
Bridging the gap between embedded systems and
automation systems

Partha S Roop

August 5 2016

www.pretzel.ece.auckland.ac.nz/bio

(University of Erlangen-Nuremberg) Invasive Computing Seminar 1 / 46



Embedded Systems

1.1 Embedded and Automation Systems—are they really di↵erent? 5

(a) Automation system

(b) Embedded systems

Processing Unit:
PLCs

Mains (24dc, 
120Vac, 220Vac)

Application:
Control

I/O response:
PLC scan cycle (polling)

Manufacturer provided 
connectors

Physical size:
Large footprint

IEC 61131(i.e. ladder logic, 
structured text, sequential 
function charts)

Distribution:
Distributed

Timing:
Real-time

Connectivity:
Manufacturer supported buses

Certification:
Required

Quantity of deployment:
Small numbers

Hardened for operational 
environments

Programming:

Shell:

Power:
I/O devices:

Processing Unit:
Microcontrollers

Application:
Control and data orientated

Power:
Mains or batteries

I/O response:
Interrupts or polling

Microcontroller I/O pins
I/O devices:

Physical size:
Small footprint

Mostly C, but others such as 
Java, C++, etc. are also 
considered

Programming:

Distributed and 
centralised

Distribution:

Real-time and 
non-real-time

Connectivity:
Up-to the designer

Certification:
Mostly not required

Quantity of deployment:
Large numbers

Shell:
Up-to the designer

Timing:

Fig. 1.3: Qualitative comparison of automation systems and embedded systems

ments, such as power consumption, area, and timing, and may employ hardware-
software co-design techniques [128] to achieve this. Co-design results in a system
consisting of one or more microprocessors, and some custom logic typically imple-
mented on field-programmable gate arrays (FPGAs).

a

a

Yoong et al. Model driven design using IEC61499, Springer 2015.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 2 / 46



Automation Systems
1.1 Embedded and Automation Systems—are they really di↵erent? 5

(a) Automation system

(b) Embedded systems

Processing Unit:
PLCs

Mains (24dc, 
120Vac, 220Vac)

Application:
Control

I/O response:
PLC scan cycle (polling)

Manufacturer provided 
connectors

Physical size:
Large footprint

IEC 61131(i.e. ladder logic, 
structured text, sequential 
function charts)

Distribution:
Distributed

Timing:
Real-time

Connectivity:
Manufacturer supported buses

Certification:
Required

Quantity of deployment:
Small numbers

Hardened for operational 
environments

Programming:

Shell:

Power:
I/O devices:

Processing Unit:
Microcontrollers

Application:
Control and data orientated

Power:
Mains or batteries

I/O response:
Interrupts or polling

Microcontroller I/O pins
I/O devices:

Physical size:
Small footprint

Mostly C, but others such as 
Java, C++, etc. are also 
considered

Programming:

Distributed and 
centralised

Distribution:

Real-time and 
non-real-time

Connectivity:
Up-to the designer

Certification:
Mostly not required

Quantity of deployment:
Large numbers

Shell:
Up-to the designer

Timing:

Fig. 1.3: Qualitative comparison of automation systems and embedded systems

ments, such as power consumption, area, and timing, and may employ hardware-
software co-design techniques [128] to achieve this. Co-design results in a system
consisting of one or more microprocessors, and some custom logic typically imple-
mented on field-programmable gate arrays (FPGAs).

a

a

Yoong et al. Model driven design using IEC61499, Springer 2015.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 3 / 46



Distinction is blurring

Real-time control using PLCs alone is not feasible any longer.

PLCs are combined with FPGAs to bridge the gaps in timing. a:

Using an FPGA allowed for encoding position signals to be handled directly
from the sensors. No intermediate processing or ampli�cation device was
required, thereby reducing noise and increasing processing speed. In a
process cycle faster than 1 ms, the valve position is measured and speed is
calculated as both are compared to the set point. Movement is corrected
using a PID algorithm. To keep the hydraulic circuit balanced, pressure
values in the front and back of the cylinder are simultaneously controlled to
avoid instantaneous peaks.

