussed above.
The research presented in [CLS11], [KUKS11] and [KJS12] addresses
related topics. This will become especially useful for the ASIC design
envisioned for the 2nd and 3rd phase of InvasIC.
In [KUKS11] SWAT, a highly optimised statistical timing analyser for dig-
ital circuits is presented that combines the accuracy of a transistor-level
analysis with the performance of a gate-level analysis. SWAT is based
upon a CSM (Current Source Model) for logic cells which considers
transistor ageing and process variation and employs waveform trunca-
tion and dedicated solvers to significantly improve analysis performance
without noticeable loss of accuracy. Parameter variations and ageing
can be handed by Monte Carlo simulations and by a special sensitivity
propagation mode, which expresses arrival times as a function of local
and global parameter variations. This will allow very fast, but accurate
analysis of the ASIC design, considering variations and ageing to ensure
very robust InvasIC ASIC design. In [KJS12], the emphasis is put on
power analysis instead of timing analysis.
In [CLS11] a flip-flop timing model is given that allows interdependency
of different computation stages to be analysed via a static timing anal-
ysis at gate level. This is done by breaking the timing boundaries by
explicitly building the functional relationship between clock-to-q delay
and timing parameters at flip-flop data input. Ageing effects HCI and
NBTI are also considered in the modelling to pave the way for ageing
analysis. Application of this approach in InvasIC ASIC design will im-
prove design performance even further.

We are currently working on the implementation of temperature mon-
itors: We established a temperature model that will be extended by
simulations of exemplary operating scenarios and we analysed tem-
perature sensor circuits and chose suitable sensor circuits for both the
FPGA hardware prototype platform and the implementation on ASIC
hardware prototype.

To integrate the different monitors in the overall invasive architec-
ture we will investigate possible solutions for the communication and
abstraction of the hardware status data to higher layers adequate for
each monitor type and with that implement the whole feedback-loop.
In Figure 4.14 the necessary and involved parts for realising the data
communication and abstraction in the loosely-coupled case is shown.
Due to the nature of the FPGA hardware prototype platform not the
same monitor sensors can be taken than the ones that will be imple-

42

B4

Figure 4.14: To integrate the monitors into the loosely-coupled invasive architecture the raw status
data is stored, processed and the processed status data is then stored within range
of the CiC. From there it will be accessible for higher layers like Agents or applications.
Also the control loop going from the monitor sensors itself via the CiC’s to the Agents
and back is shown.

mented on the ASIC hardware prototype. So, dependent on the monitor
type, we choose suitable monitor sensors for the FPGA or emulate the
behaviour of the later ASIC monitor sensors by the use of models on the
FPGA platform.

Publications

[AGSLW11] N. P. Aryan, G. Georgakos, D. Schmitt-Landsiedel, and M.
Wirnshofer. “Comparison of In-situ Delay Monitors for Use in
Adaptive Voltage Scaling”. In: Kleinheubacher Tagung 2011.
to appear in Volume 10 (2012) in Advances in Radio Science
(ARS) Journal. 2011.

[CLS11] N. Chen, B. Li, and U. Schlichtmann. “Timing Modeling of
Flipflops Considering Aging Effects”. In: International Work-
shop on Power and Timing Modeling, Optimization and Simula-
tion (PATMOS). Vol. 6951. Lecture Notes in Computer Science
(LNCS). Sept. 2011, pp. 63–72.

43

[KJS12] C. Knoth, H. Jedda, and U. Schlichtmann. “Current Source
Modeling for Power and Timing Analysis at Different Supply
Voltages”. In: Design Automation and Test in Europe (DATE).
To appear. Mar. 2012.

[KUKS11] C. Knoth, C. Uphoff, S. Kiesel, and U. Schlichtmann. “SWAT:
Simulator for Waveform-Accurate Timing including Parameter
Variations and Transistor Aging”. In: International Workshop
on Power and Timing Modeling, Optimization and Simulation
(PATMOS). Vol. 6951. Lecture Notes in Computer Science
(LNCS). Sept. 2011, pp. 193–203.

[LBS11] D. Lorenz, M. Barke, and U. Schlichtmann. Finding Possible
Critical Paths for On-line Monitoring Of Aging in Integrated
Circuits. Technical Report. Technische Universität München,
Dec. 2011.

[WHGSL11a] M. Wirnshofer, L. Heiss, G. Georgakos, and D. Schmitt-
Landsiedel. “A Variation-Aware Adaptive Voltage Scaling Tech-
nique Based on In-Situ Delay Monitoring”. In: IEEE 14th In-
ternational Symposium on Design and Diagnostics of Electronic
Circuits & Systems. 2011, pp. 261–266.

[WHGSL11b] M. Wirnshofer, L. Heiss, G. Georgakos, and D. Schmitt-
Landsiedel. “An Energy-Efficient Supply Voltage Scheme using
In-Situ Pre-Error Detection for on-the-fly Adaptation to PVT
Variations”. In: International Symposium on Integrated Circuits.
2011.

44

B5

B5: Invasive NoCs – Autonomous,
Self-Optimising Communication
Infrastructures for MPSoCs

Jürgen Becker, Andreas Herkersdorf, Jürgen Teich

Jan Heißwolf, Andreas Weichslgartner, Aurang Zaib

In recent years, Networks-on-Chip (NoCs) have emerged as intercon-
nect for on-chip systems with many cores. The invasive architecture
[HHBW+12] targets systems with hundreds of heterogeneous cores
thereby offering features that enable software to dynamically allocate
architectural resources depending on the current resource utilisation.

The research goal of this project is to provide a communication in-
frastructure for such large scale, heterogeneous architectures, as can be
seen in Figure 4.15, that is able to efficiently handle diverse communi-
cation patterns dynamically. As the invasive Network-on-Chip (iNoC) is
an integral part of a decentralised resource management strategy, all
its components – that is, the network adapters (NA) and iNoC routers
– have to support also link invasion [THHSL+11], this requires novel
protocols and hardware methodologies.

As part of the overall decentralised resource management, we inves-
tigated the feasibility of decentralised embedding of communication
topologies called self-embedding within the iNoC. In [WWT11], we
presented the formal model for algorithms and showed that the decen-
tralised mapping of tree-shaped applications and reserving of bandwidth
can compete with central approaches in terms of average network util-
isation, but offering a better scalability. Currently we are working on
a hardware prototype of the Invasive-Command-Initiator (ICI) that will
implement the self-embedding functionality as a part of the iNoC router.

Along with the research on self-embedding, we developed protocols
and routers that support dynamic link invasion that also will provide
the basis for autonomous mapping of communication graphs. The de-
veloped router, network adapter and the protocols support different
types of communication that cooperatively share router’s resources.
Hard Quality-of-Service (QoS) guarantees can be given by reserving
Guaranteed Service (GS) communication channels while Best Effort

45

B5

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU iCore

iCore CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

N
A N

A Memory
N
A

N
A Memory

N
A

N
A Memory

N
A Memory

N
A

N
A

Figure 4.15: Heterogeneous invasive architecture consisting of heterogeneous tiles which are
connected through the iNoC

(BE) communication channels can be used where no guarantees are re-
quired without the need of channel reservation. Thereby, BE may utilise
resources that are not occupied by GS at that moment. Figure 4.16
shows such a scenario. In addition, the iNoC router is equipped with a
dedicated control channel. This special control channel is necessary to
enable iNoC-internal invasive features, such as, self-embedding, end-to-
end flow control and global self-optimisation. In that way, the iNoC can
efficiently process different communication requirements and achieve
high resource utilisation.

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile
Memory

NoC

Router

NoC

Router

NoC

Router

Processing

Tile

Processing

Tile

NoC

Router

Memory

VC 1
VC 2
VC 3

V
C

 1
V

C
 2

V
C

 3

V
C

 1
V

C
 2

V
C

 3

V
C

 1
V

C
 2

V
C

 3

VC 1
VC 2
VC 3

NoC

Router

NoC

Router

H
T

H

1: Setup of GS-Connection

2: Established GS-Connection

3: BE-Packet

: Head Flit

: Tail Flit

H

T

N
A N

A
N
A

N
A

N
A

N
A

Figure 4.16: iNoC Data Transmission Example for QoS Support

To investigate the above mentioned invasion strategies and mecha-
nisms at a higher level of abstraction, we developed a cycle-accurate
SystemC model of the iNoC. It is highly parameterisable and can be

46

B5

used for design space exploration as well as to provide performance
characteristics for the simulation of invasive applications and invasive
architectures of Project C2. Along with the SystemC model, a parame-
terisable RTL model of the iNoC router was realised in SystemVerilog.
It enables to obtain power, area and speed figures that are propagated
to higher level simulation models. The RTL model will also be used as
part of the final integrated demonstrator platform [BFHK+12] of the
Project Z2. To approach that goal, a rudimentary architecture consisting
of RTL models of LEON3 tiles, the NA and the iNoC is realised in collab-
oration with Project B3. A modular approach is followed to design the
network adapter. It consists of a tile interface, the FIFO and the iNoC
interface layer. The modular approach shall simplify the connection
of the different tile types of our heterogeneous architecture. Only the
tile interface layer needs to be replaced depending on the tile type. In
the first year, RTL implementation of the network adapter to interface
loosely coupled MPSoC tiles with iNoC is carried out. The current
implementation provides support for load/store and message passing
mechanism to LEON cores. Our next research activities target to inves-
tigate a novel self-optimisation strategy called Re-Routing to balance
the link utilisation of the iNoC transparently from the tile perspective.
Links with a high utilisation are identified by the iNoC itself. Alternative
routes for connections through these links are searched, reserved and
afterwards used for communication to relieve the high utilised link. Our
SystemC simulator is currently extended to support that feature. To
support the agent system (Project C1) in performing mapping decisions,
we started investigating mechanisms for aggregation of monitoring data
by the iNoC.

Publications

[BFHK+12] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D. May.
“Hardware Prototyping of Novel Invasive Multicore Architec-
tures”. In: Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC). Sydney, Australia, Jan. 30–
Feb. 2, 2012, pp. 201–206.

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200.

47

[THHSL+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W.
Schröder-Preikschat, and G. Snelting. “Invasive Computing:
An Overview”. In: Multiprocessor System-on-Chip – Hardware
Design and Tool Integration. Ed. by M. Hübner and J. Becker.
Springer, Berlin, Heidelberg, 2011, pp. 241–268.

[WWT11] A. Weichslgartner, S. Wildermann, and J. Teich. “Dynamic De-
centralized Mapping of Tree-Structured Applications on NoC
Architectures”. In: Proceedings of the Fifth ACM/IEEE Interna-
tional Symposium on Networks-on-Chip (NOCS). Pittsburgh,
PA, USA, May 1–4, 2011, pp. 201–208.

48

C1

C1: Invasive Run-Time Support System (iRTSS)

Wolfgang Schröder-Preikschat, Daniel Lohmann, Jörg Henkel, Lars Bauer

Benjamin Oechslein, Jens Schedel, Christoph Erhardt, Sebastian Kobbe

Project C1 investigates basic system-software support for application-
aware static/dynamic configuration and on-demand adaptation of the
invasive computing platform – bridging the gap from invasive hard-
ware (project area B) to invasive applications (project area D). The
scientific objective is a flexible run-time system coping with massively
parallel, heterogeneous and dynamic workloads and requirements of
the envisioned invasive applications. The challenge is to map (static/-
dynamic) application properties to iRTSS configuration variants and to
efficiently instantiate schemes for i-let entities considering cross-cutting
and nonfunctional properties (e.g., energy consumption, timeliness).

Architectural Overview

OctoPOS

X10
run-time system

Agent
System

X10 application

x86 nativex86 LinuxLEON native

C/C++ application

Figure 4.17: iRTSS Architecture

Figure 4.17 provides a high-level
view of the current iRTSS architec-
ture. Key elements are OctoPOS,2

the parallel operating system (POS)
which implements the mechanisms
of iRTSS to make all capabilities of
the underlying hardware available
to higher (software) levels, and the
agent system, which provides global
iRTSS strategies for resource manage-
ment through means of self-adaption
in order to cope with the scalability
problem in large multi-core systems.

2The prefix “Octo” stems from the denotation of a nature which is highly parallel in its
actions as well as adaptable to its particular environment: the octopus, being able to
act in parallel by means of its tentacles, adapt itself through colour change, and, due
to its highly developed nervous system, attune to dynamic environmental conditions
and impact.

49

C1

Due to its close interactions with the application it serves, the agent
system is currently implemented in X10. The OctoPOS kernel is imple-
mented in C++ and shall provide “bypasses” to the agent system for the
quick and efficient bookkeeping of hardware resources and monitoring
of hardware events. However, we are also considering an alternative
architecture with a “bottom half” of the agent system residing directly
within the OctoPOS kernel.

In a similar realm, OctoPOS provides specific system abstractions
that serve the particularities of the X10 language and run-time sys-
tem (Project C3), which we are currently investigating jointly with
Project C3.

The Configurable OctoPOS Kernel

One key aspect in the design and development of OctoPOS is to make
all the capabilities of the underlying hardware available to higher (soft-
ware) levels in an “unfiltrated” way – especially to application programs
– and yet leave these levels gradationally hardware-independent. In
this realm, OctoPOS is provided as a family of operating systems. We
have published a first paper about the general design rationale and the
implementation of a first member of the OctoPOS family [OSKB+11].
Our results show, on the one hand, that on a six-core LEON3 processor
the overhead of invasion (complete invade/infect/retreat cycle from one
to six cores and back to one core) can be as low as 480 CPU cycles – it
pays off to parallelise a workload as soon as its serial execution time
surpasses 576 CPU cycles. On the other hand, the results (Figure 4.18)
also show that the LEON does not scale beyond four shared-memory
cores. As a consequence, the shared-memory tiles of the InvasIC hard-
ware, developed in project area B, will be equipped with at most four
cores.

As memory access is done through a common bus by all cores,
the evaluation system is a typical symmetric multiprocessing system
with a uniform memory architecture. Code and data are located
inside the same physical memory, so the system acts as a classical
von-Neumann architecture.

4.2 Thread Model and Control
We chose not to implement a traditional threading scheme within

our OctoPOS prototype, to most efficiently implement the core func-
tionality of invasion. The teams used to model the single computing
phases of the application are not implemented as fully fledged inde-
pendent threads. Instead, they are modelled as functions. infect()
dispatches one such team to the application’s claim, which, in our
implementation, simply comprises the set of cores the application
currently uses. Once the execution of a team member finishes, the
executing core is ready to accept members of another team.

The individual team members have run-to-completion semantics.
So when they finish, the overhead to switch to a member of the
next team is comparable to an indirect function call, as no context
information of the preceding one has to be preserved.

One remaining issue is the synchronisation of the invade(),
retreat() and infect() phases. As can be seen in Fig. 1, an
infect() phase can always be followed by either an invade(),
retreat() or another infect() phase. However, by calling in-

fect(), a parallel portion of the program is started and then ex-
ecutes on all cores belonging to the claim simultaneously. When
modifying the claim through invade() or retreat(), or dispatch-
ing a new team to the cores with infect(), the previously running
program on all cores must be finished. To achieve this globally,
some kind of barrier is needed to ensure the current computing
phase is finished before the claim is modified or another computing
phase starts. In our current implementation explicit calls to a barrier
implementation are used inside the application code to achieve this
synchronisation of the respective computing phases.

4.3 Basic Invasive Constructs
The core of the system software comprises the implementation of

the basic invasive constructs invade(), infect() and retreat().
These provide the means to manage applications with a varying
degree of parallelism.

Invade and retreat.
Both primitives have a similar interface: They take an integer

parameter denoting the number of cores to be allocated or deallo-
cated and return a boolean value indicating if the operation was
successfully executed. Using invade() and retreat(), an appli-
cation can adjust the number of cores it uses at run-time to match its
varying degree of parallelism. This frees unused cores during less
parallel periods which then can be used by other applications. The
necessary bookkeeping is done by means of a free list that contains
core descriptors for all currently unused cores in the system. The
cores used by a specific application (i.e., its claim) are collected
within a claim descriptor. Allocation of a core through invade()

is now simply done by copying a reference to the core descrip-
tor from the free list to the calling application’s claim descriptor.
Deallocation through retreat() is done accordingly.

Both operations can fail if there aren’t enough cores available ei-
ther in the free list in the case of invade() or in the claim descriptor
in the case of retreat().

Infect.
This primitive takes as argument a team describing the parallel

application and distributes it to the cores comprising the applica-

∆c 1 2 3 4 5
invade 31 42 52 62 70
retreat 33 43 52 62 71

∆c: Number of de-/allocated cores
k 1 2 3 4 5 6
infect 27 51 65 98 133 184

k: Number of infected cores

0

50

100

150

200
cycles

1 2 3 4 5 6 cores

invade

infect

retreat

Figure 4: Execution times for invade, infect and retreat given in CPU cycles
of 12.5 ns

tion’s claim. The dispatching functionality mainly consists of two
distinct parts:

1. Infection on behalf of the application by calling infect().
The producer part that feeds the team members into the dis-
patching algorithm.

2. By means of infection placed code running on all the cores of
the system. The consumer part, as it receives and subsequently
executes team members.

The individual team members in our implementation are realised
as functions, hence the code portion of a team can be flexibly ref-
erenced by a set of function pointers. The data part can either be
represented as function parameters, embedded into the function code
or be addressed by other means, e.g. processor id.

These function pointers are the main item passed around inside
the system to identify a certain team member: All cores in the
system execute a loop querying a memory location for new team
members in the form of function pointers. As soon as a new one
is found, the function pointed to is executed and after its execution
finishes, the core goes back to querying the memory location for its
next team member.

Dispatching of a team to a set of cores is done by writing the
team’s set of function pointers to the memory locations queried
by the cores. This design enables the programmer to use different
functions for every core.

