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Implantable Medical Devices (IMDs)

[5]

I Include pacemakers, defibrillators, insulin pumps, neurological pulse generators, ...

I Safety-critical operation: medical emergencies on malfunctions

[5]. T. Zimmerman. (Jun. 2012), VVI pacemaker THWZ, CC 3.0, [Online]. Available: https://commons.wikimedia.
org/wiki/File:VVI_Schrittmacher_THWZ.jpg

InvasIC 4 / 43

https://commons.wikimedia.org/wiki/File:VVI_Schrittmacher_THWZ.jpg
https://commons.wikimedia.org/wiki/File:VVI_Schrittmacher_THWZ.jpg


Pacemaker IMD
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I Heart and Pacemaker communicate
through 4 signals
I AS and VS from the heart

I AP and VP from the pacemaker

I Pacemaker ensures timing properties
between signals
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Industry trend

IMDs are becoming “smarter” and more connected

I Increasingly complex sensors + software

I Wireless, internet-enabled features [6]

[6]. L. Pycroft and T. Z. Aziz, “Security of implantablemedical deviceswithwireless connections: The dangers of cyber-attacks,”
Expert Review of Medical Devices, vol. 15, no. 6, pp. 403–406, 2018
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Unintended consequences

A new potential for malicious attacks

I “We are aware of hundreds of medical devices that have been infected by malware”
— Bill Maisel, FDA [7]

I Notable examples:
I Pacemakers which give deadly shocks to their patients [8]

I Pumps remotely programmed to deliver incorrect insulin levels [9]

I DoS attacks on implantable cardiac defibrillators [10]

[7]. C Weaver, “Patients put at risk by computer viruses,” Wall Street Journal, 2013
[8]. J Kirk, “Pacemaker hack can deliver deadly 830-volt jolt,” Computerworld, vol. 17, 2012
[9]. J. D. Rockoff, “J&J warns insulin pump vulnerable to cyber hacking,” Wall Street Journal, 2016
[10]. E. Marin, D. Singelée, F. D. Garcia, et al., “On the (in)security of the latest generation implantable cardiac defibrillators and
how to secure them,” in Proceedings of the 32Nd Annual Conference on Computer Security Applications, ser. ACSAC ’16, Los
Angeles, California, USA: ACM, 2016, pp. 226–236. [Online]. Available: http://doi.acm.org/10.1145/2991079.
2991094
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Problem space

Traditional security mechanisms suggested [11] but may not be suitable

I Low-power long-life devices may not be capable of de/encryption [12]

I SW updates not often provided due to regulatory framework [13]

I In practice: impractical/infeasible to secure all attack vectors [14]

[11]. U.S. Food andDrug Administration, “Postmarketmanagement of cybersecurity inmedical devices,” Guidance for Industry,
Food, and Drug Administration Staff, Tech. Rep., 2016. [Online]. Available: https://www.fda.gov/downloads/
medicaldevices/deviceregulationandguidance/guidancedocuments/ucm482022.pdf
[12]. D Takahashi, “Insulin pump hacker says vendor Medtronic is ignoring security risk,” Venturebeat, 2011. [Online]. Available:
https://venturebeat.com/2011/08/25/insulin-pump-hacker-says-vendor-medtronic-is-
ignoring-security-risk/
[13]. D Clery, “Could your pacemaker be hackable?” Science, vol. 347, no. 6221, pp. 499–499, 2015
[14]. J. Sametinger, J. Rozenblit, R. Lysecky, et al., “Security challenges for medical devices,” Commun. ACM, vol. 58, no. 4,
pp. 74–82, Mar. 2015. [Online]. Available: http://doi.acm.org/10.1145/2667218
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Proposed solutions: Literature

Two general approaches

I Access Control (still has potential to be bypassed)
I E.g. Heart2Heart [15]

I E.g. Ultrasonic bounding [16]

[15]. S. Gollakota, H. Hassanieh, B. Ransford, et al., “They can hear your heartbeats: Non-invasive security for implantable
medical devices,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 2–13, Aug. 2011. [Online]. Available: http://doi.
acm.org/10.1145/2043164.2018438
[16]. K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, et al., “Proximity-based access control for implantable medical
devices,” in Proceedings of the 16th ACMConference on Computer and Communications Security, ser. CCS ’09, Chicago, Illinois,
USA: ACM, 2009, pp. 410–419. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653712
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Pacemaker Timing Requirements (EGMs)
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Equivalent ECG timings

P1 P− wave and R− wave cannot
happen simultaneously.

P2 R− wave must arrive within PR
interval after a P− wave.

P3 P− wave must be true within R− P
interval after an R− wave.

P4 After an R− wave, another R− wave
can come only after R− P interval.

P5 After an R− wave, another R− wave
should come within R− R interval.

automatically detect and respond to anomalous behavior have
been developed [6]. Here a medical security monitor, called
MedMon has been developed. MedMon can detect and prevent
anomalous events by snooping all wireless transactions. Med-
Mon relies on a set of policies to be monitored to determine
which events need to be jammed. The developed solutions
has some limitations. First, the developed formulation requires
the design of embedded devices mainly for snooping wireless
channels. The efficacy of the device regarding cost, power
consumption and certification needs to be studied. Importantly,
MedMon’s wireless snooping approach is as effective as the
set of policies that are defined. As the policy framework is
informal, there is no guarantee of soundness of the developed
framework. Soundness guarantees are provided by techniques
grounded in formal methods [7]. To the best of our knowledge,
there is no formal solution for anomaly detection that can be
implemented very efficiently and in a cost effective manner.
To this end, we develop a solution using readily available
Electrocardiogram (ECG) sensing technology combined with
formal methods.