Question: How to develop a systematic approach that bridges the gap
without using ad-hoc solutions?

a

Green�led D (2013) How embedded systems are changing automation, Automation World.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 4 / 46



The synchronous approach

A family of languages developed in France in the early 80s, with
identical view of concurrency. a.

Inspired by synchronous circuits: all components trigger relative to a
global clock.

The reactive system operates in�nitely fast relative to its environment.
This is known as the synchrony hypothesis.

Interleaving disappears in this semantics due to strict notions of
causality.

a

A. Benveniste et al., The synchronous languages twelve years later, proceedings of IEEE, 91(1),
2003

(University of Erlangen-Nuremberg) Invasive Computing Seminar 5 / 46



IEC61499 � a cruise controller

74 4 Formal Model for IEC 61499 Function Blocks

all other statements could be derived. The formal semantics for such a set of kernel
statements for synchronous function blocks are presented in Sect. 4.3.

4.2.1 The cruise control example

SpeedGauge

speedo

CruiseManager

controller

Throttle

throttleregulStdby
throttleChg throttleChg

cclockcclock

setset

resumeresume

cruiseSpeed

regulResume

speed

cclockcclock

speed

offoff

speedVal

speedSet

timetime

regulOff

accelReleasedaccelReleased

accelPressedaccelPressed

quickAccelquickAccel

throttleOffsetthrottleOffset

quickDecelquickDecel

speedSet
cruiseOn
cruiseOff

rotaryCountrotaryCount

throttleVal throttleValcruiseSpeed

brakePressedbrakePressed

regulSet

speed

cclockcclock

Fig. 4.4: A function block network depicting a cruise control system

We now illustrate how to map a function block network to an equivalent Esterel
program using Fig. 4.4, which models a cruise control system. It consists of three
concurrently operating function blocks that have the following functionalities:

• the CruiseManager computes the state of the system and the desired cruising speed
based on the current vehicle’s speed, the buttons pressed, and the input from the
brake pedal;

• the SpeedGauge computes the actual speed based on the input from a rotary en-
coder; and,

• the Throttle regulates the throttle position by computing the di↵erence between
the desired cruising speed and the actual speed, taking into account the cruise
control’s state and the depression of the accelerator. For illustration, the ECC for
the Throttle function block has been depicted in Fig. 4.5.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 6 / 46



Synchronous approach for IEC61499
Th

e 
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

N
ew

 Z
ea

la
nd

22
 A

pr
il 

20
16

Translating function blocks to 
Esterel 

module CruiseControl: 
    input INIT, FootBrake, AccelHold, AccelRelease, CCOff; 
    input Resume, Clock, RUN, Distance : value integer; 
    output ThrottleChange, ThrottleValue : value integer; 
    output SpeedChange, CurrentSpeed : value integer; 
    signal Lever_SetDesiredSpeed, Lever_INITO, 
           Lever_DesiredSpeed : value integer, ... in 
        run Throttle [...] 
    || 
        run CruiseController [...] 
    || 
        run CruiseControlLever [...]  
    || 
        run SpeedGauge [...]   
    end signal 
end module 

(University of Erlangen-Nuremberg) Invasive Computing Seminar 7 / 46



Semantics: sequence

4.3 Semantics of Synchronous Function Blocks 85

4.3.1.5 Data test

Conditional branching can be performed based on Boolean data expressions.

dp
1 , . . . ,d

p
i 2 Dp c(dp

1 , . . . ,d
p
i ) = true

if c(dp
1 , . . . ,d

p
i ) then t else u end,D

;,?���!
I p
t,D

(4.9)

dp
1 , . . . ,d

p
i 2 Dp c(dp

1 , . . . ,d
p
i ) = f alse

if c(dp
1 , . . . ,d

p
i ) then t else u end,D

;,?���!
I p
u,D

(4.10)

4.3.1.6 Sequential statement

Rule 4.11 expresses the fact that the sequence does not finish, if its left branch, t,
does not.