4.4 Setup-times of invade, infect and retreat
All measurements are taken on the platform described in Section

4.1 by means of toggling an external output pin to mark the areas of
interest in the implementation and an oscilloscope. All measured
data is averaged over thousand iterations.

The measurements shown in Fig. 4 represent the execution time
of invade() and retreat() for the allocation/deallocation of ∆c
cores and the execution time for infect() of k cores. There are no
test results with ∆c = 6 for invade(), as the test cases start with a
one element claim and increases it by ∆c cores, meaning ∆c cannot
surpass five on our six-core machine. Same holds for retreat(), as
the resulting claim always has at least one element left. In general,
these numbers represent a best case scenario, as there is no real
algorithm running in between the calls to the invasive primitives, so
the system software can use the cache almost exclusively.

As can be seen in Fig. 4, both invade() and retreat() have
strictly linear execution time behaviour depending only on the num-

Figure 4.18: Execution times for invasive-
computing primitives on a
LEON MPSoC [OSKB+11]

The numbers in [OSKB+11] de-
note a lower bound for the overhead
of invasive computing: We measured
them in a single-application setting
without multiplexing of the hardware
in time and space; yet this setting
already represents a valid member
of the OctoPOS family. However,
as soon as functional enrichments
get introduced by extension aspects,
concurrency on kernel-internal data
structures does naturally increase.

50

C1

The overall scientific objective is to define an operating system archi-
tecture that does not harm massive internal parallelism – the operating
system shall not become the bottleneck of invasive computing. Herein,
the challenge is to find lower-level (central) abstractions whose software
implementations are lock-free and maximise parallelism. An important
step towards lock-free algorithms is RTNCAS, a linearisable, wait-free
and disjoint-access parallel multiword CAS (compare and swap) library
[SSP11]. However, we also exploit and demand specific hardware sup-
port from the B projects in order to hide kernel latencies. In [HLSP11]
we have investigated and quantified the benefits (up to 20x lower laten-
cies) of (mis-)using the interrupt controller of commodity hardware for
the very efficient scheduling and dispatching of thread control flows by a
clever kernel design. These insights have been an important driver in our
ongoing collaboration with Project B3 towards the hardware-assisted
pre-scheduling and dispatching of i-lets by the CiC.

Nevertheless, we provide OctoPOS for a variety of platforms – with
and without dedicated hardware support. The upcoming implemen-
tations for x86-based commodity hardware and a Linux “guest mode”
(Figure 4.17) ease the development and evaluation of the invasive soft-
ware stack (applications, X10 extensions, compiler). They also make it
possible to compare the approach of invasive computing [THHSL+11]
with other players in the field that run on standard hardware only. From
the perspective of OctoPOS, these implementations become further
members of the family, which, however, requires a fine-grained configu-
ration and adaptation of its low-level abstractions. Internally, OctoPOS
uses aspect-oriented programming techniques for this purpose instead
of the “#ifdef hell” commonly found in configurable systems software.
While investigating on a clean integration of iRTSS into Linux as a host
system, we found such an “#ifdef hell” in the Linux kernel, where it
had already led to hundreds (!) of previously undetected maintenance
bugs [TLSSP11]. These results underline the necessity for advanced
configuration techniques in OctoPOS.

The Agent System

The horizontal adaptation using agent-based self-adapting resource
allocation is implemented in a first version. In [KBHL+11] we have
shown that managing resources of an on-chip many-core system in a
distributed manner is feasible and beneficial, especially if the system has
hundreds or thousands of cores. We have also shown that managing the
resources of a large on-chip many-core system (an NP-hard problem)
in only one central place leads to issues in terms of computational

51

C1

complexity. We have compared our approach to a centralised resource
manager in multiple system size configurations with various workload
profiles. The comparison of the computational complexity is shown
in Figure 4.19. The agent system simulation environment for design
space exploration (see Figure 4.20) has been developed and is used to
evaluate the agent system. As each of the agents only needs to take
care of a reduced subset of the large search space, the computational
complexity for each of these parallel working agents is also significantly
smaller. On a simulated 1024-core system running 32 applications,
less than one percent of the calculations need to be performed in each
agent compared to a centralised approach. Our approach required to
send more messages trough the NoC, but we were able to show that in
average the messages are shorter and most often only require a few hops
on the NoC when distributed throughout the entire chip. Therefore,
our approach requires notably less network bandwidth compared to a
centralised solution (12,75% for the simulated 1024 core system with
32 applications). In [HHBW+12] the role and impact of our agent
system with respect to the InvasIC hardware architecture have been
presented.

2M

3M

m
pl

ex
ity

in
ne

r
L

oo
p)

DistRM, 16 Central, 16

DistRM, 32 Central, 32

Our Agents, 16

Our Agents, 32

Central Scheme, 16

Central Scheme, 32

1M

2M

m
pu

ta
tio

na
l C

om
io

ns
 o

f t
he

 m
os

t

DistRM, 64 Central, 64Our Agents, 64 Central Scheme, 64

#Applications

0M
5x5 8x8 12x12 16x16 20x20 24x24 28x28 32x32

C
om

(C
al

cu
la

ti

System Size (Cores)

Figure 4.19: Comparison of the computational complexity of our agent system and a centralised
resource manager for different system sizes and various workload profiles [KBHL+11].

We have proposed the concept of “hints” as an extension of the con-
straint system developed for the X10 language extensions (Project C3).
Hints within an invade statement are necessary for the application to
be able to express not only which exact resources the application re-

52

C1

System SizeWorkload Profile

Application Model
High-Level

System Simulator
Resource Manager

pp

Results

Resource Manager

Workload Generator
Logfile

Logfile Parser

Figure 4.20: Components of the agent system simulation environment for design space exploration.
The agent system is implemented as the resource manager and is triggered by the
high-level workload generator and the application model.

quires, but also how beneficial it would be to obtain these resources –
for instance, the expected performance gain if the application acquires
an i-Core instead of a regular RISC core or the expected gain of each
additional core. This information is required for the agents to make
decisions about which resources are actually given to which application
in order to optimise the overall system performance. If no hints are
provided, only a default behaviour could be assumed, which leads to
potentially worse decisions.

A topic of ongoing research is the integration of dynamic information
(e.g., monitoring data (Project B4)) into the mapping-decision process.
In this realm we cooperate with the iNoC (Project B5 and Project B3)
towards a hardware-supported aggregation and distribution of dynamic
information. The application’s knowledge about the anticipated re-
source requirements can then be used to save power. While the agent
system is responsible for the resource mapping, the Virtual Power Gating
(ViPG, Project B3) aims at activating and deactivating already mapped
resources. We envision to enhance the agent system’s mapping decisions
with the ViPG gating decisions and vice versa. As a first step towards
this goal, a combination of both simulation infrastructures is planned to
evaluate the power-saving potentials.

Outlook

In 2012 we will further investigate, and possibly finalise, the interfaces
towards the application/compiler interface (project area D, Project C3)
and the invasive hardware platform (project area B). An important
milestone in this realm is the stepwise integration of our results into the

53

C1

first demonstrator scenario of Project Z2. Residing between “a rock and
a hard place” (application and hardware projects) the operating system
naturally plays a central role in this setting. To obtain additional data
for latency estimations, we will furthermore implement a version of our
agent system for the Intel SCC 48-core system and OctoPOS for an x86
AMD 48-core including the Linux guest support.

Publications

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pu-
jari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and
S. Kobbe. “Invasive Manycore Architectures”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Jan. 30–Feb. 2, 2012, pp. 193–200.

[HLSP11] W. Hofer, D. Lohmann, and W. Schröder-Preikschat. “Sleepy
Sloth: Threads as Interrupts as Threads”. In: Proceedings of
the 32nd IEEE International Symposium on Real-Time Systems
(RTSS). Vienna, Austria: IEEE Computer Society, Dec. 2011,
pp. 67–77. ISBN: 978-0-7695-4591-2.

[KBHL+11] S. Kobbe, L. Bauer, J. Henkel, D. Lohman, and W. Schröder-
Preikschat. “DistRM: Distributed Resource Management for
On-Chip Many-Core Systems”. In: Proceedings of the IEEE In-
ternational Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). Taipei, Taiwan, Oct. 9–14,
2011, pp. 119–128.

[OSKB+11] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel, D.
Lohmann, and W. Schröder-Preikschat. “OctoPOS: A Parallel
Operating System for Invasive Computing”. In: Proceedings of
the International Workshop on Systems for Future Multi-Core
Architectures (SFMA). Ed. by R. McIlroy, J. Sventek, T. Har-
ris, and T. Roscoe. Vol. USB Proceedings. Sixth International
ACM/EuroSys European Conference on Computer Systems
(EuroSys). EuroSys. Salzburg, Austria, Apr. 2011, pp. 9–14.

[SSP11] P. Stellwag and W. Schröder-Preikschat. “Challenges in Real-
Time Synchronization”. In: Proceedings of the 3rd USENIX
Workshop on Hot Topics in Parallelism (HotPar). Ed. by M.
McCool and M. Rosenblum. Berkeley, CA, USA: USENIX Asso-
ciation, May 2011.

[TLSSP11] R. Tartler, D. Lohmann, J. C. R. Sincero, and W. Schröder-
Preikschat. “Feature Consistency in Compile-Time Config-
urable System Software”. In: Proceedings of the Sixth Interna-
tional ACM/EuroSys European Conference on Computer Systems

54

(EuroSys). Ed. by C. Kirsch and G. Heiser. Salzburg, Austria:
ACM Press, Apr. 2011, pp. 47–60.

[THHSL+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W.
Schröder-Preikschat, and G. Snelting. “Invasive Computing:
An Overview”. In: Multiprocessor System-on-Chip – Hardware
Design and Tool Integration. Ed. by M. Hübner and J. Becker.
Springer, Berlin, Heidelberg, 2011, pp. 241–268.

55

C2

C2: Simulation of Invasive Applications
and Invasive Architectures

Frank Hannig, Michael Gerndt, Andreas Herkersdorf

Vahid Lari, Marcel Meyer, Sascha Roloff, Aurang Zaib

Project C2 investigates novel simulation methodologies that enable the
validation and variants’ exploration of all essential features of invasive
computing in order to guide research directions at an early project stage.
Project C2 has two major research fields: (a) Behavioural simulation of
invasive resource-aware programs and (b) Performance evaluation of
individual architectures and an integrated simulation methodology to
co-simulate different types of invasive architectures. In order to handle
the complexity and diversity of the considered architectures as well as
different invasive programming, resource management and invasion
strategies, new methods for the modularisation and orthogonalisation
of these exploration concerns are developed. This project has a fun-
damental role within the TCRC by providing evaluation facilities and
by assisting in the optimisation of the concepts of invasive comput-
ing across all project areas, especially, without the need to have full
hardware or software implementations available.

X10
program

invade
infect

retreat
…

Behavioral
simulation Resource

variants
(#Tiles,
#PEs) Emulation

PGAS-
architecture

Figure 4.21: Overview of the functional simulation approach.

56

C2

Behavioural Simulation

The main idea of our behavioural simulation methodology is to pro-
vide the main commands of invasion (invade, infect, etc.) early to the
application programmer and to offer the possibility to simulate resource-
awareness for different invasive architectures. This shall allow the early
validation of invasive programming concepts as well as the investiga-
tion of a broad range of different invasive hardware platforms on a
functional layer. An introduction to the resource-aware programming
concepts and the functional simulator was published in cooperation
with Project A1 in [HRST+11]. A general introduction to the invasive
computing paradigm is given in [THHSL+11].

In the last year, we have developed a functional simulation envi-
ronment completely based on the programming language X10, which
provides a functionally correct interpretation of the resource-aware pro-
gramming constructs provided by the framework of invasive program-
ming. It also delivers important timing information about the parallel
execution of several applications running on an invasive architecture,
taking into account the computational properties of the different types
of processing elements. Due to the fact that a cycle-accurate simulation
of heterogeneous future MPSoCs including hundreds or thousands of
cores would be much too slow, we have developed a novel high-level
simulation approach, which tackles the complexity and the heterogene-
ity of such systems and enables the early investigation of resource-aware
programming concepts. In Figure 4.21, a general overview of the func-
tional simulation approach is depicted. Several invasive applications
are written in X10. The simulation framework itself is also realised in
X10 using a library-based approach. The applications are simulated
on a modelled heterogeneous tiled architecture, which provides a rudi-
mentary abstraction of an invasive architecture. Means are provided to
describe such architectures in X10 in terms of number and topology of
tiles, including their contained processing elements as well as their local
memory sizes. The main idea is to model the state and the utilisation of
resources by concurrently simulated processes. These are implemented
in X10 by lightweight threads called activities and thus implemented
in the same way as application i-lets. Each processing element may be
individually customised by defining its type (e.g., RISC, i-Core or TCPA),
type-dependent properties (cycles per instruction, cache type, clock
frequency, scratchpad size, etc.) and monitors for certain time-variant
states (e.g., load, temperature, faultiness). Subsequently, the resulting
X10 program is compiled and executed on the host PC and simulates
the parallel execution of several invasive applications running on the

57

C2

modelled target architecture. This simulation of the interplay between
invasive program behaviour and the resulting states of the underlying
processing resources such as their temperature, load or faultiness in
dependence of their state of invasion is one of the key features of this
functional simulation concept. Finally in [RHT12], we will present a
new timing model that allows also an approximate time simulation of
applications running on cores with different computational properties
without requiring detailed simulation models of the target processors.
Instead, we use a hybrid approach based on performance counters and
analytical models. This method is much faster than a cycle-accurate sim-
ulation and thus allows the investigation of invasive program behaviour
of hundreds of applications running on a heterogeneous invasive archi-
tecture.

Outlook

The next steps of research are to formulate and integrate also timing
models of complex architectures such as TCPAs (Project B2) in order
to obtain adequate speedup values for the execution of i-lets also here.
Moreover, an integration of a network model for the calculation of
network latencies between communicating i-lets on different tiles needs
to be achieved. Finally, the timing simulation is currently realised in a
sequential way. So, another next step is to parallelise the simulation by
making use of current multi-core computers in order to speed up the
simulation of invasive applications on heterogeneous targets.

Integrated Simulation Methodology

The second main objective is a uniform simulation methodology, which
is based on common methods to model invasive applications, concerted
mechanisms to provide resource-awareness. In addition, it will allow to
integrate different architecture simulators across all hardware architec-
tures covered in the TCRC. In this year, we have evolved the interfaces
for the common simulation framework, the Integrated Invasive Sim-
ulation Framework (IISF) for investigating invasive resource-aware
architectures. Here, we have followed a novel and unique layered ap-
proach that separates the simulation of the invasive constructs from
non-invasive parts in an invasive application. The invasive behaviour of
the application is captured in a control flow graph which is represented
accordingly in the simulation input file, the Abstract Intermediate Rep-
resentation (AIR). Abstract Invasive Machine (AIM) is the component
which sends non-invasive parts to simulate on underlying simulation

58

C2

AIR_kAIR_j

AIM_o
AIM_n

RM AIM_m

Platform-specific Simulation Engines (PSE)

Loosely Coupled MPSoC

BUS

Local

Memory
CIC

Core 0 Core 1 Core 2 Core 3

TCPA

Shared Memory NUMA

Systems

AIR_i

Abstract Invasive

Execution

Architectural

Simulation

Abstract

Intermediate

Representation

Application
App_kApp_jApp_i

RM’ RM’ RM’
Simulation

Controller’

Simulation

Controller’

Simulation

Controller’

Figure 4.22: Integrated Invasive Simulation Framework (IISF).

engines and executes invasive parts by itself with help of Resource
Manager (RM). Figure 4.22 describes this layered simulation approach
for the simulation of invasive architectures. In the scope of IISF, the
important concerns for co-simulation of heterogeneous architectures
like global timing and synchronisation between different architecture
simulators would be addressed in 2012.

The architecture simulator for loosely-coupled MPSoC (LCMPSoC)
targeted for intra-tile investigations was adapted to the proposed lay-
ered simulation approach in the current year. This simulator allows
simulation of applications keeping in view their invasion requirements.
The actual execution on on underlying MPSoC architecture is abstracted
through traces. Also in the scope of the architecture simulators, a
cycle-accurate simulator for invasive TCPA architectures (depicted in
the figure at bottom right) was developed in C++ in close cooperation
with Project B2. This simulator is used for exploring design options
and invasion strategies. Therefore, it is also capable of modelling both

59

C2

FSM-based and programmable invasion controllers at the functional and
architectural abstraction levels. It was extensively used to develop and
validate many investigated invasion strategies, to study the signalling
concepts published in [LHT11; LNHT11] as well as to investigate differ-
ent hierarchical power management techniques for TCPAs [LBMH+11].

In 2012, the simulation model will be expanded to include the iNoC
in collaboration with Project B5. Furthermore, the environment shall
be extended to investigate and integrate invasive resource management
strategies and monitoring concepts.

Publications

[HRST+11] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau.
“Resource-Aware Programming and Simulation of MPSoC Ar-
chitectures through Extension of X10”. In: Proceedings of the
14th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). St. Goar, Germany: ACM Press,
June 27–28, 2011, pp. 48–55. ISBN: 978-1-4503-0763-5. DOI:
10.1145/1988932.1988941.

[LBMH+11] V. Lari, S. Boppu, S. Muddasani, F. Hannig, and J. Teich. “Hi-
erarchical Power Management for Adaptive Tightly-Coupled
Processor Arrays”. Talk, International Workshop on Adaptive
Power Management with Machine Intelligence at International
Conference on Computer-Aided Design (ICCAD), San Jose,
CA, USA. Nov. 10, 2011.