A. Typical ECG

Fig. 2. Timing information in ECG signals (this is an adaptation from [8])

The Electrocardiogram (ECG) [9] [10] is the waveform
produced by the heart showing the electrical activity of the
heart over a period of time. Electrodes are attached to the skin
on the chest, arms and legs which record the heart’s electrical
activity as waveforms from different angles. A typical ECG
signal is illustrated in Figure 2. The P-wave symbolizes atrial
depolarization (indicating an atrial event has occurred). P-
waves precede QRS complex in sinus rhythm. The PR interval
is the time interval between the beginning of the P-wave and
the beginning of the Q-wave. It shows the time taken by the
electrical impulses to travel between the atria and ventricles.
The QRS complex denote the ventricular depolarisation (in-
dicating ventricular event has occurred), atrial repolarization

also happens during this interval. The ST-segment starts at the
end of the S-wave and finishes at the start of the T-wave. It
marks ventricular contraction i.e. time between depolarisation
and repolarization of ventricles. The wave followed by QRS
complex is the T-wave which represents ventricular depolar-
isation. The R-R interval indicates the time interval between
two QRS complex. It begins at the peak of one R-wave and
ends at the peak of the consecutive R-wave. The QT-interval
is from the start of the QRS complex and finishes at the end
of the T-wave. It represents the time taken for the ventricles
to depolarise and then repolarise. Thus, a lot of information
regarding the heart conditions can be extracted from the ECG
signals of the patients, which is also valuable in the security
context as highlighted by our methodology.

B. Overview of the proposed solution

Security risks in pacemakers are life threatening, which can
make a life saving device a potential killer [3], [4]. Existing
monitoring solutions for pacemakers require wireless commu-
nication with the pacemaker. This raises additional security
challenges, especially when encryption and key distribution is
a challenge. We propose an alternative monitoring mechanism
that does not require any communication with the pacemaker
or any external device. The monitor runs on an external
wearable device, and uses person’s ECG to identify events
of interest. The device is programmed with critical pacemaker
timing values by the cardiologist. We assume that this device
is not connected to any other device, including the pacemaker,
using any wireless protocol. Hence, we can make a reasonable
assumption that our device is fairly robust and secure.

We adapt a runtime verification approach for timed au-
tomata [11] to create a monitor that identifies anomalous
events at run-time. When any anomaly is detected, an alarm
is sounded to alert the patient. Runtime verification (RV)
[7], [12]–[15] approaches are concerned with monitoring and
checking if a run of a system under inspection satisfies or
violates a particular desired property ('). RV is an ideal fit for
pacemaker security due to the fact that it is only concerned
with runs of the system, which is considered a black-box. This
will thus require no modification to the existing pacemaker and
hence will not require additional wireless protocols and asso-
ciated key distribution. This will also not need any additional
certification cost.

RV can be considered as a lightweight formally based
verification approach, and one of the main emphasis of for-
mally based RV approaches such as [13]–[15] is to generate
RV monitor from a formal high-level specification of a set
of properties. RV monitors do not modify the execution of
the system. They are used to verify a stored execution of a
system (offline verification), or the current live execution of a
system (online) with respect to a desired correctness property
'. The context of an RV monitor is illustrated in Figure 3,
which takes a stream of events � as input from the system
being monitored, and emits a verdict that provides information
whether � violates or satisfies property '. In this paper, we
propose an externally wearable device which continuously
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Runtime verification

Runtime verification

Based on this information the condition of the leads can be
found out, which will help in examining any malfunctions in
the leads.

ECG Processing
Module

RV Monitor
Module

'

Raw ECG Data timed events Verdicts

Fig. 7. Architecture of the monitoring system.

B. Architecture of the monitoring system

In this section, we present the architecture of the proposed
monitoring system which is hosted on the wearable device.
As illustrated in Figure 7, the monitoring system consists of
two modules namely i) ECG_Processing module, and ii)
RV_Monitor module. Both these modules work concurrently
in an on-line manner.

The ECG_Processing module is responsible for filtering
and processing the ECG data. For monitoring the considered
set of properties (P1, · · · , P5 introduced in Section II), we
need to extract all the relevant actions of interest such as P,
Q and R peaks from raw ECG data. The ECG_Processing
is responsible for detecting these actions and feeding them as
input with relevant timing information to the RV_Monitor
module.

The RV_Monitor module takes the property to be verified
(') and a stream of timed events (fed as input by the ECG
processing module in an online manner) as input, and emits
verdicts providing information whether the input event stream
satisfies (resp. violates) property '.

The ECG_Processing module performs real-time signal
processing of human ECGs to detect the events of interest.
These events are passed in the appropriate format (as timed
events) to the online RV_Monitor module. We elaborate
the ECG_Processing module in Section V, and the online
RV_Monitor module in Section VI.

Remark 4: Note that the properties that we consider to
monitor (P1, · · · , P5) are timed safety properties, formally
expressible as timed automata [11], [15], for which verification
monitors can be synthesised using approaches such as [15].
However, monitoring of these properties, implicitly prevent
attacks as follows. First, as the pacemaker has wireless pro-
grammability, an attacker may gain access to the device and
maliciously change the programmed timing values, which may
cause serious harm. However, the attacker is unable to access
the wearable device as this is secure (through secure authen-
tication mechanisms such as say the use of human biometric)
and is not programmable wirelessly. In this event the attack
will be detected within a short time due to the mismatch in
timing values leading to violation of the properties.