t,D
O,?���!
I p
t’,D0

t;u,D
O,?���!
I p
t’;u,D0

(4.11)

If the left branch pauses, so does the sequence.

t,D
;,1��!
I p
t’,D

t;u,D
;,1��!
I p
t’;u,D

(4.12)

Moreover, if the left branch raises an exception (by exiting a trap), its right branch
will never get executed.

t,D
;,k��!
I p
t’,D k � 2

t;u,D
;,k��!
I p
t’,D

(4.13)

Otherwise, control will be immediately transferred to the right branch, u, when t
finishes.

t,D
;,0��!
I p
t’,D

t;u,D
;,?���!
I p
u,D

(4.14)

4.3.1.7 Parallel statement

The execution of the left and right branches of the parallel statement may be inter-
leaved provided either one of them performs an unfinished transition.

a

a

Yoong et al. A synchronous approach for IEC 61499 function block implementation, IEEE
Transactions on Computers, 58(12), 2009.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 8 / 46



Delayed composition for causality
78 4 Formal Model for IEC 61499 Function Blocks

Input Output

throttleChg

cruiseOn

accelPressed

throttleChg

Program starts with stateVar=0
and emission of throttleChg.

Nothing happens until cruiseOn occurs.

accelPressed occurs. Meanwhile, stateVar
is set to 1 and await on line 30 ends.
stateVar is set to 2 and await on line 11 ends.
throttleChg is then emitted.

Time

Fig. 4.8: Timing diagram for an execution trace of the program in Fig. 4.7. Each
horizontal marker denotes a tick

Input Output

throttleChg

cruiseOn

cruiseOff throttleChg

Time

Input Output

regulOff

brakePressed regulStdby

Time

set regulSet

CruiseManager Throttle

Fig. 4.9: Timing diagram showing the e↵ects of “pipelining” on communication
for a particular execution trace of the program in Fig. 4.4. Each horizontal marker
denotes a tick. The input events in the diagram have all been delayed by one tick.
Events regulOff and throttleChg are emitted during initialization. Nothing happens
then until the set button is pressed, resulting in the output of regulSet. This is fed to
the cruiseOn input in the next tick. When event brakePressed occurs, the regulStdby
output is produced, which is again delayed before arriving as the cruiseOff input of
the Throttle block. This results in a final throttleChg event

5.1 Revisiting Delayed Communication 95

5.1 Revisiting Delayed Communication

We begin here by revisiting the issue of delayed communication, this time, reasoning
about it in a more formal manner. Each input and output of a function block can be
thought of as a sequence of values in some domain, n. Then, for a given domain of
values, Vn, the sequence associated with it is a function, sn, defining the value at a
particular discrete time instant, t, such that sn(t) = vn, where t is some non-negative
integer and vn 2 Vn. By stating that send and receive operations between function
blocks must always occur with a unit delay, the assignments from a given output
sequence, o, to a given input sequence, i, will e↵ectively take the form of,

i(t) = o(t�1). (5.1)

Equation 5.1 ensures the “pipelining” of the send and receive operations between
function blocks. Furthermore, since all communications between function blocks
in a network are delayed to the next tick, they can be arbitrarily scheduled, while
still ensuring an overall deterministic behaviour. This will be illustrated using the
function block network in Fig. 5.1a. Each EIx and EOy ports in that figure can be
viewed as input and output sequences, respectively. If we assume that EOy is emitted
at instant k-1, then, by using equation 5.1, we obtain the input sequence assignments

Example2

FB2

Example3

FB3

Example1

FB1

Example4

FB4

EO4EI1

QI QI

EI8
EI7EO3EI3

EI6EI2

QI

EO2

Q1

EI4

QO QO

EI5

QOQO

EO1

(a)

1 EI1(k) = EO3(k-1);
2 EI3(k) = EO1(k-1);
3 EI5(k) = EO2(k-1);
4 EI7(k) = EO3(k-1);
5 Compute EO1(k);
6 Compute EO2(k);
7 Compute EO3(k);
8 Compute EO4(k);