[LHT11] V. Lari, F. Hannig, and J. Teich. “Distributed Resource Reserva-
tion in Massively Parallel Processor Arrays”. In: Proceedings of
the International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Anchorage, AK, USA: IEEE Computer
Society, May 16–17, 2011, pp. 313–316. ISBN: 978-0-7695-
4385-7. DOI: 10.1109/IPDPS.2011.157.

[LNHT11] V. Lari, A. Narovlyanskyy, F. Hannig, and J. Teich. “Decentral-
ized Dynamic Resource Management Support for Massively
Parallel Processor Arrays”. In: Proceedings of the 22nd IEEE
International Conference on Application-specific Systems, Archi-
tectures, and Processors (ASAP). Santa Monica, CA, USA: IEEE
Computer Society, Sept. 2011, pp. 87–94. ISBN: 978-1-4577-
1291-3. DOI: 10.1109/ASAP.2011.6043240.

[RHT12] S. Roloff, F. Hannig, and J. Teich. “Approximate Time Func-
tional Simulation of Resource-Aware Programming Concepts
for Heterogeneous MPSoCs”. In: Proceedings of the 17th Asia
and South Pacific Design Automation Conference (ASP-DAC).
Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 187–192.

60

http://dx.doi.org/10.1145/1988932.1988941
http://dx.doi.org/10.1109/IPDPS.2011.157
http://dx.doi.org/10.1109/ASAP.2011.6043240

[THHSL+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W.
Schröder-Preikschat, and G. Snelting. “Invasive Computing:
An Overview”. In: Multiprocessor System-on-Chip – Hardware
Design and Tool Integration. Ed. by M. Hübner and J. Becker.
Springer, Berlin, Heidelberg, 2011, pp. 241–268.

61

C3

C3: Compilation and Code Generation
for Invasive Programs

Gregor Snelting, Jürgen Teich

Matthias Braun, Sebastian Buchwald, Frank Hannig, Georgia Kouveli,
Manuel Mohr, Alexandru Tanase

Project C3 investigates compilation techniques for invasive architectures.
A compiler for the concrete X10-based language defined in Project A1
is being developed. Efficient code generation for invasive constructs is
essential. Back ends are developed based on the FIRM infrastructure that
generate code for SPARC architectures and TCPAs targeting loop-level
parallelism. Moreover, we investigate symbolic mapping techniques
which will allow to generate invasive multi-processor programs that
have the capability to correctly synchronise their computations and
communications at run time on an array of processors, based on the
result of invasion.

Architectural Overview

Source code

Extended
X10 compiler

libFirmLoopInvader

Tightly-coupled
processor array

Extended AST

Candidates
for loop

parallelization

Machine code

...SPARC
other

backend

Figure 4.23: Compiler framework for Invasive Com-
puting.

In this project, we consider
compilation and code gen-
eration as well as program
transformation and optimi-
sation techniques for non-
regular (procedural) as well
as task-level and regularly-
structured (e.g., loop-level)
code. An overview of the com-
piler framework is shown in
Figure 4.23. For the concrete
language and its interfaces as
defined in Project A1, a com-
piler needs to be developed.
The back end will be based
on the existing FIRM infras-
tructure for code optimisation.

62

C3

FIRM provides static single assignment (SSA) form as a basis for pro-
gram analysis and optimisation. The compiler must eventually support
both loosely- and tightly-coupled as well as heterogeneous and homoge-
neous invasive multi-processor target architectures.

The compiler will be based on the existing X10 compiler, but with
front end extensions for invasive constructs, and a new or modified
back end for SPARC architectures, as well as optimisations for efficient
utilisation of invasive hardware and operating system support, respec-
tively. In order to exploit invasive computing concepts [THHSL+11]
at the level of loop programs, symbolic techniques are necessary that
describe sets of processor mappings, schedules and synchronisations
of loop computations in dependence on the number N of processors,
which will only be known at run time. Here, the main challenge is to
define such parametrised schedules and mappings together with their
proper mathematical foundations, as well as to derive compact case-
dependent processor and time mappings. A compiler for invasive loop
nests must not only generate functional code, but also control code.
In addition, there will be a high potential for several optimisations,
such as determination of optimal invasion parameters, generation of
the control code for splitting registers, copying of data/program code,
inter-processor link configuration and memory-access scheduling based
on the run-time parameter N . It is intended to provide a prototype
code generator for loosely-coupled RISC-type processors as well as for
tightly-coupled processor arrays (TCPAs), supporting the acceleration
of nested loop programs. The output of a code generator shall thus be
assembly-level code for architectures such as investigated in Project B2
and Project B3. The generated codes shall be used as input for the
simulation tools developed in Project C2 as well as for real hardware
once the central FPGA demonstrator (Project Z2) is ready to run first
code examples.

Symbolic Loop Parallelization (Loop Invader)

In this part of the project, we focus on compiler transformations for the
adaptive parallel execution of loop programs on processor arrays such
as tightly-coupled processor arrays (TCPAs). A simplified drawing of
a TCPA with 24 processor elements (PEs) is sketched in Figure 4.24.
Here, the different rectangular areas denote three applications run-
ning simultaneously on the array. Whereas static mapping and loop
parallelisation techniques for coarse-grained reconfigurable and TCPA
architectures are well studied [Han10; VRMD+10], we proposed and
formalised for the first time symbolic tiling as an automatic program

63

C3

R
e

c
o

n
fi
g

u
ra

b
le

 B
u

ff
e

rs
/F

IF
O

s

Reconfigurable Buffers/FIFOs

 PE PE

 PE PE

 PE PE

 PE PE

Address & Status Generation Logic

Reconfigurable Buffers/FIFOs

R
e

c
o

n
fi
g

u
ra

b
le

 B
u

ff
e

rs
/F

IF
O

s

MPSoC On-Chip Interconnect

Controller

 PE PE PE PE

 PE PE PE PE

 PE PE PE PE

 PE PE PE PE

Figure 4.24: Tightly-coupled processor array (TCPA)

transformation for symbolic parallelisation of nested loop programs with
uniform data dependencies. This step is essentially important for inva-
sive programming on MPSoCs, because here the number of processors,
which determines the choice of tiling for parallelisation, is not known
until run time. For executing loop programs on such architectures, tiling
is needed as a compiler transformation to split iterations of a loop to
the set of available processing elements. For illustration, consider the
nested loop program in Figure 4.25(a) and its iteration space visualised
for N = 6 and M = 4. Each nodes represents an iteration of the loop
program, that is, the execution of the loop body for iteration (i, j). Data
dependencies between different iterations are depicted by the directed
edges. Tiling increases the depth of the loop nest, in our example from
a 2-deep nest to a 4-deep nest. The size of a tile can be represented by
a so-called tiling matrix P .

Tiling the example into 3× 2 tiles can be represented by the matrix
P , resulting in the statically tiled code represented in Figure 4.25(b).
After tiling, the innermost loop iterates over the iterations contained in
a tile and the outer loop iterates over the origins of the tiles. When the
number of available processors in the array is not known at compile-
time, different possibilities might be considered: The first one is to store
a program configuration for each possible array size and to select the
appropriate one at run time. For this approach, obviously, the number
of different configurations and thus the amount of necessary instruction

64

C3

memory can explode easily. Another possibility might be just-in-time
compilation. However, a compiler framework could consume easily
dozens to hundreds of megabytes of memory. In addition, parallelisation
and mapping of a loop program is a time consuming process. Therefore,
this approach is usually not viable for embedded architectures. Due
to the aforementioned arguments, the need for symbolic loop tiling
arises. Here, a tiling transformation is specified by a parametric tiling
matrix P . For example, tiling maps the loop to a n×m processor array,
with n = N/p1, m = M/p2, where m and n are unknown at compile-
time. An example of a symbolically tiled C loop and the corresponding
symbolic tiling matrix P are shown in Figure 4.25(c). The program to
be parallelised is specified in a subset of the language C with annotated
static control parts, which can be represented in the polyhedral model.
Currently, we are also investigating the issue of symbolic scheduling
that is needed for scheduling our symbolically tiled code. Here, there
are several remaining issues, for instance that the number of statically
generated cases of latency-optimal schedules for the symbolically tiled
code can unfortunately be n!. Although being exponential, the overhead
is typically not too high for loops with usually less than n = 4 dimensions
and small loop kernels3. For a small number of dimensions this will

3Also note that not all generated scheduled loop codes must fit simultaneously into the
program memory of a processor, but could be loaded at run time instead.

��������	��
��
��	������
���������	��
��
��	������
����������	��
������	�����
�����������	��
������	��������
�������������
��	���������
�������������
���	�

��������	���
�	�������
���������	���
�	�������
����������	���
��	������
�����������	���
��	�������������
��������������������

���	����

����������������

���	�

�

�

�

� �

�
�

�

���

���

��	��
���
����

�������
��

����

����
�������
�

�������
��

��

��

�������	�
��	����
�������	�
��	�����

������ � ���������	�

�

�

�

�
�

�

�

�

�

�

�

�

�

�	�

���

�
�

Figure 4.25: Tiling of a loop program (a), static tiling (b), symbolic tiling (c) for p1 = 3 and
p2 = 2.

65

C3

still keep the size of code smaller in comparison to dynamic (JIT)
compilation, for which the dynamic compiler might need a very large
amount of space. The design of symbolic scheduling methods is part of
our ongoing research.

Code Generation for TCPAs and Resource Management for Other
Targets

In order to symbolically map loop programs onto parts of a TCPA an
appropriate symbolic code generation back end is also needed, which
generates code that can be used with slight modifications at run time
for different numbers of available PEs. In close collaboration with
Project B2, we studied first symbolic approaches for run-time reconfigu-
ration of TCPAs [BHTP11]. This work is an important basis for a code
generator for the TCPA targets designed in Project B2. We plan a release
of the code generator for the next year as well as the integration in the
overall compiler infrastructure (libFirm).

Furthermore, we have adapted the invasive computing paradigm for
other tiled architectures, namely Tilera’s TILEPro64 and Intel’s Single-
Chip Cloud Computer, which have 64 and 48 processors, respectively.
Here, we investigated the resource-aware programming concepts and
have designed new libraries, which provide support for the basic in-
vasive language constructs. We studied the overheads of invasion on
these architectures and looked into the trade-offs of centralised versus
distributed approaches of resource management [KHLT11; MTKB+11].

In addition, Richard Membarth and others have developed a new
approach for resource management of many-core processors (graphics
processing units, GPUs) in the field of medical imaging [MLHT+12].
In the approach, real-time constraints, dependencies between tasks,
multiple as well as heterogeneous GPUs are supported.

Invasive X10 Front End

We use the existing X10 front end which is available as open-source
software. This allows us to reuse the existing syntax and semantic
checking code as well as the program representation. We develop ways
to transform the X10-AST into the libFIRM intermediate representation.
This is necessary to generate code for the TCPA hardware, the i-Core
instruction set extensions and to ensure an optimal implementation of
the invasive constructs. We also expect faster compile times and im-
proved debug information by using a direct code generation approach in
contrast to generating C++ as the original X10 compiler. As we are not

66

C3

running on a standard Posix/MPI platform we are also developing a new
run-time library which supports the iRTSS and our custom hardware.

So far we have implemented a Java wrapper for libFIRM (jFirm) so
we can integrate with the existing X10 compiler. We can compile the
sequential subset of X10, including modern language features such as
object orientation with classes and interfaces, generic code and closures.
We specified operating system interfaces in collaboration with Project C1.
Work on the parallel constructs has begun. The implementation is in
schedule and we expect to have a complete sequential and partially
invasive version ready by the end of 2012.

jFirm

libOO

X10-Compiler

Firm Backend

libFirm
Sparc Backend

Figure 4.26: Compiler Components (newly developed ones marked in blue)

SPARC Back End

The general purpose cores found in an invasive system have a SPARC
instruction set optionally with i-Core extensions. There will be variants
with and without floating-point support.

To this end a new back end has been developed using the existing
infrastructure in libFIRM. This involved creating code-selection strate-
gies, and handling the SPARC calling convention which employs register
windows. Register allocation and scheduling is performed with the
generic infrastructure. We further developed peephole optimisations
and special code generation phases to fill delay slots and respect the
stack alignment requirements of the application binary interface. To
handle software floating-point a new pass which replaces arithmetic
operations with calls into an emulating library has been created. We
are in the process of extending our register allocator to support aliased
floating-point registers as found in the SPARC architecture. The back
end has matured to a point where efficient code is generated and the
SPEC2000 benchmark suite is handled. We are ahead of schedule giv-
ing us time to further tune the back end and explore instruction set
extensions (see next section).

67

C3

Register Permutations

The collaboration with Project B1 allows us to explore extended in-
struction sets: Our previous work [HGG06; BH09; BZB11] shows that
register allocation for programs in SSA-forms leads to an optimal assign-
ment of registers. Translating out of SSA form however requires parallel
copy constructs. These are traditionally implemented by sequences of
mov and xor instructions for copying and exchanging values. In practise
minimising these instructions is an NP-hard problem (for all known
register allocation strategies). We tackle this problem with instruction
set extensions that allow performing multiple exchanges within a single
cycle. This should improve the run-time of the generated code and
allows the usage of simple and fast copy-coalescing techniques.

Register file

Value request

30 40 10 20

0 1 2 3

Register number 1

2 3 0 1Lookup table

0 1 2 3Logical numbers

Physical numbers

Figure 4.27: i-Core physical to logical register mapping

The hardware extensions are available for the i-Core now and we
developed compiler support for them. We are now in the process of
evaluating these instructions with bigger benchmarks and are tuning
the instruction encodings for common classes found in the benchmarks.

Publications

[BHTP11] S. Boppu, F. Hannig, J. Teich, and R. Perez-Andrade. “To-
wards Symbolic Run-Time Reconfiguration in Tightly-Coupled
Processor Arrays”. In: Proceedings of the International Con-
ference on Reconfigurable Computing and FPGAs (ReConFig).
Cancun, Mexico: IEEE Computer Society, Nov. 30–Dec. 2,
2011, pp. 392–397. ISBN: 978-1-4577-1734-5. DOI: 10.1109/
ReConFig.2011.91.

68

http://dx.doi.org/10.1109/ReConFig.2011.91
http://dx.doi.org/10.1109/ReConFig.2011.91

C3

[BH09] M. Braun and S. Hack. “Register Spilling and Live-Range Split-
ting for SSA-Form Programs”. In: Proceedings of the Interna-
tional Conference on Compiler Construction (CC). Springer, Mar.
2009, pp. 174–189. DOI: 10.1007/978-3-642-00722-4_13.

[BZB11] S. Buchwald, A. Zwinkau, and T. Bersch. “SSA-Based Reg-
ister Allocation with PBQP”. In: Proceedings of the Interna-
tional Conference on Compiler Construction (CC). Ed. by J.
Knoop. Vol. 6601. Lecture Notes In Computer Science (LNCS).
Springer, 2011, pp. 42–61. DOI: 10.1007/978-3-642-19861-
8_4.

[HGG06] S. Hack, D. Grund, and G. Goos. “Register Allocation for Pro-
grams in SSA-Form”. In: Proceedings of the International Con-
ference on Compiler Construction (CC). Ed. by A. Zeller and
A. Mycroft. Vol. 3923. Lecture Notes In Computer Science
(LNCS). Springer, Mar. 2006, pp. 247–262. DOI: 10.1007/
11688839_20.

[Han10] F. Hannig. “Retargetable Mapping of Loop Programs on
Coarse-grained Reconfigurable Arrays”. Talk, International
Conference on Hardware-Software Codesign and System Syn-
thesis (CODES+ISSS), Scottsdale, AZ, USA. Oct. 26, 2010.

[KHLT11] G. Kouveli, F. Hannig, J. Lupp, and J. Teich. “Towards
Resource-Aware Programming on Intel’s Single-Chip Cloud
Computer Processor”. In: 3rd Many-core Applications Research
Community (MARC) Symposium. Vol. 7598. KIT Scientific Re-
ports. Ettlingen, Germany: KIT Scientific Publishing, July 5–6,
2011, pp. 111–114. ISBN: 978-3-86644-717-2.

[MTKB+11] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S.
Ha, C. Lee, Q. Xu, and L. Huang. “Mapping of Applications
to MPSoCs”. In: Proceedings of the IEEE International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). Taipei, Taiwan, Oct. 9–14, 2011, pp. 109–
118.

[MLHT+12] R. Membarth, J. Lupp, F. Hannig, J. Teich, M. Körner, and W.
Eckert. “Dynamic Task-Scheduling and Resource Management
for GPU Accelerators in Medical Imaging”. In: Proceedings of
the 24th International Conference on Architecture of Computing
Systems (ARCS). Munich, Germany, Feb. 28–Mar. 2, 2012.

[THHSL+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W.
Schröder-Preikschat, and G. Snelting. “Invasive Computing:
An Overview”. In: Multiprocessor System-on-Chip – Hardware
Design and Tool Integration. Ed. by M. Hübner and J. Becker.
Springer, Berlin, Heidelberg, 2011, pp. 241–268.

69

http://dx.doi.org/10.1007/978-3-642-00722-4_13
http://dx.doi.org/10.1007/978-3-642-19861-8_4
http://dx.doi.org/10.1007/978-3-642-19861-8_4
http://dx.doi.org/10.1007/11688839_20
http://dx.doi.org/10.1007/11688839_20

[VRMD+10] T. Vander Aa, P. Raghavan, S. Mahlke, B. De Sutter, A. Shri-
vastava, and F. Hannig. “Compilation Techniques for CGRAs:
Exploring All Parallelization Approaches”. In: Proceedings of
the International Conference on Hardware-Software Codesign
and System Synthesis (CODES+ISSS). Scottsdale, AZ, USA:
ACM, Oct. 24–29, 2010, pp. 185–186. ISBN: 978-1-60558-
905-3. DOI: 10.1145/1878961.1878995.