V. ECG SIGNAL PROCESSING MODULE

In this section, we will briefly discuss about the function-
ing of the ECG_Processing module. That is, we discuss
how ECG signals are processed by the wearable device to

extract all the relevant actions of interest for monitoring the
considered set of properties. The ECG_Processing module
is implemented in MATLAB. We have proposed the concept
of the wearable device and have not actually designed it in this
paper. Thus, this paper demonstrates the technical feasibility
of the idea. Hence, we use prerecorded ECG data that have
pacing artifacts and do not actually generate ECG signals. We
then use them as if they are being generated in real time by
feeding one ECG cycle at a time for processing. Thus, the
ECG_Processing module runs in a loop, processing all
ECG cycles in the recording one by one.

A. ECG Database

A huge collections of recorded physiologic signals are avail-
able from [19]. Consequently, the database of ECG signals for
our experiments is also obtained from [19]. The ECG signal
in use is from a 63 year old male patient. The patient is living
with a pacemaker installed in his body. Hence, the ECG signals
from this patient include pacing artifacts. He suffers from a
complete heart block and the PVCs (Premature ventricular
contractions) are multiform. Originally the recorded signal
contains 30,000 samples and is in the form of a .dat file
which is first read in MATLAB. We then break the recording
in 6 segments (5000 samples each) for ease of performing
experiments and convert in to a .mat file to be supplied to
the code for further execution. Pacers distort the typical QRS
complex because the depolarisation wave is not propagated
normally in a paced heart, so the Q-wave and S-wave are not
evidently present to be detected by the code in this recording.
Hence, we only detect the P-wave, R-wave and the pacing
pulses.

B. Pre-processing of ECG signals

Generally, a raw ECG signal (Figure 8(a)) is corrupted
by Baseline wander, Power line interference (50 Hz or 60),
Electromyographic (EMG) or muscle noise, and artifacts due
to electrode motion and Electrode Contact Noise [20]. Hence,
pre-processing of the signal is important to remove unwanted
data and to be able to extract vital information from the sig-
nals. Because of the baseline shift, the signal is not present in
it’s true amplitude. Hence, appropriate detrending is required
for correct detection of events. A lower order polynomial can
be fitted to the signal and then used to detrend it, so that the
signal with it’s actual amplitude can be obtained. Since, the
signal is corrupted with high frequency noise, Savitzky-Golay
filtering is used to remove noise from the signal. MATLAB
“filter design and analysis” application can also be used for
filtering of the ECG signal if the sampling frequency of the
signal is known. A comparison of the raw ECG signal and
pre-processed signal is shown in Figure 9.

C. Processing of ECG signal

Since we focus on online monitoring, we process one cycle
of ECG signal from the entire recorded signal at a time. We
divide the entire recording into ECG cycles and then apply
pre-processing to remove unwanted data. After the filtering of

I Does σ satisfyϕ ?
I ϕ is a timed automaton.
I Output: stream of verdicts.
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Runtime verification example

Example P4

Definition (Timed automata)

A timed automatonA = (L, l0, X,Σ,∆, F) is a tuple, s.t. L is a finite set of locations with
the initial location l0 ∈ L , a finite set of clocks X, Σ is a finite set of actions,
∆ ⊆ L× G(X)× Σ× 2X × L is the transition relation. F ⊆ L is a set of accepting
locations.

l0 l1 l2

⌃ \ {r}
r ,

x := 0

⌃ \ {r}

r , x � RP,
x := 0

r ,
x<RP

⌃

Fig. 5. Timed automaton defining property P4 in Section II.

consisting of the current location and the current values of
clocks. Its semantics is defined as follows.

Definition 2 (Semantics of TA): The semantics of a TA
[[A]] = (Q, q0,�,!, QF ) is a timed transition system where
Q = L ⇥ RX

�0 is the (infinite) set of states, q0 = (l0,�0)
is the initial state where �0 is the valuation mapping every
clock in X to 0, the set of accepting states is QF = F ⇥RX

�0,
and � = R�0 ⇥ ⌃ is the set of transition labels, that are
pairs composed of a delay and an action. !✓ Q ⇥ � ⇥ Q
is the transition relation, the set of transitions of the form
(l,�)

(�,a)���! (l0,�0) with �0 = (� + �)[Y  0] whenever 9
(l, g, a, Y, l0) 2 � s.t � + � |= g for � 2 R�0.
A run of A from a state q 2 Q to a state q0 2 Q over a
timed trace � = (t1, a1) · (t2, a2) · · · (tn, an) is a sequence of

transitions q0
(�1,a1)����! q1 · · · qn�1

(�n,an)�����! qn, where q = q0,
q0 = qn, t1 = �1, and 8i 2 [2, n] : ti = ti�1 + �i. If there
exists a run from q to q0 over �, it is denoted by q

��! q0 .
The language of A, starting in q and ending in K (for

q 2 Q and K ✓ L) denoted as L(A, q, K), defined by

L(A, q, K) = {w | 9q0 2 K ⇥ RX
�0 : q

w�! q0}.

The language of A, denoted as L(A) = L(A, q0, F ) is the
language of A starting from q0 (initial state) and ending in a
state in F .