(b)

Fig. 5.1: Illustration of a set of strongly connected function blocks: (a) shows an
event connection loop in a function block network; (b) shows the pseudocode for
implementing delayed communications between function blocks(University of Erlangen-Nuremberg) Invasive Computing Seminar 9 / 46



Semantics: parallel
86 4 Formal Model for IEC 61499 Function Blocks

t,D
O,?���!
I p
t’,D0

tku,D
O,?���!
I p
t’ku,D0

(4.15)

u,D
Q,?���!
I p
u’,D0

tku,D
Q,?���!
I p
tku’,D0

(4.16)

Rule 4.17 uses the completion code synchronizer to specify the synchronized beha-
viour of the parallel statement. When both t and u perform finished transitions, the
parallel statement synchronizes their execution using their completion codes.

t,D
;,k��!
I p
t’,D k � 0 u,D

;,l��!
I p
u’,D l � 0

tku,D
;,syn(k,l)�������!

I p
t’ku’,D

(4.17)

As already mentioned in the description for data assignment, write-write con-
currency on variables is disallowed, while read-write concurrency is semantically
forbidden by rule 4.8. This means that t and u will never operate on the same vari-
ables in the same instant.

4.3.1.8 Loop

The loop simply rewrites into a sequence of its body with the loop itself.

loop t end,D
;,?���!
I p
t;loop t end,D (4.18)

As a consequence, loop bodies that finish with the completion code of 0 will result
in the undesired rewriting into an infinite sequence of unfinished transitions. Such
instantaneous loops will be rejected by insisting that the body’s reaction never ter-
minates instantaneously, as required by rule 4.19.

t,D
E,k
,��!

I p
t’,D0 k > 0

loop t end,D
E,k
,��!

I p
t’;loop t end,D0

(4.19)

4.3.1.9 Exception declaration

Rule 4.20 expresses the fact that the trap statement does not terminate if its body
performs an unfinished transition.

a

a

Yoong et al. A synchronous approach for IEC 61499 function block implementation, IEEE
Transactions on Computers, 58(12), 2009.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 10 / 46



Outcomes

Determinism: Given any state and any valid input combination, at
most one transition is enabled.

Reactivity: Given any state and any valid input combination, at least
one transition is enabled.

Theorem: Synchronous function blocks are deterministic and reactive.
a

The uni�cation of embedded systems and automation systems requires
the consideration of cyber-physical systems i.e. not just the controller
but also the plant.

a

Yoong et al. A synchronous approach for IEC 61499 function block implementation, IEEE
Transactions on Computers, 58(12), 2009.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 11 / 46



Cyber-physical systems

Cyber-physical systems (CPS)a use distributed embedded controllers to control
physical processes. Examples may be found in several domains: automotive,
robotics, medical devices, and smart grids.

aR. Alur, Principles of Cyber-Physical Systems. MIT Press, 2015.

1

1Figure reproduced from http://icc.mtu.edu/cps/
(University of Erlangen-Nuremberg) Invasive Computing Seminar 12 / 46



Modelling Cyber-physical systems

Hybrid automata (HA) is a major enabler for the formalization of CPS.

A combination of ODEs to model the continuous dynamics and FSMs
to model the discrete mode changes that are induced by the controller.

Model: Car
Discrete: Changing gears
Continuous: Throttle control

Model: Cell biology
Discrete: External stimulus
Continuous: Flow of ions

(University of Erlangen-Nuremberg) Invasive Computing Seminar 13 / 46



A water tank temperature controller
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 5

Plant

Water tank

Gas burner

Thermometer

Digital Controller

x

TURN_ON/
TURN_OFF/

(a) Water tank system overview

0 10 20 30 40 50
0

20

40

60

80

100

120

100

ON (0,20)

(13.2,100)
OFF (17.8,100)

ON (24.0,62)

Time (seconds)

Te
m

p
er

at
u

re
(�

C
)