70

http://dx.doi.org/10.1145/1878961.1878995

D1

D1: Invasive Software–Hardware Architectures
for Robotics

Rüdiger Dillmann, Tamim Asfour, Walter Stechele

Manfred Kröhnert, Johny Paul

In Project D1 we focus on exploring the specific benefits and restrictions
of invasive architectures in challenging real-time embedded systems
and in particular in humanoid robotics. We focus on implementing a
cognitive robot control architecture with its different processing hier-
archies, both on invasive TCPA and RISC-based MPSoC. The goal is to
explore techniques of self-organization to efficiently allocate available
resources for the timely varying requirements of robotic applications.
Such a resource-aware computing methodology will lead to better load
balancing and efficient utilization of resources compared to traditional
resource allocation at compile time. To demonstrate the above aspects
we focus on algorithms used on the humanoid robot ARMAR-III which
depend heavily on the current task and range from stereo vision, object
recognition and obstacle detection to higher level functionality such as
object grasping, motion planning or autonomous navigation. During the
operation of ARMAR-III the underlying computing architecture faces
varying load conditions over time. Depending on the task there are
different algorithms either running in combination or sequentially each
having a distinct execution time and frequency.

During the first year of the project we analyzed the disparity map
and optical flow computation used for robot navigation and the object
recognition algorithm (based on Harris features and SIFT descriptors)
which helps the robot to recognize various objects around it. The
progress of the work is described in detail in the following sections.

Optical Flow on TCPA

Here we analyzed the census transformation based optical flow imple-
mentation where the flow vector pattern can be used for robot navi-
gation or obstacles detection. The three main stages of the algorithm

71

D1

(image smoothening, census transformation and signature generation)
were restructured in order to benefit from invasive computing. The
application can now self-explore resource availability in the neighbor-
hood, using the resource exploration controller (invasion controller)
integrated within each processing element (PE) on the TCPA. The avail-
ability of 100s of PEs, along with the dedicated interconnect mechanism
between neighboring PEs makes TCPA an ideal platform to implement
low level pixel processing applications like optical flow. The algorithm
is based on sliding 2D windows and the implementation on TCPA can
ensure reduction in execution time, as more resources (PEs) are ac-
quired. Figure 4.28a shows various implementations of the signature
generation stage of Optical Flow. Each bar in the bar-graph indicates
a possible implementation and it can be seen that the execution time
varies based on the PEs acquired. The execution time is represented
in clocks per pixel, while the number of PEs used for that configura-
tion is the product of window-size and invasion-depth. The memory
bandwidth requirements are expected to scale based on the execution
time as shown in Figure 4.28b(for an ASIC implementation running @
1GHz). More about how to ensure sufficient bandwidth (bandwidth
reservation over the iNoC etc.) is a topic of further research. The other
two stages of the optical flow work in a similar fashion [PSKA+12].
The complete algorithm runs on the TCPA simulator (Project C2) with
static resource allocation as the current version of the TCPA simulator
does not support dynamic resource allocation. The application will be
implemented in the PAULA programming language (Project C3) once
the compiler is ready. Other strategies for optical flow computation
will be explored in the coming years using the PAULA language. We
also plan to implement more applications like Harris Corner detection,
required for object recognition, on the TCPA.

Object Recognition on MPSoC

The possible benefits of implementing Object Recognition algorithm
on loosely coupled MPSoC was explored. A methodology which helps
the algorithm to decide when to invade/retreat was developed. The
application can request extra processing elements if the features to
be matched is above a certain threshold. The feature matching can
for example be performed on two RISC CPUs simultaneously each
performing a kd-tree based search in one half-region of the frame. The
partial results can be combined later. Another approach would be to
acquire processing elements based on the objects stored in the database
and the objects currently detected in the input frame. Most often, in a

72

D1

15
20

25
300

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

Win size

Ex
ec

u
ti

o
n

 T
im

e
(C

lk
/p

ix
el

)

Invasion Depth

Vector Generation (Optical FLow)

(a) Execution time

15
20

25
300

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

Win size

M
B

p
s

Invasion Depth

Memory BW (Vect gen)

(b) Memory bandwidth requirements

Figure 4.28: Optical flow on TCPA

real-time implementation, an exhaustive search is not feasible in every
frame, as there is a high probability for the previously detected object to
exist in the current frame and a low probability for finding a new object
in every new frame. Hence the algorithm can be optimized so that
an exhaustive search is performed only once in every second, looking
only for an already existing object in the rest of the frames. The C++
algorithm from IVT (Integrating Vision Toolkit) was ported to run on
a single LEON3 core. More analysis to support multi-threading and
support for real-invasion will be explored in the coming years. We plan
to come up with a prototype model of object recognition algorithm
running on the OctoPOS (Project C1) at the same time using the iNoC
(Project B5) and CIC features (Project B3). In the initial stage, the
application is expected to perform simple invade/retreat operations on
the demonstrator platform provided by Project Z2.

Disparity Map on MPSoC

In order to be able to perform navigation and motion planning tasks the
robot needs to be aware of its environment. Especially the distance of
surrounding objects is most important in such a scenario. The Disparity
Map algorithm provides one possible approach to retrieve this kind of
information from stereo camera images. The output of the algorithm
is a grayscale image where the gray value of a pixel corresponds to its
distance from the cameras.

At first the Disparity Map algorithm from IVT was ported to X10
together with the necessary image loading code. Basic testing was
performed during implementation to gather knowledge about the X10
programming language which is going to be used throughout the project.

73

Once available, the implementation was adapted to the invadeX10
framework provided by Project A1 which enabled the usage of invade/in-
fect/retreat primitives to exploit parallelism. Resulting behaviors were
then evaluated using the functional simulator provided by Project C2.
These simulation results of the Disparity Map algorithm are presented
in [PSKA+12]. It could be shown that the application benefits from the
multi-core approach as the execution time decreases with an increasing
amount of useable cores. However, these results need to be verified on
the demonstrator platform once a matching design is synthesized.

Additionally several methods of passing image data to the application
have been investigated enhancing the possibilities of testing vision algo-
rithms on different platforms. Up to now the images can be compiled
into the binary to allow testing on platforms without filesystems. In
case of filesystems being available it is possible to read image sequences
from a directory. Current work focuses on receiving and sending images
over TCP/IP sockets which enables accessing camera images from the
robot head, even in simulation.

In the near future we will implement a scenario where live images
are captured from the robot head and afterwards processed by different
vision algorithms. The scenario will initially be evaluated using the sim-
ulator. Once the compiler of invasive X10 applications and a prototype
of the invasive architecture are available we will use those to evaluate
the algorithms on real hardware.

Publications

[PSKA+12] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, and R. Dillmann.
“Invasive Computing for Robotic Vision”. In: Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 207–
212.

74

D3

D3: Multilevel Approaches and Adaptivity
in Scientific Computing

Hans-Joachim Bungartz, Michael Gerndt

Michael Bader, Andreas Hollmann, Tobias Neckel, Martin Schreiber,
Josef Weidendorfer, Tobias Weinzierl

In this project we examine how invasive applications can be realized on
standard HPC systems based on iOMP. We also provide numerical algo-
rithms for invasion-enabled hardware by providing scientific algorithms
to other projects.

After exploring important constraints for HPC applications we devel-
oped an API for invasive OpenMP which is similar to the X10 implemen-
tation [HRST+11]. The resource management in iOMP is implemented
in a client/server based way.

A generic framework was developed for the tsunami simulation, which
should demonstrate the benefits of invasive computing. A basic shal-
low water simulation was implemented that supports a full-adaptive
simulation and uses a split/merge oriented approach for parallelization.

Demonstrator Platform: X10 Applications

For the activities on the demonstrator platform (Project Z2), for the
design of an invasion-enabled X10 programming language, and to iden-
tify requirements to the hardware and operating systems, D3 provides
typical algorithms and algorithmic patterns from scientific computing.
In the first year, we provided the following algorithms as X10 implemen-
tations:

• An adaptive numerical integration of arbitrary 2D functions on
a quad tree structure was implemented with the size of the hier-
archical surplus being the stopping criterion for recursion. The
required quad tree traversal represents the fundamental algorith-
mic scheme for all kinds of simulations on recursively adaptive
meshes. Since invasive commands are generated down to very
lightweight tasks, this algorithm will indicate the overhead of a
single invasive command as well scheduling problems for this

75

D3

typically strongly-unbalanced problem.

• A multigrid algorithm based on NAS Parallel Benchmark 3.0 was
ported from X10 1.7 to X10 2.2. Due to the high complexity of this
code and the fact that it implements a special class for 3D data
distribution, it was not possible to utilize the invasive extension
of X10 in a reasonable amount of time without rewriting big
portions of the source code. This application shows that there are
requirements to extend the current invadeX10 implementation to
work more transparently. It would be beneficial to have methods to
extend and shrink the number of places without having to rewrite
parts of the already existing source code. Such an approach
would include an implicit redistribution of data in the case of
changing number of places. The work on a simplified multigrid
using invasive concepts is in progress. It will mimic the behavior of
a multigrid with its changing phases of parallelism. The resource
requests are coarse grained and occur due to the V-cycle in a cyclic
order.

• Our third algorithm is a block-recursive matrix-matrix multipli-
cation. Since the underlying hardware does not offer cache co-
herency across tiles, a distributed-memory matrix-matrix multi-
plication based on a space filling curve (SFC) [Bad08] was im-
plemented in X10. Using a software-managed cache to asyn-
chronously preload blocks, one of the major problems of high
latencies can be avoided. The workload as well as the data are
distributed using the SFC. Special requirements in collaboration
with other projects were identified – such as the allocation of local
memory on tile, the asynchronous loading of sub-blocks of the
arrays and the reusage of claims. This algorithm was also selected
for the walk-through steps to clarify the interfaces between other
projects (see Section "Collaboration within the SFB").

All implemented algorithms are steadily updated to the newest
invadeX10 API provided by Project A1. Also scalability and ef-
ficiency studies on the simulator are expected to give us more
insight for further enhancements of the algorithms. Once our
algorithms are able to run on the simulator, further performance
optimizations in cooperation with other projects can be driven.

76

D3

iOMP

Recent trends in the architecture of supercomputers as well as in algo-
rithms used in applications running on those systems require a more
flexible partitioning. Modern applications are more and more dynamic
and consist of phases of more and less parallelism.

The idea of iOMP [BBGH+11] is to bring together the varying demand
of parallelism with the extensive parallelism on hardware level via
invasive computing. Adaptive applications do not statically allocate the
maximum number of resources they can use, but allocate and free cores
according to the available parallelism.

A first implementation of iOMP was developed to investigate this
new programming approach. The iOMP implementation consists of two
parts: the resource manager and the iOMP library. The iOMP resource
management approach is implemented as a client/server architecture.
There is only one resource manager running on a shared memory system,
which has a global overview of all resources.

The iOMP library is implemented in C++ using an object oriented
approach that is similar to the invasive X10 implementation. The major
difference is that an iOMP program will work only with a single claim.
This claim consists of all the PEs currently allocated for the program.
Initially it consists of only a single PE but can grow and shrink under
the control of the program and the system resource management. At
least one PE has to remain in the claim until program termination.

The demands on invasive programming for HPC architectures are
identified and specified as constraints. These constraints are: PEQuan-
tity, to control the number of PEs; Scatter and Compact, to control the
placing of PEs for higher bandwidth or last level cache sharing; AND
and OR, to express intersection and alternatives of constraints.

iOMP applications contact the resource manager via the invade and
retreat methods. In the current implementation, the resource manager
simply keeps a list of free PEs and returns on request as many free PEs as
possible to an application. PEs are assigned to applications for exclusive
access, via pinning of threads to the PEs in the claim. The communica-
tion between applications and the resource manager is implemented
using Linux message queues for interprocess communication (IPC).

The current version of iOMP does not support optimization of locality,
that is, NUMA awareness. Resources, that is, PEs, are given to an
application for exclusive usage, however, depending on the processor
architecture PEs might share the last level cache, the bandwidth to the
memory controller and also the interconnection bandwidth. To use
resources efficiently it is crucial to minimize remote memory accesses

77

D3

and to minimize cache thrashing effects. In the next year we focus the
support of NUMA aware invasion strategies, consider to add nested
claims and to keep track of already claimed PEs for better data locality.

A language specification, describing the available constraints and
the interaction between the library and the server component, was
published on the project’s website [HG11].

Tsunami Simulation

To implement and evaluate invasive algorithms and strategies for the
demonstrator application of Project D3, a framework was created to run
simulations on 2D dynamically adaptive conforming triangular meshes.
This framework was used to implement the 2D shallow-water equations
(as standard model for tsunami simulation) as well as a discretization
with the first-order discontinuous Galerkin scheme. Refinement and
coarsening is triggered via a gradient-based error indicator. The adaptive
grid is described via a binary refinement-tree structure, such that grid
processing relies on (parallel) traversals of this structure.

Our parallel implementation follows a split-and-merge paradigm:
partitions are created as subtrees that can be split and merged to stay
within a certain range of number of grid cells (Fig. 4.29).

To address the problem of load balancing, we create far more sub-
partitions than processors are available on the system. In this way, the
system can be flooded with tasks that are then dynamically scheduled
to the number of currently available cores. With the existing iOMP
implementation we are able to decrease/increase the number of used
CPUs for each timestep during a running simulation with the number of
CPUs depending on the overall workload.

To allow the immediate execution of arbitrary actions for many pro-
cessors it is necessary to create those tasks as fast as possible. Instead of
storing all sub-partitions in a list, all sub-partitions are stored in a binary
tree to start the execution of those actions in parallel. The execution of
specific actions is then triggered by a recursion over this tree creating a
task within each node.

Another problem arises when executing methods with different sig-
natures (stack setup, triggering sub-partition traversals, water surface
setup, communication methods, etc.) in parallel by using the above
mentioned binary tree with sub-partition. New C++11 features (e.g.,
lambda functions) were used to solve this programmability issues.

Besides the OpenMP and iOMP implementation, we also implemented
Intel’s Threading Building Blocks (TBB) for further scheduling tests
on shared memory systems. In the current tests, TBB creates a slight

78

D3

overhead compared to OpenMP’s tasking concept but offers more flexible
ways to schedule sub-partitions in a probably better way which is part
of our ongoing research.

Among other general performance improvements, a code generator
was used to avoid excessive branch miss-predictions by unrolling dis-
cretized parameters. These branching instructions are used whenever
the decision has to be taken to/from which stack the communication
data has to be pushed/pulled. However, this creates another kind of
challenge of executing a specific recursion method for a given set of
method parameters. In the current implementation, this was handled by
using a lookup-table for the initial basic domain triangulation offering
also lookup-indices for both child recursion methods which is necessary
to get a constant run time for the split operation.

An interactive visualization was also implemented using OpenGL
which gets relevant for sub-real-time simulation data analysis.

Further information and videos are available at http://www5.in.tum.
de/sierpi/.

Figure 4.29: Adaptive Shallow Water Simulation, Left handed image - two waves propagating
through the water, right handed image: adaptive SFC ordered mesh with sub-
partitions in red.

Collaboration within the SFB

First of all we provided algorithms to the compiler project C3 to ex-
tend and improve the invasive command space. For example a reduce
operation was included in the infect command to generally speed up
the function integration implemented in the quad tree traversal. Also
other X10 language features like polling mechanisms and message han-
dling were discussed and evaluated from an HPC perspective to support
asynchronous loading of blocks.

The matrix-matrix multiplication algorithm was chosen for a walk-
through in which the hardware interfaces should be clarified in the next
few months to setup a running FPGA system on the simulator. Also this
led to intensive collaborations with other projects:

79

http://www5.in.tum.de/sierpi/
http://www5.in.tum.de/sierpi/

D3

• B3, B5, C1, D1: We provided a simplified and abstract version of
the currently existing matrix-matrix multiplication to present an
abstract view on the algorithm for hardware developers and to
concretize the very basic requirements of the hardware as well as
software interfaces.

• B3: Contrary to invasive constraints which are mandatory side-
constraints for the creation of the claim, hints were also included
in the simplified code in collaboration with B3, which are expected
to improve the overall run time by providing more information to
the scheduler.

• B3, B5, C1, C3: Also demands on the operating system – for
instance, the asynchronous block loading – from the perspective
as an application developer were discussed with members of these
projects to settle the interactions between the chips, operating
system, NoCs, etc.

• D1, C3: In addition to the matrix-matrix multiplication selected
for the walk-through, further algorithms, such as those from
Project D1, are also involved if we see overlapping areas. Those
should be handled in advance to avoid problems due to specialized
interfaces created for matrix-matrix multiplication.

Besides the matrix-matrix multiplication, we also evaluate ways to
speed up matrix-sub-block multiplications with the help of iCore features
together with Project B1.

For linear algebra on HPC systems, we collaborate with Project A3 to
enhance the scheduling by evaluating task dependencies with the help
of directed acyclic graphs.

iMPI on Intel’s SCC

The Single-chip Cloud Computer (SCC) from Intel Labs is an exper-
imental CPU that integrates 48 cores. As its name suggests, it is a
distributed memory (DM) system on a chip. To support the invasive
programming model the MPI implementation MPICH2 was optimized
and extended [CG11]. The result is a library that provides resource
awareness through extensions to MPI, while maintaining compatibility
with a large number of standard MPI applications.

Three operations were added to the MPI layer: MPI_Comm_invade(),
MPI_Comm_infect() and MPI_Comm_retreat(). Additionally, the Inva-
sive Process Manager (IPM) was implemented and provides functionality

80

D3

for resource awareness, topology information and power management.
The infect operation is based on spawning new processes on remote
nodes.