Example 1 (Timed automaton): Let us now consider an
example. The TA in Fig. 5 defines property P4 presented
in Section II i.e. after an R � wave, another R � wave
can come only after R � P interval. The set of locations is
L = {l0, l1, l2}, and l0 is the initial location. The set of actions
is ⌃ = {p, q , r}. There are transitions between locations upon
actions. The set X = {x} is the set of real-valued clocks.
On the transitions, there are guards with constraints on clock
values such as x < RP on the transition between l1 and
l2 (where RP 2 N), and resets of clocks. Upon the first
occurrence of action r , the automaton moves l1 from l0, and
the clock x is reset to 0. If action r occurs in location l1, and
if x � RP , then the automaton remains in l1, resetting the
value of clock x to 0. It moves to location l2 otherwise. For
the property to be satisfied over runs, the state l2 should never
be reached i.e. it is a non-accepting location.

Remark 1 (Complete and Deterministic TA): In the sequel, a
timed property is defined by a timed language ' ✓ tw(⌃) that
can be recognised by a deterministic and complete TA. A TA
A = (L, l0, X, ⌃,�, F ) with its semantics [[A]] is complete
whenever 8l 2 L, 8a 2 ⌃ :

W
(l,g,a,Y,l0) g = true. That is, for

any l 2 L and any a 2 ⌃, the disjunction of the guards of the
transitions leaving l and labeled by a evaluates to true (i.e., it
holds according to any valuation).

A is a deterministic TA if for any location l and any two
distinct transitions (l, g1, a, Y1, l

0
1) 2 � and (l, g2, a, Y2, l

0
2) 2

� with same source l, the conjunction of guards g1 ^ g2 is
unsatisfiable.

C. Runtime Verification Monitor

In this section, for any given timed property ', let us see
the definition of the verification monitor.

Definition 3 (RV monitor): Consider a given property ' ✓
tw(⌃) defining the property to monitor that is defined as TA
A'. Function M' : tw(⌃) ! D is a verification monitor for
', where D = {true, false, c true, c false} and is defined as
follows, with � 2 tw(⌃) denoting the current observation (a
finite timed word over the alphabet ⌃):

M'(�) =

8
>>><
>>>:

true if 8�0 2 tw(⌃) : � · �0 2 '

false if 8�0 2 tw(⌃) : � · �0 62 '

c true if � 2 ' ^ 9�0 2 tw(⌃) : � · �0 62 '

c false if � 62 ' ^ 9�0 2 tw(⌃) : � · �0 2 '

In Definition 3, true (true) and false (false) are conclusive ver-
dicts, and currently true (c true), and currently false (c false)
are inconclusive verdicts, where an inconclusive verdict states
an evaluation about the execution seen so far.

If for any continuation �0 2 tw(⌃), � · �0 satisfies '
then M'(�) returns true. M'(�) returns false if for any
continuation �0 2 tw(⌃), � · �0 falsifies '.

Monitor M'(�) returns inconclusive verdict c true if �
satisfies ', and if there is a continuation �0 2 tw(⌃) such that
� ·�0 does not satisfy ' (i.e., not all continuations of � satisfy
'). Inconclusive verdict c false is returned if � falsifies ', and
there is a continuation �0 2 tw(⌃) such that � ·�0 satisfies '.

Remark 2 (Monitorability): A property ' ✓ tw(⌃) ex-
pressed as a TA A' is monitorable [13], [14] if for any current
observation � 2 tw(⌃), there exists a finite word �0 2 tw(⌃)
such that the property ' can be evaluated to true or false for
� · �0. That is,

8� 2 tw(⌃), 9�0 2 tw(⌃) : M'(� · �0) 2 {true, false}.

Remark 3 (Impartiality and anticipation): For any given
property ' ✓ tw(⌃) (expressed as a TA A'), monitor
M' as per Definition 3 satisfies impartiality and anticipation
constraints [13].

Impartiality means that for a finite trace � 2 tw(⌃), M'

provides an inconclusive verdict (c true or c false) if and only
if there exists a continuation of � leading to another verdict.
That is, if � itself satisfies ', but there is some extension of
� which does not, or conversely, if � does not satisfy ' but
some extension it does satisfy, then the monitor must give an
inconclusive verdict on �.

Anticipation states that for a finite trace � 2 tw(⌃), the
monitor M'(�) should provide a conclusive verdict true (resp.
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Overview of the solution

I Pacemaker timing parameters are
programmed simultaneously on the
monitoring device and the pacemaker.

I The wearable device monitors the familiar
ECG to ensure that there have been no hacks.

I In the event of any timing violation an alarm is
sounded.

false) iff every continuation of � satisfies (resp. violates) '.
Thus, if M'(�) is true (resp. false), then every continuation
of � also evaluates to true (resp. false).

TABLE I
EXAMPLE ILLUSTRATING BEHAVIOR OF RV MONITOR FOR PROPERTY P4

� M'(�)
(50, p) c true
(50, p) · (208, r) c true
(50, p) · (208, r) · (300, p) c true
(50, p) · (208, r) · (300, p) · (451, r) false

Example 2 (Example illustrating behaviour of an RV moni-
tor): Consider monitoring property P4 from Section II, defined
formally by the TA in Figure 5. Let RP be 900 time units.
Table I illustrates how the monitor for P4 behave when the
input timed word � = (50, p) · (208, r) · (300, p) · (451, r) is
processed incrementally.

At t = 50, when the current observed input is � = (50, p),
� satisfies the property P4 but there are some extensions �0 2
tw(⌃) such that � · �0 falsify the property P4. So the verdict
provided by the monitor is c true in the first step. Similarly,
the verdict provided by the monitor is c true in the next two
steps at t = 208 and at t = 300. At t = 451, after observing
the event (451, r) (i.e., when the current observed input is
� = (50, p) · (208, r) · (300, p) · (451, r)), the property ' is
falsified by � and for any extension �0 2 tw(⌃), � ·�0 falsifies
the property '. Thus, the monitor provides a conclusive verdict
(false) immediately after observing (451, r).

IV. OVERVIEW OF THE PROPOSED APPROACH

In Section II, we presented some example of safety prop-
erties that we consider for verifying via runtime monitoring.
In this section, we provide a brief overview of the proposed
approach, and outline the architecture of the heart-pacemaker-
safety monitoring device. Let us recall that, in this work, we
consider the DDD mode in which both atria and ventricles are
sensed as well as paced (see Figure 1).

A. Overview of the approach

The externally wearable device (RV monitor) is assumed
to have more power and computational resources than the
pacemaker and is capable of measuring ECG signals. The
pacemaker, once implanted, is expected to remain inside the
body for an extended period of time. Before implanting it
is programmed by the doctor with the help of a program-
ming unit (outside controller) with direct connection. After
implantation, if the pacemaker has to be reprogrammed, that
should be done wirelessly. The programming unit provides
doctors an interface to interact with the pacemaker through
radio frequency transmission for adjusting running parameters
(timers), changing operation modes, or retrieving stored data
[18].

Whenever the pacemaker is implanted, the doctor programs
the pacemaker’s computer with an external programming unit.
The doctor doesn’t have to use needles or have direct contact
with the pacemaker. The two main types of programming for

Fig. 6. Overview.

pacemakers are demand pacing and rate-responsive pacing.
The doctor will work with the patient to decide which type
of pacemaker is best for the patient. While programming the
doctor essentially sets the pacing mode (eg. DDD), sets the
threshold voltage value of the pacing pulse, sensitivity of the
pacemaker and most importantly the timers such as AVI, and
AEI. If an attacker hacks the pacemaker he/she may try to
increase or decrease any of these timers. Hence, the properties
in Section II are formulated keeping in mind this security
vulnerability.

a) External wearable device: In the approach that we
propose in this work, the patient is given the wearable device
once the pacemaker is implanted. This external wearable
device could be any computing device with an ECG sensor
and an accelerometer such as a smart watch as illustrated in
Figure 6. The doctor also configures the external wearable
device with timing values. Essentially, all the values of the set
timers are stored inside the wearable device’s memory. It also
knows the normal heart rate at which the pacemaker is set to
pace (eg. 60-120 BPM), and has information of the attributes
of the pacing pulses like voltage, current and impedance. The
device has a built-in accelerometer which monitors the activity
of the body.

Via the ECG sensor, the device has access to the surface
ECG signals, and it continuously monitors these signals. After
filtering and processing the ECG data, it extracts all relevant
actions of interest (the peaks of P, Q, R, S, T waves and the
pacing pulses). Depending on the time instances at which the
peaks (actions) are occurring, it checks for any violation of
any of the safety properties using RV monitors. If any of the
desired properties are violated, it generates an alarm for the
user. As illustrated in Figure 6, the device does not have any
direct communication with the Pacemaker.

R waves detection helps in calculating the heartbeat every
minute. Hence, the RV monitoring device can constantly check
for the normal heart rate (beats per minute) too. Also the
detection of pacing pulses, which have different morphology,
provide crucial information about the amplitude of the pulses.
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Illustration

Example P4

l0 l1 l2

⌃ \ {r}
r ,

x := 0

⌃ \ {r}

r , x � RP,
x := 0

r ,
x<RP

⌃

Fig. 5. Timed automaton defining property P4 in Section II.

consisting of the current location and the current values of
clocks. Its semantics is defined as follows.

Definition 2 (Semantics of TA): The semantics of a TA
[[A]] = (Q, q0,�,!, QF ) is a timed transition system where
Q = L ⇥ RX

�0 is the (infinite) set of states, q0 = (l0,�0)
is the initial state where �0 is the valuation mapping every
clock in X to 0, the set of accepting states is QF = F ⇥RX

�0,
and � = R�0 ⇥ ⌃ is the set of transition labels, that are
pairs composed of a delay and an action. !✓ Q ⇥ � ⇥ Q
is the transition relation, the set of transitions of the form
(l,�)

(�,a)���! (l0,�0) with �0 = (� + �)[Y  0] whenever 9
(l, g, a, Y, l0) 2 � s.t � + � |= g for � 2 R�0.
A run of A from a state q 2 Q to a state q0 2 Q over a
timed trace � = (t1, a1) · (t2, a2) · · · (tn, an) is a sequence of

transitions q0
(�1,a1)����! q1 · · · qn�1

(�n,an)�����! qn, where q = q0,
q0 = qn, t1 = �1, and 8i 2 [2, n] : ti = ti�1 + �i. If there
exists a run from q to q0 over �, it is denoted by q

��! q0 .
The language of A, starting in q and ending in K (for

q 2 Q and K ✓ L) denoted as L(A, q, K), defined by

L(A, q, K) = {w | 9q0 2 K ⇥ RX
�0 : q

w�! q0}.

The language of A, denoted as L(A) = L(A, q0, F ) is the
language of A starting from q0 (initial state) and ending in a
state in F .

Example 1 (Timed automaton): Let us now consider an
example. The TA in Fig. 5 defines property P4 presented
in Section II i.e. after an R � wave, another R � wave
can come only after R � P interval. The set of locations is
L = {l0, l1, l2}, and l0 is the initial location. The set of actions
is ⌃ = {p, q , r}. There are transitions between locations upon
actions. The set X = {x} is the set of real-valued clocks.
On the transitions, there are guards with constraints on clock
values such as x < RP on the transition between l1 and
l2 (where RP 2 N), and resets of clocks. Upon the first
occurrence of action r , the automaton moves l1 from l0, and
the clock x is reset to 0. If action r occurs in location l1, and
if x � RP , then the automaton remains in l1, resetting the
value of clock x to 0. It moves to location l2 otherwise. For
the property to be satisfied over runs, the state l2 should never
be reached i.e. it is a non-accepting location.