For MPI applications that only require a short amount of compute
time, it was shown that the new process manager provided a significant
reduction in the total run time. For the infect operation, it was shown
that the initialization procedure of the MPI library takes a significant
amount of time. It was also shown that the invade and retreat operations
are considerably faster than infect.

Future work for the Invasive Library includes the addition of more
resources to be handled. Currently, the cores and the memory available
to it are invaded simultaneously; a separation can be made and the
interface should allow for their invasion separately. In addition, the
dynamic voltage and frequency scaling functionality of the SCC should
be exploited.

Peano - Task-based parallelization of patches

The Peano Framework [Wei09], developed by Tobias Weinzierl and
others, is an environment for dynamical adaptive simulations on space-
tree grids, with its main applications currently in computational fluid
dynamics[BGLM+11]. In the last year, the parallel implementation was
enhanced towards a hybrid approach that combines MPI for distributed-
memory and Intel TBB for shared-memory parallelism.

A new kind of parallelism was developed in the Peano Framework
which allows an adaptive setting of the number of threads used to
process coarse-granular patches for adaptive simulations. This creates
a new way of processing single patches in parallel. Depending on the
patch-size, more or less CPUs have to be utilized to avoid task scheduling
overheads in order to optimize the overall runtime and efficiency.

Publications

[Bad08] M. Bader. Exploiting the Locality Properties of Peano Curves for
Parallel Matrix Multiplication. Las Palmas, Aug. 2008.

[BBGH+11] M. Bader, H.-J. Bungartz, M. Gerndt, A. Hollmann, and J.
Weidendorfer. “Invasive Programming as a Concept for HPC”.
In: Proceedings of the 10h IASTED International Conference on
Parallel and Distributed Computing and Networks 2011 (PDCN).
Feb. 2011.

81

[BGLM+11] H.-J. Bungartz, B. Gatzhammer, M. Lieb, M. Mehl, and T.
Neckel. “Towards Multi-Phase Flow Simulations in the PDE
Framework Peano”. In: Computational Mechanics 48.3 (2011),
pp. 365–376. URL: http://www5.in.tum.de/pub/int/
compumech_mehletal_2011.pdf.

[CG11] I. A. Comprés Ureña and M. Gerndt. “Improved RCKMPI’s
SCCMPB Channel: Scaling and Dynamic Processes Support”.
4th MARC Symposium. Dec. 2011.

[HRST+11] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau.
“Resource-Aware Programming and Simulation of MPSoC Ar-
chitectures through Extension of X10”. In: Proceedings of the
14th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). St. Goar, Germany: ACM Press,
June 27–28, 2011, pp. 48–55. ISBN: 978-1-4503-0763-5. DOI:
10.1145/1988932.1988941.

[HG11] A. Hollmann and M. Gerndt. “iOMP Language Specification
1.0”. Internal Report. Dec. 2011.

[Wei09] T. Weinzierl. “A Framework for Parallel PDE Solvers on Mul-
tiscale Adaptive Cartesian Grids”. Dissertation. München: In-
stitut für Informatik, Technische Universität München, 2009.
URL: http://www.dr.hut-verlag.de/978-3-86853-146-
6.html.

82

http://www5.in.tum.de/pub/int/compumech_mehletal_2011.pdf
http://www5.in.tum.de/pub/int/compumech_mehletal_2011.pdf
http://dx.doi.org/10.1145/1988932.1988941
http://www.dr.hut-verlag.de/978-3-86853-146-6.html
http://www.dr.hut-verlag.de/978-3-86853-146-6.html

Z: Central Services

Jürgen Teich, Jürgen Kleinöder, Katja Lohmann

The central activities and services in InvasIC are coordinated and organ-
ised by Project Z. These activities and services are subdivided into two
parts:

The first part is administrative support, organisation of meetings
(internal project meetings, PhD student retreats) and assistance for visits
of guest researchers and for researchers traveling abroad. Technical
support and tools for communication and collaboration are provided
as well as support and organization of central publications. Last but
not least, financial administration and bookkeeping is one of the central
services.

The second part is public relations. Contacts with important research
sites were established as well as an international Industrial and Scientific
Board. Scientific ideas and results were discussed at various workshops
and conferences.

For detailed information on the general idea and organisation of
InvasIC as well as on the progress made in the different projects, the
InvasIC-website http://www.invasic.de was created.

A detailed listing of the scientific meetings and events organised and
conducted by Project Z is provided in Part III of this report.

83

http://www.invasic.de

Z2

Z2: Validation and Demonstrator

Jürgen Becker, Frank Hannig, Thomas Wild

Srinivas Boppu, Stephanie Friederich, Ralf König, David May,
Shravan Muddasani

Evaluating new architectural ideas is a very expensive task. Especially, in
the case of a complete computing architecture, as in the case of invasive
computing, where interacting software and hardware components are
developed, a suitable demonstration environment has to be developed.
The goal of Project Z2 is to build a demonstrator for validating the
fundamental aspects of invasive computing such as improved resource
utilisation and speed-up of applications on the invasive architectures.
The work involves coordination, the provision of a necessary hardware
infrastructure, integration of the different projects’ contributions, that
is, hardware and software components, and finally, to build a common
FPGA-based demonstrator.

The Synopsys CHIPit rapid prototyping system (Figure 4.30) has been
chosen as the demonstrator platform. CHIPit features a programmable
interconnect architecture for automated design implementation and

Figure 4.30: InvasIC Demonstrator : a concept validation demonstrator with 3x3 tiled array consist-
ing of LEON cores, TCPA, Memory, i-Core interconnected through NoC prototyped
on CHIPit system

84

Z2

enabling emulation-like capabilities. After evaluating different proto-
typing systems, the choice fell on CHIPit systems as they are optimised
for transaction-based verification, providing verification and validation
throughout the whole SoC and ASIC project cycle. They are based on
the latest FPGA technologies and complemented by an integrated set of
tools, including comprehensive debug capabilities. The modular CHIPit
systems are claimed to be useful in diverse verification modes, giving
designers improved productivity and flexibility to verify chip implemen-
tation and system functionality, thereby significantly reducing overall
verification time.

During the last year, we worked on getting familiarised with the
CHIPit system. We developed knowledge of the system’s hardware
capabilities, peripherals, extension boards and the associated EDA tools
for implementation, debugging and verification of design and software.
We attended training sessions from Synopsys on the usage of the CHIPit
system. In cooperation with Project B2 and Project B3, we successfully
prototyped two first designs: a LEON3 based MPSoC and TCPA (2×2
array), which were both demonstrated in the InvasIC “Summer of Code”
meeting. This meeting was initiated by Project Z2 in order to obtain
a common understanding for all projects, concerning the start-up of
an initial demonstrator architecture. There, requirements considering
hardware and software have been identified with respect to the needs
of the Dx application projects and an initial demonstrator setup, called
InvasIC Demonstrator, has been defined. As shown in Figure 4.30, it
consists of a 3×3 array of tiles, either RISC compute tiles (standard
LEON3, i-Core), TCPA compute tiles, memory tiles and one I/O tile.

The LEON3-based MPSoC prototype designs involve the integration
of SSRAM, UART and Ethernet extension boards to the CHIPit system.

Transactor

SW API

C / C++

C-testbench

Host PC/workstation ChipIt platform

Transactor

HW API

(RTL)
ChipIt

SCEMI 2.0

infrastructure

DUT

HDL

Testbench

HDL simulator

Hardware

environment

Software
environment UMRBUS

ChipIt

HDLBridge

infrastructure

Figure 4.31: CHIPit Co-Simulation/Emulation environ-
ment

Further on, we will finalise
our work to provide a mem-
ory controller to access exter-
nal DDR2 memory. We will
also provide a mechanism to
load binary executable on this
memory and control its ex-
ecution. Therefore, we are
working on an interface based
on SCE-MI, a universal inter-
face of the CHIPit system, as
shown in Figure 4.31. First
results are very promising, as

85

this interface offers a much higher bandwidth and flexibility than other
commonly used interfaces like JTAG or UART.

In order to identify possible invasive architecture implementation
alternatives on the prototyping platform, we analysed the resource
consumption of major hardware components. These results and the
description of our prototyping methodology have been published in a
paper of the ASP-DAC 2012 together with Project B5 [BFHK+12].

As a first application to be run on this platform for testing the inter-
play of the involved hardware and software compiler components, a
matrix multiplication algorithm has been chosen as its complexity is
manageable and which helps to identify and solve open questions. This
“start-up” demonstrator platform including the matrix multiplication
application is targeted for second quarter of 2012.

In order to clarify the interfaces between interacting components
of the platform already during conceptual phase the description of an
abstract “walk-through” of the matrix multiplication has been started
on a project wiki. The “walk-through” will capture the interaction
among hardware and software instances on a high level of abstraction
and thus help to come to a common view of all relevant interfaces
between components provided by the involved projects. In this way,
potential interoperability problems should be identified already in the
design phase and be avoided in the integration phase. Currently, the
“walk-through” is on the way to be finalised.

The next steps towards the realisation of the “start-up” demonstrator
will be to update and concretise the roadmap in a common meeting
with all projects. There, a schedule for all contributions will be specified.
In the sequel, Project Z2 will supervise and enforce this schedule and
co-ordinate the integration of of the provided components into the
demonstrator. Regular meetings with other projects will be held to keep
track of the defined milestones.

Publications

[BFHK+12] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D. May.
“Hardware Prototyping of Novel Invasive Multicore Architec-
tures”. In: Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC). Sydney, Australia, Jan. 30–
Feb. 2, 2012, pp. 201–206.

86

WG1

5 Working Groups

WG1: Working Group Architecture

Coordinator: Andreas Herkersdorf

The main goal of the Working Group Architecture is to promote integra-
tion and co-operation among all architecture projects (project area B)
as well as representing architectural aspects and perspectives towards
other invasive computing domains (project areas A, C and D), which
more or less all have (to a varying degree) the need to interact with B
projects. This also implies to resolve possible problems or incompati-
bilities, either among B projects or between architecture projects and
cooperating non-B projects.

The major objective in 2011 was to consolidate the definition of a
tiled invasive architecture platform which allows a flexible composition
of optimised, application-specific invasive architecture instantiations. A
common understanding between processor hardware related projects
with the run-time system and agent layer (Project C1), the simulation
infrastructure (Project C2), the compiler support (Project C3), language
definition (Project A1) and applications (Project D1, Project D3) is
necessary for a successful evaluation of the InvasIC concepts in a first
demonstrator in 2012 as well as for the planned ASIC evaluation in the
next InvasIC program phase.

Tiled Invasive Architecture

The overall tiled architecture platform is depicted in Figure 5.1. Hard-
ware resources are partitioned into tiles which are connected by an
invasive network-on-chip (iNoC). There are four types of tiles: i) in-
vasive TCPAs compute tiles perform stream-based computations on a
massively parallel array of low-complexity processing elements, ii) RISC
compute tiles perform general-purpose computation on openly available,

87

WG1

possibly invasive enhanced standard SPARC V8 cores, iii) I/O tiles serve
as interfaces towards external peripherals (e.g., video, IP networking,
serial port, debugging) and iv) memory tiles that either provide access
to external DDR memory or comprise on-chip SRAM memory.

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU iCore

iCore CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

N
A N

A Memory
N
A

N
A Memory

N
A

N
A Memory

N
A Memory

N
A

N
A

Figure 5.1: Tiled InvasIC Architecture

Memory Hierarchy

The three InvasIC levels of addressable memory are defined as follows:

• Scratchpad – each core has its private scratchpad memory which
allows for low-latency accesses managed by the application pro-
grammer. It is non-cached. Due to its small size and latency
requirements it will be implemented using the BlockRAM on the
demonstrator prototype (Project Z2). The ASIC realisation of an
invasive many-core processor will consist of SRAM-type memory.

• Tile Local Memory (TLM) – each tile contains a TLM that is shared
among all cores on that tile. Regions of the TLM may be invaded
and accesses to the TLM are generally cached (although certain
areas may be configured as being non-cacheable at run time).
Cores from remote tiles can access the TLM using Message Passing
Services through the on-chip network. However, cache coherency
will only be guaranteed for cores within one tile (or X10 place, if
the X10 place is bounded by the borders of a compute tile).

• Partitioned On-Chip and External Memory – this type of memory
can be accessed through message passing services over the iNoC
towards either the on-chip SRAM tiles or via a DDR controller

88

WG1

START END Type Remarks
SCRATCHPAD_START SCRATCHPAD_END Scratchpad Local variables, stack,

frequently used math
library

TLM_START TLM_END Tile Local Memory Local, global, shared
code/data within the
tile

OCM_START OCM_END On-chip Memory On-chip SRAM mem-
ory tiles

EXTMEM_START EXTMEM_END External Memory Global, shared, code/-
data across tiles

PERIPHERAL_START PERIPHERAL_END Peripherals UART, Timers, GPIO,
VGA

DEBUG_START DEBUG_END Debug Support Unit JTAG debugger inter-
face

Table 5.1: Sample memory map of a tiled invasive many-core

towards off-chip SDRAM modules. Note, although these forms
of memories can be accessed from all compute tiles, the address
space is partitioned among different X10 places (one or several
cores of a compute tile). However, in InvasIC phase 1, there
is no hardware mechanism provisioned to supervise the validity
(non-overlap in address space access from different places) of
partitioned memory accesses.

The only non-addressable type of memory is the:

• Core Cache – each core has an instruction- and data-cache. Again,
coherency is guaranteed among cores within one tile only. This
is realised by the write-through cache update policy and AHB
snooping. Inter-tile coherency – if required – needs to be handled
by software.

A sample memory map which corresponds to the above specification
is shown in Table 5.1. Note, B4 monitoring registers, general control
registers and network buffers as part of the network adapter will as well
be mapped in the address space but are not reflected in Table 5.1.

RISC Tile Configuration

RISC compute tiles consist of four types of resources: i) computation
cores, ii) TLM, iii) CiC, and iv) network adapter and are connected
via a 32-bit AMBA High-performance Bus (AHB). An example for the
configuration of such a compute tile is shown in Figure 5.2.

89

WG1

In general, compute tiles may contain a variable number of cores.
The current working assumption for the demonstrator is that a RISC
compute tile has 3 native LEON SPARC V8 cores, and a fourth core
which is either an i-Core or another LEON core. Cores may be furnished
with a floating-point unit (FPU) although area constraints with respect
to the demonstrator will limit the number of FPUs. The exact number
will be decided upon in cooperation with Project Z2 and the application
projects (project area D) when the first common demonstrator platform
will have reached its implementation phase. All cores comprise an
instruction cache and data cache. Their sizes will be investigated by
means of the first version of the common demonstrator setup.

I-cache D-cache

IF ID EX MEM WB

Core-
Local
Memory

I-cache D-cache

IF ID EX MEM WB

Core-
Local
Memory

AMBA AHB 32-bit

I-cache D-cache

IF ID EX MEM WB

Core-
Local
Memory

I-cache D-cache

IF ID EX MEM WB

Core-
Local
Memory

Tile Memory

CIC

Network
Adapter

to iNoC

Figure 5.2: RISC Tile with 3 LEON cores and 1 i-Core

A compute tile will include TLM that is implemented in two tech-
nologies for the first common demonstrator scenario (coordinated by
Project Z2):

• BlockRAM-based, with a size of up to several 100 KBytes, with a
low latency, and

• SRAM-based, with a size of up to several MBytes, but with a higher
latency.

This provides a high-bandwidth between the i-Core and the BlockRAM-
based TLM allowing its reconfigurable fabric to perform with high effi-
ciency without causing contention when other tiles on the core access

90

the TLM. The BlockRAM-based TLM may be accessed by any other core
on the tile as well as through an arbiter resolving simultaneous accesses
to the i-Core fabric and other cores. Both TLM blocks form a contiguous
address range, allowing software to be written independently of the un-
derlying implementation (i.e., the complete TLM could be implemented
in one technology).

In order to determine a computation resource for an i-let, the iRTSS
first selects the tile on which the i-let will run. The CiC (Project B3)
of this tile then assigns the i-let to a specific core. The CiC is also
responsible for gathering monitor data from the cores, preprocessing it,
and providing hardware support for the virtual power gating (ViPG in
Project B3). The CiC also serves as the interface between the AHB and
the Network Adapter (which connects the tile to the iNoC) of the tile.

In Summary

The intensive exchange and collaboration among project area B as
well as between the B and non-B projects settled the definition and
specification of central aspects of a tiled many-core platform which
is adequate for demonstrating the benefits of the invasive computing
paradigm. This statement does not preclude minor adjustments and
enhancements to the InvasIC hardware architecture when necessary.

Meetings and Talks

Jan. 19, 2011 Meeting WG Architectures, Karlsruhe

Jun. 22, 2011 Talk from Tim Mattson, Intel USA, in Karlsruhe on “Chart-
ing a course to our many-core future: HW, SW and the parallel
programming problem”

Aug. 1, 2011 “Summer of Code” in Karlsruhe

Oct. 19, 2011 C1-B3-B5-D3 Meeting at TU München to detail CiC-iRTSS
interaction

In general, bilateral meetings among different projects, and meetings
within one projects (but different sites) are not listed.