Remark 1 (Complete and Deterministic TA): In the sequel, a
timed property is defined by a timed language ' ✓ tw(⌃) that
can be recognised by a deterministic and complete TA. A TA
A = (L, l0, X, ⌃,�, F ) with its semantics [[A]] is complete
whenever 8l 2 L, 8a 2 ⌃ :

W
(l,g,a,Y,l0) g = true. That is, for

any l 2 L and any a 2 ⌃, the disjunction of the guards of the
transitions leaving l and labeled by a evaluates to true (i.e., it
holds according to any valuation).

A is a deterministic TA if for any location l and any two
distinct transitions (l, g1, a, Y1, l

0
1) 2 � and (l, g2, a, Y2, l

0
2) 2

� with same source l, the conjunction of guards g1 ^ g2 is
unsatisfiable.

C. Runtime Verification Monitor

In this section, for any given timed property ', let us see
the definition of the verification monitor.

Definition 3 (RV monitor): Consider a given property ' ✓
tw(⌃) defining the property to monitor that is defined as TA
A'. Function M' : tw(⌃) ! D is a verification monitor for
', where D = {true, false, c true, c false} and is defined as
follows, with � 2 tw(⌃) denoting the current observation (a
finite timed word over the alphabet ⌃):

M'(�) =

8
>>><
>>>:

true if 8�0 2 tw(⌃) : � · �0 2 '

false if 8�0 2 tw(⌃) : � · �0 62 '

c true if � 2 ' ^ 9�0 2 tw(⌃) : � · �0 62 '

c false if � 62 ' ^ 9�0 2 tw(⌃) : � · �0 2 '

In Definition 3, true (true) and false (false) are conclusive ver-
dicts, and currently true (c true), and currently false (c false)
are inconclusive verdicts, where an inconclusive verdict states
an evaluation about the execution seen so far.

If for any continuation �0 2 tw(⌃), � · �0 satisfies '
then M'(�) returns true. M'(�) returns false if for any
continuation �0 2 tw(⌃), � · �0 falsifies '.

Monitor M'(�) returns inconclusive verdict c true if �
satisfies ', and if there is a continuation �0 2 tw(⌃) such that
� ·�0 does not satisfy ' (i.e., not all continuations of � satisfy
'). Inconclusive verdict c false is returned if � falsifies ', and
there is a continuation �0 2 tw(⌃) such that � ·�0 satisfies '.

Remark 2 (Monitorability): A property ' ✓ tw(⌃) ex-
pressed as a TA A' is monitorable [13], [14] if for any current
observation � 2 tw(⌃), there exists a finite word �0 2 tw(⌃)
such that the property ' can be evaluated to true or false for
� · �0. That is,

8� 2 tw(⌃), 9�0 2 tw(⌃) : M'(� · �0) 2 {true, false}.

Remark 3 (Impartiality and anticipation): For any given
property ' ✓ tw(⌃) (expressed as a TA A'), monitor
M' as per Definition 3 satisfies impartiality and anticipation
constraints [13].

Impartiality means that for a finite trace � 2 tw(⌃), M'

provides an inconclusive verdict (c true or c false) if and only
if there exists a continuation of � leading to another verdict.
That is, if � itself satisfies ', but there is some extension of
� which does not, or conversely, if � does not satisfy ' but
some extension it does satisfy, then the monitor must give an
inconclusive verdict on �.

Anticipation states that for a finite trace � 2 tw(⌃), the
monitor M'(�) should provide a conclusive verdict true (resp.

Table: Property P4 monitoring with RP = 900

σ Mϕ(σ)

(50, p) ctrue
(50, p) · (208, r) ctrue
(50, p) · (208, r) · (300, p) ctrue
(50, p) · (208, r) · (300, p) · (451, r) false
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Limitation of RV Monitors

I Monitoring can detect but is unable to intervene.

I CPS attacks are complex and vulnerabilities may be exploited more easily than
conventional cyber security.

I Run-Time Enforcement has some interesting potential.
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Cyber-Physical System Attacks [17]

Example Targeted Attacks

I (2000) Maroochy Shire wastewater attack, where raw sewage was released around
a town by ex-employee.

I (2006) Los Angeles traffic system hack, disrupting four of the busiest intersections
for days.

I (2008) Turkish pipeline explosion by suspected Russian operators to cut off oil to
Georgia.

I (2008) Pacific Energy Resources SCADA attack, where system functions were
impaired by ex-employee.

I (2008) Lodz, Poland, tram system was taken over by a teen hacker, causing injuries.
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Cyber-Physical System Attacks [17]

Example Targeted Attacks

I (2009) Well-known Stuxnet attack on Iranian centrifuges.

I (2011) Springfield IL water distribution malfunction, pump destroyed, attributed to
Romanian hacker.

I (2014) Unnamed German Steel mill, hackers caused massive damage to equipment
by disabling shut-off procedures, including a blast furnace.

I (2015) Jeep Cherokee, remote hijacking leading to total control by researchers
Charlie Miller and Chris Valasek.

I (2016) Tesla S, remote hacking of some functions by Chinese researchers.
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Cyber-Physical System Attacks [17]

Example Targeted Attacks

I (2016) Unnamed water facility, where Syrian hacktivists took control of PLCs
controlling toxic chemicals.

I (2016) San Francisco municipal rail system ransomware hack, free rides for
commuters.

I (2017) Austrian ski resort ransomware hack, "smart locks" compromised, guests
couldn’t access their rooms.

I (2017) Well-known WannaCry ransomware attack, which also infected hospital
equipment such as MRI scanners, radiotherapy machines, oncology equipment etc.

I (2017) U.S. DHS reports govt. team hacking passenger jet controls.
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Classifying attacks [17], [18]

In order to mitigate attacks, we must understand them.

Passive Attacks
Exfiltrate data, gain knowledge of system, non-damaging.

Disruptive Attacks

I Physical-Cyber Attack - originates in physical domain, aims to disrupt cyber domain,
e.g. cutting cables.

I Cyber-Physical Attack - originates in cyberspace and impacts ability for cyber system
to control physical process, e.g. DoS, Cryptolocker.

I Cyber-Kinetic Attack - originates in cyberspace and intends to cause tangible
physical damage, e.g. Stuxnet.
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Classifying attacks [17], [18]

Table: Classified list of attacks

Cyber-Physical Cyber-Kinetic

2006 LA Traffic 2000 Maroochy Shire Wastewater
2008 Pacific Energy Resources 2008 Turkish Pipeline
2016 Syrian Water Facility 2008 Lodz Trams
2016 San Francisco Rail 2009 Stuxnet
2017 Austrian Ski Resort 2011 Springfield Water Distribution
2017 WannaCry 2014 German Steel Mill

2015 Jeep Cherokee
2016 Tesla S
2017 Passenger Jet
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Pacemaker Timing

Reset

Extension
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AS AR AS

AP

AS1 2

3

4

Ventricle
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VP

VR

VP VP

1

2 3 4

AVI
PVARP
VRP
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LRI
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AVI

VRP
AEI

LRI

URI
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AVI
PVARP
VRP

InvasIC 20 / 43



Discretised Properties – ϕ

I Real valued times AVI, AEI, URI, LRI

I Discrete valued times AVIcycles, AEIcycles, URIcycles, LRIcycles

Properties

I P1: AP and VP cannot happen simultaneously.

I P2: VS or VP must be true within AVIcycles after an atrial event AS or AP.

I P3: AS or AP must be true within AEIcycles after a ventricular event VS or VP.

I P4: After a ventricular event, another ventricular event can happen only after URIcycles.

I P5: After a ventricular event, another ventricular event should happen within LRIcycles.

InvasIC 21 / 43



Proposed Approach

Heart
(Plant) Enforcer

Pacemaker
(Controller)

ϕ
Inputs Transformed Inputs

OutputsTransformed Outputs

AS
VS

AP′

VP′

AS′

VS′

AP
VP

InvasIC 22 / 43



Discrete Timed Automata —A

A policy specification language from [19]

I Automata extended with integer variables as discrete clocks
I Discrete time more efficient than Dense time

I Clocks count in synchronous “ticks”

Example Property as DTA —Aϕ

S1: “A and B cannot happen simultaneously,
A and B alternate starting with an A. B
should be true with in 5 ticks after A occurs.”

l0 l1

l2

(1, 0), v1 := 0

(0, 0), v1 := 0

(1, 1)|(0, 1)

(0, 0), v1 < 5

(0, 1)

Σ, v1 ≥ 5|
(1, 1), v1 < 5|(1, 0), v1 < 5

Σ

[19]. S. Pinisetty, P. S. Roop, S. Smyth, et al., “Runtime enforcement of cyber-physical systems,” ACM Trans. Embed. Comput.
Syst., vol. 16, no. 5s, 178:1–178:25, Sep. 2017. [Online]. Available: http://doi.acm.org.ezproxy.auckland.ac.
nz/10.1145/3126500
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DTA Restrictions

Deterministic DTA

I For any location l and any two distinct transitions (l, g1, a, Y1, l′1) ∈ ∆ and
(l, g2, a, Y2, l′2) ∈ ∆ with same source l, the conjunction of guards g1 ∧ g2 is
unsatisfiable.

Complete DTA

I For any location l ∈ L and any event a ∈ Σ, the disjunction of the guards of the
transitions leaving l and labelled by a evaluates to true.
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Input DTA —AϕI

I Bidirectional enforcement requires a property solely reliant on inputs

I Achieved by projecting DTAAϕ on inputs
I All locations and clocks remain

I All transitions remain, with outputs removed from guards

l0 l1

l2

(1, 0), v1 := 0

(0, 0), v1 := 0

(1, 1)|(0, 1)

(0, 0), v1 < 5

(0, 1)

Σ, v1 ≥ 5|
(1, 1), v1 < 5|(1, 0), v1 < 5

Σ

l0 l1

l2

1, v1 := 0

0, v1 := 0

1|0

0, v1 < 5

0

1|0, v1 ≥ 5
1, v1 < 5

1|0
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Enforcer Operation

Heart
(Plant)

Enforcer

EI

EO

Pacemaker
(Controller)

ϕ
Inputs Transformed Inputs

OutputsTransformed Outputs

AS
VS

AP′

VP′

AS′

VS′

AP
VP

I Enforcers operate iteratively

I They first edit inputs (if necessary) & emit, then edit outputs (if necessary) & emit.

I Then, they advance their internal DTA state.
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Example Enforcement Trace

Policy P4: After a ventricular event (VP|VS), a VP may happen only after URIcycles.