91

WG2

WG2: Working Group System Software

Coordinator: Wolfgang Schröder-Preikschat

Working group AKSS (abbr. ger. “Arbeitskreis Systemsoftware”) is
involved in the entirety of all programs which control function and op-
eration of the invasive computing system on behalf of invasive-parallel
application processes. It provides a forum for hardware and (applica-
tion/system) software developers to jointly discuss topics related to
these programs from the perspective of the individual research areas
A, B, C, D and Z. In addition, AKSS bundles requests and requirements
related to system software as stated by the projects, produces propos-
als for solutions of problems aroused in the outer field of hardware,
compiler and application software, and communicates achievements,
recommendations and obligations back to the projects. In the reporting
year, the following meetings took place:

14.12.2010 FAU Erlangen, host team Schröder-Preikschat1

13.05.2011 TU Munich, host team Herkersdorf

19.09.2011 FAU Erlangen, host team Schröder-Preikschat

Key aspects of activity of the working group so far was in the definition of
common terms, consideration of the application programming interface
(API), specification of the memory hierarchy including their program-
ming implications, creation of a plot plan of the (partitioned) global
address space and its meaning, and discussion of the so far identified
constraints of invasion. Materials in preparation for the working group
meetings as well as for the documentation of their results are maintained
at https://invasic.informatik.uni-erlangen.de/intern/wiki/ak_
systemsoftware. Some of the results generated by the working group
that have a particularly broad relevance for the overall project are briefly
summarised in the following paragraphs.

1As the annual report of 2011 is the first one released, the (kick-off) meeting of the work-
ing group held in the preceding year is mentioned here for the sake of completeness.

92

https://invasic.informatik.uni-erlangen.de/intern/wiki/ak_systemsoftware
https://invasic.informatik.uni-erlangen.de/intern/wiki/ak_systemsoftware

WG2

Common Terms A piece of program subjected to parallel processing
according to the paradigm of invasive computing is referred to as an
“invasive-let”: in short i-let.2 Depending on the level of abstraction
considered, different i-let entities and associated properties are distin-
guished:

candidate (a) prospect out of a family of algorithms for the same prob-
lem to be solved, (b) potential cause of a specific operating mode
of the (parallel) processor as to be enforced by iRTSS and (c)
possibly represented and maintained as a separate source module.

instance (a) medium of activity of an invasive-parallel program, (b)
specification of a virtual processor for it and (c) possibly repre-
sented and maintained as a separate object module.

incarnation (a) characteristic of the mode of operation to be realised
by iRTSS, (b) ground anchor for the resources virtually needed
for making progress in parallel processing and (c) possibly repre-
sented and maintained as a separate load module.

execution (a) actual disposition of a portion of an invasive-parallel pro-
gram running on a real processor, (b) effective unit of processing
implemented in soft-, firm-, or hardware (c) associated with a
dedicated memory image.

Given these notions of i-let and taking an operating system’s point of
view, candidates and instances are user-level entities while incarnations
and executions are system-level entities. At system level, two more
terms have been established which manifest in corresponding iRTSS
abstractions:

claim designates a particular set of hardware resources made available
to an invading process on demand and according to selected
constraints.

team designates a particular set of i-let entities (i.e., incarnations) asso-
ciated with a specific claim.

These two abstractions aid application-level processes in the description
of (static/dynamic) resource demands, the indication of the operating
mode of the computing machine and the modelling of a certain run-time
behaviour of the constituting i-lets.

2This conception goes back to the notion of a “servlet”, which is a (Java) application
program snippet target for execution within a web server.

93

WG2

Application Programming Interface Two sorts of APIs will be supported
by iRTSS: an X10-oriented on the one hand and a design for C/C++ on
the other hand. The latter appears to be the default API as iRTSS will be
predominantly implemented in C/C++. The former version is due to
the case that constraints for invasion are described (only) by means of a
class hierarchy expressed in X10, which necessitates run-time conversion
into the C/C++ language domain. As these constraints control the
process of resource allocation provided by the agent system of iRTSS,
their anyway needed interpretation and filtration will be carried out by
a system-level component implemented in X10. This component takes
care for turning functional as well as non-functional requirements as
expressed by the constraints into directives to the operating units of
iRTSS and, thereby, also bridges the language barrier.

Memory Hierarchy A multi-level memory system is assumed as indi-
cated in Figure 5.3. Overall, it provides for a (physically) partially
distributed organisation in terms of the core- and tile-local units. Except
for core-local memory (log in logical terms of iRTSS abstractions and
scratchpad in physical terms of the hardware), all other memory build-
ing blocks are globally addressable within a common partitioned global
address space (see also Figure 5.4). Upon read or write access, data
originating from the lower three levels of the memory hierarchy will be
cached close to the core having issued that very access.3 In particular
this also holds for data from remote tile-local memory of the same
hierarchy level. Writing policy of cached data will be write-through.

log

store

tilestore

mainstore

tile−global

external

tile−local

globally addressable, partial cache coherence

off−chip

on−chip

core−local

Figure 5.3: Memory organisation. Capacity and latency increases from top to bottom. The
top-most level (log) is private to a core, whereas all other levels are public to any
core. In addition, the upper two levels constitute decentralised and the lower two
ones centralised memory. The levels below log-level are subject to caching. Cache
coherence is provided only for cores of the same coherence domain (i.e., cores of the
same tile).

At hardware level, the system assumes partial cache coherence. On
the one hand, core-local memory will generally be excluded from the

3Data originating from core-local memory will not be cached, as, from the hardware’s
point of view, the core-local memory roughly compares to addressable cache memory.

94

WG2

sphere of the cache coherence protocols carried out in hardware. On
the other hand, hardware-maintained cache coherence will be effective
only for those cores which reside within the very same tile and, thus,
belong to the same coherence domain. This defines a limiting factor
when process migration comes into play, be it for load balancing or
fault tolerance: Pulling a single process out of its tile-local team of
processes and relocating it to a different scope also implies the change
of a coherence domain. In such a case, the complete process team will
have to be migrated in order to maintain the coherence domain for all
related processes. If needed, more comprehensive memory semantics
will have to be provided by dedicated software means of iRTSS, the X10
run-time system, or even the actual application program.

Global Address Space The different memory areas constituting the
memory hierarchy are combined in a single partitioned global address
space, as shown in Figure 5.4. In this concept there are two noticeable
aspects:

1. Every single tile-local store is assigned to a unique (physical)
address range within the global address space. This makes tile-
local store globally addressable from any core.

2. Additionally, a tile-local store is also assigned to a (logical) address
range within the global address space. This address range is the
same for each of the tile-local stores. Motivation behind this
second way is support for process migration.

core−local

log

tilestore

(on−chip)

mainstore
(off−chip)

tile−local

store

tile−local

store 2

tile−local

store 1

0x00000000 0x00100000 0x00200000 0x10000000 0xE01000000xE0000000 0xE0F00000

tile−local

store 16

Figure 5.4: Partitioned global address space. The (physical) start addresses assigned to each
of the partitions are exemplary and given for a better ease of understanding, only.
Highlighted is the double mapping of the address range of tile-local store 2. All cores
of this tile have their tile-local memory starting at logical address 0x00000000 and
physical address 0xE0100000. By means of their physical address ranges are all
tile-local memory partitions accessible by all cores in the system.

Double mapping of the address range of a tile-local store can be done
either hard-wired or by means of a programmable memory management
unit (MMU). In the latter case, iRTSS will have to take care of the
mapping from the logical address range of a tile-local store to its physical

95

complement upon process creation, on the one hand, and shifting of
these mappings upon process switches, on the other hand. How this
double mapping shall be put into practise is still for further study. In any
case, hardware support (namely either hard-wiring or MMU) is required
to support this approach.

Constraints of Invasion The paradigm of invasive computing relies on
resource-aware programming of the underlying computing machinery.
Thereto, an application process requests from iRTSS the (physical or
virtual) resources needed for making progress according to a specific
algorithm or solution procedure. This request is enriched by means
of constraints to indicate the functional and non-functional properties
that should be fulfilled by the system for a certain phase of parallel
processing. The outcome of such a request will be a claim of resources
that iRTSS can offer at a given point in time. The properties of the claim
set out by iRTSS for the respective application process may differ in
functional as well as non-functional terms compared to the properties
specified in the request. In this context, resource awareness means that,
by reflecting the claim properties, the application process adapts itself
to the actual resource allocation decision made by iRTSS. This may add
up to select a different i-let candidate or put together the appropriate
i-let instance in order to match the capabilities and potentials of the
claim provided.

At the time being, the constraints are described (1) in X10 and (2) by
means of a class hierarchy, whereby the latter then will be “interpreted”
by the iRTSS agent system. A constraint may be of a scalar or composite
data type, it may also be a performance curve, for example, indicating a
whole range of hints to the operating units of iRTSS (i.e., the agents)
responsible for resource allocation. The discussion on these constraints
started. Open issues relate to a classification scheme, the mapping of
constraints onto operating modes of iRTSS and the hardware, and the
form of description given to a C/C++ API.

96

WG3

WG3: Working Group Language
and Applications

Coordinator: Gregor Snelting

Goals of the Working Group

Resource-aware and invasive programming is not possible without lan-
guage support. The language must support fundamental invasive oper-
ations (invade infect, retreat). It must provide interfaces for dynamic
resource parameters and system state. It must also exploit existing
technology for parallel programming. In particular, the language must
support distributed, heterogeneous memory architectures. The lan-
guage must be exercised and validated on real algorithms and problems.
Expressiveness and usability must be evaluated for different types of
potential target architectures, ranging from MPSoC architectures to HPC
machines.

The working group “Language” coordinates all research activities
with respect to language development, compilation, application, and
validation. It starts out from a fundamental design decision: In 2010 it
was decided to base the invasive computing language on X10. X10 is the
only available language and compiler, which supports heterogeneous,
distributed address spaces. It was further decided to implement invasive
constructs and commands not as additional syntax (as described in the
original proposal), but in form of a framework and library classes.

Details of the language design, as well as examples and rationale,
are described in the report of Project A1. The design and status of the
InvasIC Compiler is described in the report of Project C3.

Related Projects

The core projects contributing to the working group are A1 and C3.
Project A1 defines and validates the language and the framework, re-
spectively. This includes reference examples and case studies for inva-
sive programming. Project C3 develops the compiler; it generates code

97

WG3

for SPARC processors and will use specific optimisations for invasive
constructs, based on the libFirm code optimisation framework.

There are important interfaces to the simulator (Project C2) and to
the operating system (Project C1). The simulator allows to execute
invasive programs on traditional hardware for purposes of study and
evaluation. In fact the simulator can execute programs written in the
invade X10 framework. The interface to the iRTSS includes support for
resource-aware programming (in particular functions for monitoring
the hardware state, including core temperature and availability), as
well as support for fundamental invasive constructs such as invade,
infect, and retreat. Applications in Project D1 and Project D3 are
expected to use the invasive X10 framework, thus they are integrated
into the language design and validation process. Even the architectural
projects in area B need coordination with the working group, because
fundamental questions concerning, for instance, the memory model or
invasion-specific instructions affect the design of language, compiler,
and run-time system; but cannot be solved by Project A1, Project C3
and Project C1 alone.

The working group is developing reference examples for invasive
programming (see below). Eventually, these examples must run on the
demonstrator platform (Project Z2).

Developing the invasive X10 framework

In autumn 2010, the working group was confronted with the task to
“market” the language concept in the whole project, and to coordinate all
language implementation and validation efforts. It was decided to use a
bottom-up approach with iterated and refined feedback loops, which
enabled all projects to participate in the design and validation of the
language and the framework, respectively. In fact, only the participation
of all projects in language design and programming examples will
generate a common understanding of invasive programming; which in
turn is indispensable for the success of the whole research centre.

Thus a call for pseudo-codes was published, where all projects where
encouraged to submit invasive algorithms or programs; these programs
or pseudocodes were to represent the project’s understanding of invasive
programming. In addition, an X10 Tutorial took place in Erlangen,
12.11.2010. This successful tutorial was delivered by Prof. von Praun, a
former co-developer of X10. It attracted 38 attendees from all projects.

All projects submitted invasive pseudocodes, which were discussed
in a Language Workshop at KIT, 10.12.2010. Open questions included:
invade vs. X10 "at"; memory model; "reinfect" vs. "reinvade"; "assort";

98

use of load curves for resource-aware programming; invasion of memo-
ry/communication resources; and others. The discussion results where
incorporated into the first version of the framework in X10, which
includes the invasive command space. The framework, including a
description and design rationale, was released in spring 2011.

In the next iteration, all projects were asked to submit their former
pseudocode as X10 code using the new invasive framework. Indeed,
Projects A1, B1, B3, B5, C2, C3, D1, D3 submitted X10 programs. The
A1, C2, D1, D3 programs were able to be run within the simulator
(Project C2). All X10 programs were discussed at a workshop at KIT,
4.7.2011. This discussion further refined the definition of framework
and invasive command space. An interface to iRTTS is currently being
defined for resource-aware programming. Concerning the memory
model and memory consistency, it was decided that on the language
level, there will only be distributed memory, while on the hardware
level, global memory is a possible option. It will be the compilers job to
exploit this option if possible.

Reference examples

At the above-mentioned workshop, it was decided to investigate three
reference examples in more detail. These examples – matrix multipli-
cation, a streaming application, and a disparity map – are to be imple-
mented manually through all levels of the invasive soft- and hardware
chains, in order to validate the overall invasive design and integration.
We consider the reference examples to be indispensable not only for
validation of the language and framework, but also for a successful
integration of the whole research centre; as well as essential for the
evaluation by the DFG in early 2014. Thus eventually, the reference
examples will have to run on the demonstrator platform (Project Z2).

Outlook

There are not enough resources to tackle all three reference examples
at the same time. Thus, the plan for 2012 is to first concentrate on the
matrix multiplication example, and use the experiences for the other
reference examples. Project Z2 will coordinate the matrix example;
the Working Group Languages will coordinate the others. A workshop
in spring 2012 will collect the experiences and prepare the complete
implementation of other reference examples (not necessarily the ones
mentioned above). These must not only exploit the framework and hard-
ware results, but must also demonstrate resource-aware programming,
dynamic load balancing, fault tolerance, and other invasive features.

99

val constraints = new AND();
constraints.add(new TypeConstraint(PEType.RISC));
constraints.add(new PEQuantity(MAX_CORES));
val claim = Claim.invade(constraints);

// initialize workload
val globalWorkload = globalInit(); // generate random noise
val localWorkloadMap = X10ArrayWrapper.distributeArray

(globalWorkload.region, claim);

// initialize result data structures
val globalResult = new Array[int](MAX_VALUES);
val localResultMap = X10ArrayWrapper.duplicateArray

(globalResult.region, claim);

// i-let definition
val code = (id:IncarnationID) => {

val localWorkload = localWorkloadMap(id.ordinal)()()
as Array[int](2){rect==true};

val localResult = localResultMap(id.ordinal)()()
as Array[int](1){rect==true};

// histogram calculation
for([i,j] in localWorkload)

localResult(localWorkload(i,j))++;
};

claim.infect(code);

// collect the results
for(key in localResultMap.keySet()) {

val localResult = localResultMap(key)()()
as Array[int](1){rect==true};

for([i] in globalResult)
globalResult(i) += localResult(i);

}

claim.retreat();

Figure 5.5: An invasive X10 program to calculate a histogram, exploiting the invasive framework
developed by Project A1.

100

Events and Activities

III

Summary

The central activities and services in InvasIC are coordinated and con-
ducted by Project Z.

In the following sections we summarise the major events and activities
between July 2010 and December 2011. These events include Internal
Meetings (Section 6), the DRR 2011 (Section 7) and Trainings and Tuto-
rials (Section 8). Last but not least, we present the current constitution
of the Industrial and Scientific Board in Section 9 and conclude with
further scientific activities in Section 10.

Figure 5.6: At the annual meeting in Lauterbad 2011

102

6 Internal Meetings

Collaboration between the researchers of the three sites Karlsruhe,
München and Erlangen is essential for the success of the TCRC 89 -
InvasIC. Within the 18 months of the existence of InvasIC, researchers
met at the following opportunities:

Event Date

InvasIC
Kickoff Meeting

June 28. 2010,
Erlangen

Elections of the board of the TCRC

Annual Meeting
2010

Sep. 15/16. 2010,
Karlsruhe

The first annual meeting after the start of
the project was used for an initial synchro-
nization of all projects, a report of the work
done so far and discussions about further
direction.

Workshop
Language Group

Dec. 10. 2010,
Karlsruhe

In the language group workshop at Karl-
sruhe the invasive language constructs were
discussed.

Workshop
Systemsoftware
Group

Dec. 14. 2010,
Erlangen

Open questions from the language group
workshop were discussed, application- and
hardware developers addressed their needs
to an invasive system software.

Workshop
Architecture Group

Jan. 19. 2011,
Karlsruhe

At the meeting of all architecture projects
topics concerning the hardware architecture
were discussed.

Semi-annual
meeting 2011

Feb. 13-15. 2011,
Munich

The semi-annual meeting was used for a
brief review of scientific research from all
projects within the past half year.

Workshop
Systemsoftware
Group

May 13. 2011,
Munich

In the systemsoftware working group work-
shop in Munich researchers from different
projects discussed the InvasIC memory
hierarchy.

Workshop
Language Group

July 4. 2011,
Karlsruhe

With more than 30 participants, the first
invasive language extension of X10 v0.1
was introduced by the Snelting group

InvasIC “Summer of
Code”

Aug. 1/2. 2011,
Karlsruhe

At the first InvasIC Summer of Code work-
shop, 27 researchers from all project areas
came together and discussed common sce-
narios for the validation and demonstration
of Invasive Computing

Workshop
Systemsoftware
Group

Sep. 19. 2011,
Erlangen

The focus of the discussion at the system-
software working group workshop was on
memory hierarchy and claim constraints.

103

Annual Meeting
2011

Oct. 3/4. 2011,
Lauterbad

51 InvasIC scientists met in Lauterbad
(Black Forest)
to review and discuss the progress made in
the last year

Doctoral Researcher
Retreat

Oct. 5-7. 2011,
Lauterbad

The first Doctoral Researchers’ Retreat
(DRR) was held as a continuation of the
annual meeting.