Assume URIcycles = 3

t 0 1 2 3 4 5 6 7 8 9 10
VS 1
VS’ 1
VP 1 1 1 1
VP’ 1 1
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Edit Functions

Input Edit — editIϕI(σI)

I A set of possible next input events of
an Input Word (σI)

I Such that the word can still be
extended to satisfy the propertyϕI

Output Edit — editOϕ(σ, x)

I A set of possible next output events
of an Input-Output Word (σ, x)

I Such that the word can still be
extended to satisfy the propertyϕ

Variants

I Random Edit — rand-editIϕI(σI) and rand-editOϕ(σ, x)
I Randomly selects an element from the respective edit function

I Minimum Distance Edit — minD-editIϕI(σI, x) and minD-editOϕ(σ, x, y)
I Selects an element from the respective edit function with minimum distance from the

current value
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Why hardware?

The power of an enforcer

I Runtime enforcers are omnipotent — they can edit any I/O

I Potentially catastrophic if an enforcer is faulty or could be compromised

The consistency (security) of hardware

I Software can be altered/updated

I Hardware can be built to be permanent using ASICs/discrete components

I Software is intrinsically difficult to analyse
I May require analysis of entire appication/runtime/RTOS (program could halt!)

I Requires processor model

I Hardware can more easily be checked for timing/functional properties
I Requires analysis of just enforcer hardware module
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Statically compiling synthesis algorithm
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Generalised architecture
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Verifying the hardware

Functional correctness using EBMC [20]

I Security vulnerabilities can be present in implementations of otherwise-correct
systems (e.g. Heartbleed [21])

I EBMC is a model checker for hardware designs.
I It functions over assertions in Verilog Code.

I We can assert ∀q ∈ Q,∀(x, y) ∈ Σ, E(q, x, y)→ (q′, x′, y′) such that q /∈ qv.
I i.e. EBMC will check the combinatorial update implementation for the possibility of any

input at any time that could cause a transition to a violation state.

I We use k-induction with k=1.

I As it is analysing a combinatorial function, the analysis is very quick.

[20]. University of Oxford. (Jan. 2019), EBMC, [Online]. Available: http://www.cprover.org/ebmc
[21]. S. Inc. (2017), Heartbleed bug,
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Verifying the hardware

Timing correctness using Quartus TimeQuest [22]

I Quartus TimeQuest will determine the critical path and max fclk of the system.

I As there are two registers for signals to propagate through, the overhead is 1
fclk
× 2

Power consumption using Quartus PowerPlay [23]

I Assume fclk = 100kHz = 10µS, so overhead = 20µS.

I I/O toggle rate set at average of 1.5 transitions/S (avg. 90 bpm).

I Vectorless estimation for internal signals (more pessimistic).

[22]. TimeQuest timing analyzer: Quick start tutorial, UG-TMQSTANZR-1.1, Altera, Dec. 2009
[23]. PowerPlay early power estimator user guide, UG-01070, Intel, Feb. 2017
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Safety and Security Analysis

Additional hardware risk assessment

I Failure rate of system is not fail(enforcer)× fail(pacemaker).

I Enforcer encapsulates original controller and will take over in failure scenario.

I Failure rate of system is just fail(enforcer).

Attacker modelling

I Policies P1 through P5 effectively mitigate attack scenarios
I Attacker switches off pacing? (P2 , P3 , P5)

I Attacker reprograms pacemaker to pace too fast? (P4)

I Attacker reprograms pacemaker to pace AP and VP simultaneously? (P1)

I EBMC validates that all attack traces are mitigated for safe minimum QoS.
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Hardware Synthesis Results

Experimental Methodology

I Policies provided for P1 through P5

I Enforcer Verilog synthesized with Intel Quartus 16.0 to Max V CPLD

I EBMC verifies enforcer constraint

I Quartus TimeQuest provides information

I Quartus PowerPlay can estimate CPLD power consumption
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Results: HW consumption

Enforcer Policy States Timers Transitions LEs

P1 2 0 2 8
P2 3 1 5 158
P3 3 1 5 158
P4 3 1 5 158
P5 3 1 5 158

P1,2,3,4 5 2 13 335
P1,2,3,4,5 5 2 19 343

P1 ∧ P2 ∧ P3 ∧ P4 9 3 84 494
P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 17 4 304 761

Analysis

I Increasing complexity (States,Timers,Transitions)→more hardware (LEs)
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Results: HW performance

Enforcer Policy LEs
Verification Time

(s)
Min OH
(ns)

Dynamic Power
(mW @ 100kHz)

P1 8 <0.01 8.2 0.03
P2 158 <0.01 99 0.05
P3 158 <0.01 97 0.05
P4 158 <0.01 90 0.05
P5 158 <0.01 120 0.05

P1,2,3,4 335 0.06 206 0.07
P1,2,3,4,5 343 0.08 206 0.07

P1 ∧ P2 ∧ P3 ∧ P4 494 0.06 204 0.08
P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 761 12.6 - -

Analysis

I More hardware (LEs)→ Larger verification time, larger OH, more power req.

I However, order of magnitude smaller overheads than software-based enforcers
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Conclusions

I As IMDs grow in complexity/connectivity they are increasingly vulnerable to attack

I Run-time Enforcement can guarantee untrustworthy applications.

I Existing RE implementations not “secure” (they are usually software)

I Furthermore, implementations of Enforcers can themselves feature mistakes.

I We compile DTA policies to hardware-based enforcers.

I Hardware is intrinsically safer and more secure than complex software.

I The synthesized enforcers are automatically checked for correctness.

I Our enforcers guarantee a minimum safe QoS for IMDs.

Source code access
Source code for this project and its examples are available under the MIT license at

https://github.com/PRETgroup/easy-rte
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