Figure 6.1: Discussions at the Summer of Code 2011 in Karlsruhe

Figure 6.2: Semi-annual meeting 2011 in Munich

104

7 DRR 2011 in Lauterbad

To support PhD students with their work, a yearly PhD student retreat
is organized.

The first SFB/TR 89 “Invasive Computing" Doctoral Researchers’ Re-
treat (DRR) was held as a continuation of the annual meeting from Oct.
5–7, 2011. The event was organized by five Nachwuchswissenschaftler
Daniel Lohmann, Frank Hannig, Josef Weidendorfer, Lars Bauer, Michael
Hübner, who participated together with 35 doctoral researchers.

All participants considered the retreat as very productive and helpful
for their daily work in the SFB/TR. As a consequence, the participants
suggested to implement a semi-annual schedule for the DRR; two doc-
toral researchers from each location volunteered to organize the next
retreat.

Goals

Figure 7.1 lists the primary goals of the first DRR, which can be sum-
marized as community building: These goals were motivated by our
observation that the doctoral researchers do not yet know and trust
each other well enough to animate Invasive Computing by low-barrier,
direct, every-day interaction with their colleagues from different projects
and locations.

In this realm the motto of the first DRR was “Get Together and Get to
Know". It deliberately embeds a social and a factual facet of interaction;
both of which were to be improved during the DRR in order to foster
cross-project collaboration.

Concept

The resulting concept accounted for these goals by integrating elements
of experience education and social-skills training with factual techni-
cal/scientific work. The basic idea was to use factual work not only as a
first-class goal in its own realm, but also as a “vehicle" to foster social
interaction and development of trust by letting the participants work
and interact with each other in a field they feel secure about.

The major instrument was group work assignments to be carried out
in small (and frequently changing) groups of 2–5 participants. The
groups were selected by random to overcome the human preference
for interaction with people one already knows. However, for all group
work selections there was an exception rule: If a group of doctoral

105

Goals of the DRR

• Advance understanding

• Foster collaboration

• Discuss concrete stuff

• Get to know

• Have fun!

DRR

Figure 7.1: Goals of the 2011 DRR

researchers from at least three different projects organized themselves
to “get something done", these participants were exempted from the
random selection process.

Program

Figure 7.2 shows the resulting program for the 2011 DRR. The major
elements were:

Warming-Up. A short “breaking the ice" session to open the participants
for interaction with their colleagues and to get to know each other
by six rounds of “speed dating". The process was as follows:

1. Wander through the room, look for the guy you know least.

2. Get to know within five minutes.

3. When the bell rings, proceed with Step 1.

Follow-Up of the Annual Meeting. A discussion round to clarify and dis-
cuss open questions from the annual meeting. Participants were
randomly distributed into groups of five and given 10 minutes
to write down questions. These questions were then collected,
grouped and discussed with the audience. The Nachwuchswis-
senschaftler moderated the process, but avoided to answer the
questions in favor of letting the group itself figure them out.
Thereby, several doctoral researchers could establish themselves as
experts for their respective field and project.

106

Slide 2

Agenda: Wednesday, October 5

 8:00 Breakfast

 9:00 Welcome and Introduction (Daniel Lohmann)

 9:30 Warming-Up (Daniel Lohmann)

10:30 Coffee Break

11:00 Discussion: “Follow-Up of the Annual Meeting” (Lars Bauer)

13:00 Lunch Break

14:00 Hand-On Session I: “Pair Programming” (Frank Hannig)

15:45 Coffee Break

16:00 Hand-On Session II: “Pair Programming” (Frank Hannig)

17:45 Wrap-Up: “Pair Programming” (Frank Hannig)

18:15

Evening

Dinner

“How to get your PhD”: Informal Tips from the “Experts” (All)

Slide 3

Agenda: Thursday, October 6

 8:00 Breakfast

 9:00 Interfacing: Soft Skills for Young Scientists (Oliver Fink et. al.)

10:50 Coffee Break

11:10 Interfacing: Soft Skills for Young Scientists (cont’d)

13:00 Lunch Break

13:45 Joint Papers and Projects: “Concrete & Wild-and-Crazy Ideas”,
(Josef Weidendorfer)

15:30 “Vent your Brain” (Hiking Tour)

18:30 Dinner

19:15 - 21:00 Joint Papers and Projects: “Concrete & Wild-and-Crazy Ideas”
(cont’d)

Slide 4

Agenda: Friday, October 7

 8:00 Breakfast

 9:00 Discussion: „Project Relation Graph & Interfaces“
(Michael Hübner)

10:30 Coffee Break

10:50 Discussion: „Project Relation Graph & Interfaces“ (cont’d)

12:40 Lunch Break

13:15 Discussion: “Wrap-Up, Feedback, & Next Steps”
(Daniel Lohmann)

14:30 Return Journey

Figure 7.2: Agenda of the 2011 DRR

107

Pair Programming. An engineering-oriented group-work session. Ran-
domly selected pairs of doctoral researchers worked together ac-
cording to the rules of Pair Programming on their project-related
topics: One participant as the “driver" and one as the “observer";
after two hours the roles were switched. Thereby, the participants
got a deeper insight and understanding in how and what their
colleagues from (possibly very distant) projects are actually doing
and could provide each other with a “fresh view" on the topic and
its challenges.

Soft-Skill Training. An experience-education seminar about the essential
elements of team work and team building, held by professional
trainers.

Joint Papers and Projects: Concrete & Wild-and-Crazy Ideas. A research-
oriented group-work session. Participants were randomly selected
into teams of three and asked to come up with a “concrete" or
“wild and crazy" idea for a joint paper. In every group there were
two participants who discussed a potential idea and poured this
into a paper abstract, whereas the third had to play the role of the
advocatus diaboli to challenge the concept.

Project Relation Graph. A whole-group discussion round to consolidate
the findings about the relations and interfaces between the projects
examined during the DRR. Results were written down as a project
relation graph.

Wrap-Up, Feedback & Next Steps. A short “touchdown" session to wrap
up and gather feedback: Participants were randomly distributed
into groups of five and given 15 minutes and three sheets of paper
to discuss and write down what (1) they liked, (2) they disliked,
and (3) they missed on the DRR. These points were then collected
and discussed with the audience to generate structured input for
the organizers of the next DRR. Additional critique and ideas were
collected in a following open feedback round.

Results

For all sessions a short description of the factual results can be found in
the SFB/TR-internal wiki1.

1https://invasic.informatik.uni-erlangen.de/intern/wiki/
mitgliederversammlungen/drr2011/

108

https://invasic.informatik.uni-erlangen.de/intern/wiki/mitgliederversammlungen/drr2011/
https://invasic.informatik.uni-erlangen.de/intern/wiki/mitgliederversammlungen/drr2011/

Overall, the first Invasive Computing DRR was a clear success. The
doctoral researchers experienced it as very productive for their work
within the SFB/TR and especially pointed out that it helps to discuss
their topics “on equal terms", that is, with other doctoral researchers.
They suggested to have a DRR not only once, but twice a year with the
next DRR as addendum to the semi-annual meeting in February 2012.

Next Steps

The next DRR will be organized by the doctoral researchers themselves:
Two volunteers from each location are currently organizing the DRR
in Febuary 2012 in Obertrubach. The volunteers to organize the event
were quickly found (names are listed in the wiki). Hence, the Nach-
wuchswissenschaftler will step back, however will still be available as
mentors.

Figure 7.3: Soft Skills for Young Scientists

109

Figure 7.4: X10 Tutorial given by Prof. Christoph von Praun

Figure 7.5: Participants of the Gender-Training during role-playing

Figure 7.6: Dagstuhl Seminar co-organized bei Prof. Becker and Prof. Teich

110

8 Trainings and Tutorials

Workshops and trainings were organized under the coordination of
Project Z, to give InvasIC-members the opportunity to to strengthen
their soft-skills, train their key qualifications and improve their knowl-
edge on InvasIC-specific topics. In workshops co-organized with the
local graduate schools, especially the PhD students trained their skills in
presenting their scientific work in english talks and publications. In spe-
cial Gender-Trainings all InvasIC-members were sensitised to applicate
gender mainstreaming principles in daily work.

Event Date

Dagstuhl seminar
No. 10281

July 11-16, 2010 Dagstuhl seminar on "Dynamically Reconfig-
urable Architectures" was co- organized by
Prof. Jürgen Becker and Prof. Jürgen Teich

Seminar
Variability-induced
challenges beyond
22nm

July 26-27, 2010
Munich

Speaker: Dr. Sani Nassif (IBM)

X10 Tutorial Nov. 12, 2010
Erlangen

Speaker: Prof. Christoph von Praun (Georg-
Simon-Ohm-Hochschule, Nuremberg)

Gender Training I Dec. 15, 2010
Munich

The trainers Marion Bredebusch and Martin
Conrath sensitised the participants of the
seminar on pitfalls in the communication
between man and woman

Wittenberg
Colloquium

May 22-24, 2011 Prof. Teich co-organises an extraordinary
interdisciplinary doctoral researcher collo-
quium on trends in multi-core architecture
research

Seminar
Academic Writing

July 21/22
Erlangen

The seminar of Prof. Erika von Rautenfeld
was was adressed especially to the junior
scientists of InvasIC

Seminar
Academic Talks

Aug. 15/16 2011
Erlangen

The seminar of Joseph Ganahl was was
adressed especially to the junior scientists
of InvasIC

Gender-Training I Dec. 12, 2011
Erlangen

Repetition of the training from Dec. 2010 for
the remaining InvasIC members

111

9 Industrial and Scientific Board

For the promotion of our ideas to the industrial community and for the
discussion with peer colleagues world-wide, we decided to establish
the InvasIC Industrial and Scientific Board. Suitable researchers and
industrial experts are currently selected and invited to form the board.
Until now, 6 experts from four institutions have become members of the
board:

IBM

Dr. Peter Roth (IBM Böblingen)

Dr. Patricia Sagmeister (IBM Rüschlikon)

Intel

Hans-Christian Hoppe (Intel Director of ExaCluster Lab Jülich,
Intel Director of Visual Computing Institute Saarbrücken)

Elmar Maas (Intel Braunschweig)

University of Edinburgh

Prof. Dr. Michael O’Boyle
(Director Institute for Computing Systems Architecture)

Georg-Simon-Ohm Hochschule Nürnberg

Prof. Dr. Christoph von Praun
(Faculty Member and Associate Department Chair)

112

10 InvasIC Activities

To promote the ideas and results of InvasIC and discuss them with
leading experts from industry and academia, InvasIC-members invited
guest speakers to the "InvasIC Seminar", gave talks at important research
sites ("Invited Talks") and gave or organised workshops ("Workshops
and Conferences) on the topics of invasive computing. The "InvasIC
Seminar" is a series of talks given alternately at one of the three sites.
A live-stream of the respective talk is transmitted via AdobeConnect
to the other sites. For further information we refer to our website
http://www.invasic.de.

Figure 10.1: Prof. Neil Bergmann giving a talk at the InvasIC Seminar

Figure 10.2: Prof. Sybille Hellebrand together with Prof. Jürgen Teich

113

http://www.invasic.de

InvasIC Seminar

Time and Place Title Speaker

Erlangen, July 15.
2010

DSystemJ — A GALS Language for Dy-
namic Distributed Systems

Dr. Avinash Malik
(INRIA, Grenoble)

Erlangen, Nov. 3.
2010

Designs and design methods for embed-
ded security.

Prof. Ingrid Verbawhede
(K.U. Leuven)

Munich, Nov. 23.
2010

Optimising for a multi-core when you have
to share.

Prof. Michael O’Boyle
(University of Edinburgh)

Erlangen, Nov. 26.
2010

System-level MPSoC Design with
Daedalus.

Hristo Nikolov, Ph.D.
(Leiden Institute of Ad-
vanced Computer Sci-
ence)

Erlangen, Jan. 31.
2011

Wie zuverlässig sind robuste Systeme
wirklich?

Prof. Sybille Hellebrand
(Universität Paderborn)

Erlangen, Feb. 18.
2011

Adaptive Verbindungsnetzwerke für Par-
allelrechner: Vom SAN (System Area
Network) zum NoC (Network on Chip).

Prof. Erik Maehle
(Universität zu Lübeck)

Erlangen, Mar. 3.
2011

Das Polyedermodell zur automatischen
Schleifenparallelisierung

Prof. Christian Lengauer
(Universität Passau)

München, Mar. 30.
2011

Insieme - an optimization system for
OpenMP, MPI and OpenCL programs.

Dr. Hans Moritsch
(Universität Innsbruck)

Erlangen, Mar. 30.
2011

Das Polyedermodell vor dem Durchbruch? Dr. Armin Größlinger
(Universität Passau)

Erlangen, July 6.
2011

Reconfigurable Computing Research at
University of Queensland.

Prof. Neil Bergmann
(University of Queensland)

Erlangen, July 11.
2011

Profile-Directed Semi-Automatic Paralleli-
sation.

Prof. Bjoern Franke
(University of Edinburgh)

Karlsruhe, July 19.
2011

What does it take to write efficient proxim-
ity algorithms (for robotics, graphics and
CAD)

Prof. Kim Young
(Ewha Womans Univer-
sity)

Erlangen, Aug. 26.
2011

Physics-inspired Management of Complex
Adaptive Network Structures.

Dr. Ingo Scholtes
(Universität Trier)

Erlangen, Sep. 14.
2011

Learning to see and understand. PD Dr. Rolf Würtz
(Ruhr-Universität Bochum)

Munich, Nov. 18.
2011

Parallelization of the Computation of a
SPAI Preconditioner.

Dr. Gilles Fourestey
(Swiss National Su-
percomputing Centre,
Lugano)

114

Invited Talks

Date and Place Title Speaker

Aug. 6. 2010, National University
of Singapore (NUS)

Invasive Computing - A Novel
Paradigm for Parallel Computing

Prof. Jürgen Teich
(FAU)

Aug. 8. 2010, The University of
Sydney, Australia

Invasive Computing -
An Overview

Prof. Jürgen Teich
(FAU)

Oct. 15. 2010, IBM Böblingen,
GI-Fachgruppe Betriebssysteme

Systemsoftware im Zeitalter
mehrkerniger Prozessoren

Prof. Wolfgang
Schröder-
Preikschat

June 16. 2011, Hasso-Plattner-
Institut, Potsdam, Future Trends
in SOC 2011

System Software in the
Many-Core Era

Prof. Wolfgang
Schröder-
Preikschat

July 22. 2011, Par Lab, UC
Berkeley, California, USA

Invasive Parallel Computing -
An Introduction

Prof. Jürgen Teich
(FAU)

July 25. 2011, Stanford University
(USA), Department of Electrical
Engineering and Department of
Computer Science

Invasive Parallel Computing -
An Introduction

Prof. Jürgen Teich
(FAU) invited by
Prof. Subhasish
Mitra

Sep. 9. 2011, Universität zu
Lübeck, Colloquium Computer
Science

Invasive Parallel Computing -
An Introduction

Prof. Jürgen Teich
(FAU) invited by
Professor Erik
Maehle

Sep. 15. 2011, University of
Erlangen-Nuremberg, 12th Col-
loquium of the DFG Priority
Programme 1183 "Organic Com-
puting"

Invasive Parallel Computing -
An Introduction

Prof. Jürgen Teich
(FAU), Keynote

115

Figure 10.3: Prof. Teich at Par Lab, UC Berkeley

Workshops and Conferences

Date and Place Title Speaker

Sep. 9. 2010, Autrans, France
(Artist Network of Excellence
on Embedded System Design
Summer School Europe 2010)

Tutorial Invasive Computing - Basic
Concepts and Foreseen Benefits

Prof. Jürgen Teich
(FAU)

Oct. 26. 2010, Scottsdale, AZ,
USA (International Conference
on Hardware-Software Code-
sign and System Synthesis
(CODES+ISSS))

Retargetable Mapping of Loop
Programs on Coarse-grained
Reconfigurable Arrays

Dr. Frank Hannig
(FAU)

Oct. 28. 2010, Scottsdale, AZ,
USA (Workshop on Compiler-
Assisted System-On-Chip Assem-
bly (CASA))

Invasive Computing Prof. Jürgen Teich
(FAU)

Oct. 28. 2010, Scottsdale, AZ,
USA (Workshop on Compiler-
Assisted System-On-Chip Assem-
bly (CASA))

Communication Synthesis of Loop
Accelerator Pipelines

Dr. Frank Hannig
(FAU)

Nov. 15. 2011, Erlangen,
Germany (Tutorial at Multi-
core@Siemens 2011)

Frameworks for Multi-core Archi-
tectures and GPU Accelerators: A
Comprehensive Evaluation using
2D/3D Image Registration

Richard Mem-
barth (FAU) and
Dr. Wieland Eckert
(Siemens)

116

11 Publications

[AGSLW11] N. P. Aryan, G. Georgakos, D. Schmitt-Landsiedel, and
M. Wirnshofer. “Comparison of In-situ Delay Monitors
for Use in Adaptive Voltage Scaling”. In: Kleinheubacher
Tagung 2011. to appear in Volume 10 (2012) in Ad-
vances in Radio Science (ARS) Journal. 2011.

[Bad08] M. Bader. Exploiting the Locality Properties of Peano
Curves for Parallel Matrix Multiplication. Las Palmas,
Aug. 2008.

[BBGH+11] M. Bader, H.-J. Bungartz, M. Gerndt, A. Hollmann, and
J. Weidendorfer. “Invasive Programming as a Concept
for HPC”. In: Proceedings of the 10h IASTED Interna-
tional Conference on Parallel and Distributed Computing
and Networks 2011 (PDCN). Feb. 2011.

[BFHK+12] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and
D. May. “Hardware Prototyping of Novel Invasive Multi-
core Architectures”. In: Proceedings of the 17th Asia and
South Pacific Design Automation Conference (ASP-DAC).
Sydney, Australia, Jan. 30–Feb. 2, 2012, pp. 201–206.

[BHTP11] S. Boppu, F. Hannig, J. Teich, and R. Perez-Andrade.
“Towards Symbolic Run-Time Reconfiguration in Tightly-
Coupled Processor Arrays”. In: Proceedings of the Inter-
national Conference on Reconfigurable Computing and
FPGAs (ReConFig). Cancun, Mexico: IEEE Computer So-
ciety, Nov. 30–Dec. 2, 2011, pp. 392–397. ISBN: 978-1-
4577-1734-5. DOI: 10.1109/ReConFig.2011.91.

[BH09] M. Braun and S. Hack. “Register Spilling and Live-Range
Splitting for SSA-Form Programs”. In: Proceedings of the
International Conference on Compiler Construction (CC).
Springer, Mar. 2009, pp. 174–189. DOI: 10.1007/978-
3-642-00722-4_13.

[BZB11] S. Buchwald, A. Zwinkau, and T. Bersch. “SSA-Based
Register Allocation with PBQP”. In: Proceedings of the
International Conference on Compiler Construction (CC).
Ed. by J. Knoop. Vol. 6601. Lecture Notes In Computer
Science (LNCS). Springer, 2011, pp. 42–61. DOI: 10.
1007/978-3-642-19861-8_4.

117

http://dx.doi.org/10.1109/ReConFig.2011.91
http://dx.doi.org/10.1007/978-3-642-00722-4_13
http://dx.doi.org/10.1007/978-3-642-00722-4_13
http://dx.doi.org/10.1007/978-3-642-19861-8_4
http://dx.doi.org/10.1007/978-3-642-19861-8_4

[BGLM+11] H.-J. Bungartz, B. Gatzhammer, M. Lieb, M. Mehl, and T.
Neckel. “Towards Multi-Phase Flow Simulations in the
PDE Framework Peano”. In: Computational Mechanics
48.3 (2011), pp. 365–376. URL: http://www5.in.tum.
de/pub/int/compumech_mehletal_2011.pdf.

[CLS11] N. Chen, B. Li, and U. Schlichtmann. “Timing Modeling
of Flipflops Considering Aging Effects”. In: International
Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS). Vol. 6951. Lecture Notes in
Computer Science (LNCS). Sept. 2011, pp. 63–72.

[CG11] I. A. Comprés Ureña and M. Gerndt. “Improved
RCKMPI’s SCCMPB Channel: Scaling and Dynamic Pro-
cesses Support”. 4th MARC Symposium. Dec. 2011.

[FHGB+11] P. Figuli, M. Hübner, R. Girardey, F. Bapp, T.
Bruckschlögl, F. Thoma, J. Henkel, and J. Becker. “A
heterogeneous SoC Architecture with embedded virtual
FPGA Cores and runtime Core Fusion”. In: NASA/ESA
6th Conference on Adaptive Hardware and Systems (AHS).
San Diego, CA, USA, June 2011.

[GBH12] A. Grudnitsky, L. Bauer, and J. Henkel. “Partial Online-
Synthesis for Mixed-Grained Reconfigurable Architec-
tures”. In: IEEE/ACM 15th Design Automation and Test in
Europe Conference (DATE). to appear. Dresden, Germany,
Mar. 2012.

[HGG06] S. Hack, D. Grund, and G. Goos. “Register Allocation
for Programs in SSA-Form”. In: Proceedings of the Inter-
national Conference on Compiler Construction (CC). Ed.
by A. Zeller and A. Mycroft. Vol. 3923. Lecture Notes
In Computer Science (LNCS). Springer, Mar. 2006,
pp. 247–262. DOI: 10.1007/11688839_20.

[Han10] F. Hannig. “Retargetable Mapping of Loop Programs on
Coarse-grained Reconfigurable Arrays”. Talk, Interna-
tional Conference on Hardware-Software Codesign and
System Synthesis (CODES+ISSS), Scottsdale, AZ, USA.
Oct. 26, 2010.

[HRST+11] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A.
Zwinkau. “Resource-Aware Programming and Simu-
lation of MPSoC Architectures through Extension of
X10”. In: Proceedings of the 14th International Work-

118

http://www5.in.tum.de/pub/int/compumech_mehletal_2011.pdf
http://www5.in.tum.de/pub/int/compumech_mehletal_2011.pdf
http://dx.doi.org/10.1007/11688839_20

shop on Software and Compilers for Embedded Systems
(SCOPES). St. Goar, Germany: ACM Press, June 27–
28, 2011, pp. 48–55. ISBN: 978-1-4503-0763-5. DOI:
10.1145/1988932.1988941.

[HBHG11] J. Henkel, L. Bauer, M. Hübner, and A. Grudnitsky.
“i-Core: A run-time adaptive processor for embedded
multi-core systems”. In: Proceedings of the International
Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA). invited paper. Las Vegas, NV, USA,
July 2011.

[HHBW+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner,
R. Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel,
V. Lari, and S. Kobbe. “Invasive Manycore Architectures”.
In: Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC). Jan. 30–Feb. 2, 2012,
pp. 193–200.

[HLSP11] W. Hofer, D. Lohmann, and W. Schröder-Preikschat.
“Sleepy Sloth: Threads as Interrupts as Threads”. In:
Proceedings of the 32nd IEEE International Symposium on
Real-Time Systems (RTSS). Vienna, Austria: IEEE Com-
puter Society, Dec. 2011, pp. 67–77. ISBN: 978-0-7695-
4591-2.

[HG11] A. Hollmann and M. Gerndt. “iOMP Language Specifi-
cation 1.0”. Internal Report. Dec. 2011.

[HFGS+11] M. Hübner, P. Figuli, R. Girardey, D. Soudris, K. Siozios,
and J. Becker. “A Heterogeneous Multicore System on
Chip with Run-Time Reconfigurable Virtual FPGA Archi-
tecture”. In: Proceedings of the International Parallel and
Distributed Processing Symposium Workshops (IPDPSW).
Anchorage, AK, USA, May 16–17, 2011.

[HTGB+11] M. Hübner, C. Tradowsky, D. Göhringer, L. Braun, F.
Thoma, J. Henkel, and J. Becker. “Dynamic Processor
Reconfiguration”. In: Proceedings of the International
Conference on Reconfigurable Computing and FPGAs
(ReConFig). Cancun, Mexico: IEEE Computer Society,
Nov. 30–Dec. 2, 2011.

119

http://dx.doi.org/10.1145/1988932.1988941

[KGSH+11] D. Kissler, D. Gran, Z. Salcic, F. Hannig, and J. Teich.
“Scalable Many-Domain Power Gating in Coarse-grained
Reconfigurable Processor Arrays”. In: IEEE Embedded
Systems Letters 3.2 (June 2011), pp. 58–61. ISSN: 1943-
0663. DOI: 10.1109/LES.2011.2124438.

[KJS12] C. Knoth, H. Jedda, and U. Schlichtmann. “Current
Source Modeling for Power and Timing Analysis at Dif-
ferent Supply Voltages”. In: Design Automation and Test
in Europe (DATE). To appear. Mar. 2012.

[KUKS11] C. Knoth, C. Uphoff, S. Kiesel, and U. Schlichtmann.
“SWAT: Simulator for Waveform-Accurate Timing in-
cluding Parameter Variations and Transistor Aging”. In:
International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS). Vol. 6951. Lec-
ture Notes in Computer Science (LNCS). Sept. 2011,
pp. 193–203.

[KBHL+11] S. Kobbe, L. Bauer, J. Henkel, D. Lohman, and W.
Schröder-Preikschat. “DistRM: Distributed Resource
Management for On-Chip Many-Core Systems”. In:
Proceedings of the IEEE International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS). Taipei, Taiwan, Oct. 9–14, 2011,
pp. 119–128.

[KHLT11] G. Kouveli, F. Hannig, J. Lupp, and J. Teich. “To-
wards Resource-Aware Programming on Intel’s Single-
Chip Cloud Computer Processor”. In: 3rd Many-core
Applications Research Community (MARC) Symposium.
Vol. 7598. KIT Scientific Reports. Ettlingen, Germany:
KIT Scientific Publishing, July 5–6, 2011, pp. 111–114.
ISBN: 978-3-86644-717-2.

[LBMH+11] V. Lari, S. Boppu, S. Muddasani, F. Hannig, and J. Teich.
“Hierarchical Power Management for Adaptive Tightly-
Coupled Processor Arrays”. Talk, International Work-
shop on Adaptive Power Management with Machine
Intelligence at International Conference on Computer-
Aided Design (ICCAD), San Jose, CA, USA. Nov. 10,
2011.

120

http://dx.doi.org/10.1109/LES.2011.2124438

[LHT11] V. Lari, F. Hannig, and J. Teich. “Distributed Resource
Reservation in Massively Parallel Processor Arrays”. In:
Proceedings of the International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). Anchorage,
AK, USA: IEEE Computer Society, May 16–17, 2011,
pp. 313–316. ISBN: 978-0-7695-4385-7. DOI: 10.1109/
IPDPS.2011.157.

[LNHT11] V. Lari, A. Narovlyanskyy, F. Hannig, and J. Teich. “De-
centralized Dynamic Resource Management Support for
Massively Parallel Processor Arrays”. In: Proceedings of
the 22nd IEEE International Conference on Application-
specific Systems, Architectures, and Processors (ASAP).
Santa Monica, CA, USA: IEEE Computer Society, Sept.
2011, pp. 87–94. ISBN: 978-1-4577-1291-3. DOI: 10.
1109/ASAP.2011.6043240.

[LBS11] D. Lorenz, M. Barke, and U. Schlichtmann. Finding Pos-
sible Critical Paths for On-line Monitoring Of Aging in
Integrated Circuits. Technical Report. Technische Univer-
sität München, Dec. 2011.

[MTKB+11] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele,
S. Ha, C. Lee, Q. Xu, and L. Huang. “Mapping of Ap-
plications to MPSoCs”. In: Proceedings of the IEEE In-
ternational Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). Taipei, Taiwan,
Oct. 9–14, 2011, pp. 109–118.

[MLHT+12] R. Membarth, J. Lupp, F. Hannig, J. Teich, M. Körner,
and W. Eckert. “Dynamic Task-Scheduling and Resource
Management for GPU Accelerators in Medical Imaging”.
In: Proceedings of the 24th International Conference on
Architecture of Computing Systems (ARCS). Munich, Ger-
many, Feb. 28–Mar. 2, 2012.

[OSKB+11] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J.
Henkel, D. Lohmann, and W. Schröder-Preikschat. “Oc-
toPOS: A Parallel Operating System for Invasive Com-
puting”. In: Proceedings of the International Workshop
on Systems for Future Multi-Core Architectures (SFMA).
Ed. by R. McIlroy, J. Sventek, T. Harris, and T. Roscoe.
Vol. USB Proceedings. Sixth International ACM/EuroSys
European Conference on Computer Systems (EuroSys).
EuroSys. Salzburg, Austria, Apr. 2011, pp. 9–14.

121

http://dx.doi.org/10.1109/IPDPS.2011.157
http://dx.doi.org/10.1109/IPDPS.2011.157
http://dx.doi.org/10.1109/ASAP.2011.6043240
http://dx.doi.org/10.1109/ASAP.2011.6043240

[PSKA+12] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, and R.
Dillmann. “Invasive Computing for Robotic Vision”. In:
Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC). Sydney, Australia,
Jan. 30–Feb. 2, 2012, pp. 207–212.

[PWHV+11] R. K. Pujari, T. Wild, A. Herkersdorf, B. Vogel, and
J. Henkel. “Hardware Assisted Thread Assignment for
RISC based MPSoCs in Invasive Computing”. In: Proceed-
ings of the 13th International Symposium on Integrated
Circuits (ISIC). Singapore, Dec. 2011.

[RHT12] S. Roloff, F. Hannig, and J. Teich. “Approximate Time
Functional Simulation of Resource-Aware Programming
Concepts for Heterogeneous MPSoCs”. In: Proceedings
of the 17th Asia and South Pacific Design Automation
Conference (ASP-DAC). Sydney, Australia, Jan. 30–Feb. 2,
2012, pp. 187–192.

[SS11] P. Sanders and J. Speck. “Efficient Parallel Scheduling
of Malleable Tasks”. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS). Anchorage, AL,
USA: IEEE Computer Society, 2011, pp. 1156–1166.
DOI: 10.1109/IPDPS.2011.110.

[SSP11] P. Stellwag and W. Schröder-Preikschat. “Challenges in
Real-Time Synchronization”. In: Proceedings of the 3rd
USENIX Workshop on Hot Topics in Parallelism (HotPar).
Ed. by M. McCool and M. Rosenblum. Berkeley, CA,
USA: USENIX Association, May 2011.

[TLSSP11] R. Tartler, D. Lohmann, J. C. R. Sincero, and W.
Schröder-Preikschat. “Feature Consistency in Compile-
Time Configurable System Software”. In: Proceedings of
the Sixth International ACM/EuroSys European Confer-
ence on Computer Systems (EuroSys). Ed. by C. Kirsch
and G. Heiser. Salzburg, Austria: ACM Press, Apr. 2011,
pp. 47–60.

[Tei10] J. Teich. “Invasive Computing – Basic Concepts and
Foreseen Benefits”. Artist Network of Excellence on Em-
bedded System Design Summer School Europe 2010,
Autrans, France, Invited Tutorial. Sept. 7, 2010.

122

http://dx.doi.org/10.1109/IPDPS.2011.110

[Tei11a] J. Teich. “Invasive Parallel Computing – An Introduc-
tion”. Par Lab and AMP Lab Seminar Talk, UC Berkeley,
CA, USA. July 22, 2011.

[Tei11b] J. Teich. “Programming Invasively Parallel – An Intro-
duction”. Pervasive Parallelism Laboratory (PPL) Semi-
nar Talk, Stanford University, CA, USA. July 25, 2011.

[THHSL+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-
Landsiedel, W. Schröder-Preikschat, and G. Snelting.
“Invasive Computing: An Overview”. In: Multiprocessor
System-on-Chip – Hardware Design and Tool Integration.
Ed. by M. Hübner and J. Becker. Springer, Berlin, Hei-
delberg, 2011, pp. 241–268.

[VRMD+10] T. Vander Aa, P. Raghavan, S. Mahlke, B. De Sutter, A.
Shrivastava, and F. Hannig. “Compilation Techniques for
CGRAs: Exploring All Parallelization Approaches”. In:
Proceedings of the International Conference on Hardware-
Software Codesign and System Synthesis (CODES+ISSS).
Scottsdale, AZ, USA: ACM, Oct. 24–29, 2010, pp. 185–
186. ISBN: 978-1-60558-905-3. DOI: 10.1145/1878961.
1878995.

[WWT11] A. Weichslgartner, S. Wildermann, and J. Teich. “Dy-
namic Decentralized Mapping of Tree-Structured Ap-
plications on NoC Architectures”. In: Proceedings of the
Fifth ACM/IEEE International Symposium on Networks-
on-Chip (NOCS). Pittsburgh, PA, USA, May 1–4, 2011,
pp. 201–208.

[Wei09] T. Weinzierl. “A Framework for Parallel PDE Solvers
on Multiscale Adaptive Cartesian Grids”. Dissertation.
München: Institut für Informatik, Technische Universität
München, 2009. URL: http://www.dr.hut-verlag.de/
978-3-86853-146-6.html.

[WHGSL11a] M. Wirnshofer, L. Heiss, G. Georgakos, and D. Schmitt-
Landsiedel. “A Variation-Aware Adaptive Voltage Scal-
ing Technique Based on In-Situ Delay Monitoring”. In:
IEEE 14th International Symposium on Design and Diag-
nostics of Electronic Circuits & Systems. 2011, pp. 261–
266.

123

http://dx.doi.org/10.1145/1878961.1878995
http://dx.doi.org/10.1145/1878961.1878995
http://www.dr.hut-verlag.de/978-3-86853-146-6.html
http://www.dr.hut-verlag.de/978-3-86853-146-6.html

[WHGSL11b] M. Wirnshofer, L. Heiss, G. Georgakos, and D. Schmitt-
Landsiedel. “An Energy-Efficient Supply Voltage Scheme
using In-Situ Pre-Error Detection for on-the-fly Adapta-
tion to PVT Variations”. In: International Symposium on
Integrated Circuits. 2011.

124

	Pages from InvasiveComputing-Annual-Report-2011-eVersion.pdf
	InvasiveComputing-Annual-Report.pdf
	Preface
	Contents
	I Invasive Computing
	About InvasIC
	Participating University Groups

	II Research Program
	Overview of Research Program
	Research Projects
	A1: Basics of Invasive Computing
	A3: Scheduling and Load Balancing
	B1: Adaptive Application-Specific Invasive Microarchitecture
	B2: Invasive Tightly-Coupled Processor Arrays
	B3: Invasive Loosely-Coupled MPSoCs
	B4: Hardware Monitoring System and DesignOptimisation for Invasive Architectures
	B5: Invasive NoCs – Autonomous, Self-Optimising CommunicationInfrastructures for MPSoCs
	C1: Invasive Run-Time Support System (iRTSS)
	C2: Simulation of Invasive Applicationsand Invasive Architectures
	C3: Compilation and Code Generationfor Invasive Programs
	D1: Invasive Software–Hardware Architectures for Robotics
	D3: Multilevel Approaches and Adaptivityin Scientific Computing
	Z: Central Services
	Z2: Validation and Demonstrator

	Working Groups
	WG1: Working Group Architecture
	WG2: Working Group System Software
	WG3: Working Group Languageand Applications

	III Events and Activities
	Internal Meetings
	DRR 2011 in Lauterbad
	Trainings and Tutorials
	Industrial and Scientific Board
	InvasIC Activities
	Publications