(b) A trace generated from our tool, called Piha

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
F
F
^
x 0

=
x

;

O
N

^
x 0

=
x

;

(c) Hybrid Input Output Automata (HIOA) of the water tank

ẏ = 0

y = 0

b1

initial

ẏ = 1

y  1
10

b2

ẏ = 0

y = 0
b3

ẏ = 1

y  1
10

b4

TURN ON ^y0=0
;

⌧^y= 1
10^y0=0

ON

TURN OFF ^y0=0
;

⌧^y= 1
10^y0=0

OFF

(d) Hybrid Input Output Automata (HIOA) of the gas burner. The reaction time
of the gas burner is
1
10

seconds.

Fig. 2. An example of a water tank heating system – adapted from [10]. Figure 2(a) presents the plant and the discrete controller. Figures 2(c)
and 2(d) captures the behaviour of the water tank and the gas burner. Figure 2(b) presents an example trace through a water tank heating system
(generated from our tool). The trace is a set of discrete points sampled every 0.2 seconds.

• Inv(l): Is a function that assigns a predicate to location l
whose free variables are from X and it constrains the possible
valuations of these when the HIOA is in location l.

• Flow(l): Is a function that assigns a predicate to location l
whose free variables are from X [ Ẋ and it constraints the
rate of change of these variables when the HIOA resides in l.

• Jump(e): Is a function that assigns to the edge ‘e’ a
predicate whose free variables are from X [X 0. This
predicate specifies when the mode switch using ‘e’ is possible
and what possible updates of the variables are when the
hybrid system makes this discrete change.

The semantics of an HIOA is specified using the notion
of timed transitions systems (TTS) using Definition 2.

Definition 2. The semantics of an HIOA
H = hLoc, Edge,⌃, Inv, F low, Jumpi is defined by a timed
transition system TTS = hQ, Q0,⌃,!i.

• Q is of the form (l, v) where l is a location and v 2 [X ! R]

such that (v, v0) satisfies Inv(l). Q is called the state-space
of H.

• Q0 ✓ Q of the form (l, v) such that v satisfies Init(l).
• ! is the set of transitions consisting of either:

1) Discrete transitions (instantaneous): For each edge
e = (l, �i, �o, l

0), we have (l, v)
�i�!
�o

(l0, v0) if (l, v) 2 Q,

(l0, v0) 2 Q, (v, v0) satisfies Jump(e).
2) Continuous transition (delay): For each non-negative real

�, we have (l, v)
�! (l, v0) if (l, v) 2 Q, (l, v0) 2 Q,

and there is a differentiable function f : [0, �] ! Rm

(which is a witness function of the above transition where
m = |X|) with first derivative ḟ : (0, �)! Rm such that
the following conditions hold:
– f(0) = v and f(�) = v0,
– for all ✏ 2 (0, �), f(✏) satisfies Inv(l) and

(f(✏), ḟ(✏)) satisfies Flow(l).

The TTS semantics of an HIOA encodes the state-space

a

aJ-F Raskin, �An introduction to hybrid automata�, Handbook of Networked and
Embedded Control Systems Control Engineering 2005, pp 491-517.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 14 / 46



A water tank temperature controller

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 5

Plant

Water tank

Gas burner

Thermometer

Digital Controller

x

TURN_ON/
TURN_OFF/

(a) Water tank system overview

0 10 20 30 40 50
0

20

40

60

80

100

120

100

ON (0,20)

(13.2,100)
OFF (17.8,100)

ON (24.0,62)

Time (seconds)

Te
m

p
er

at
u

re
(�

C
)

(b) A trace generated from our tool, called Piha

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
F
F
^
x 0

=
x

;

O
N

^
x 0

=
x

;

(c) Hybrid Input Output Automata (HIOA) of the water tank

ẏ = 0

y = 0

b1

initial

ẏ = 1

y  1
10

b2

ẏ = 0

y = 0
b3

ẏ = 1

y  1
10

b4

TURN ON ^y0=0
;

⌧^y= 1
10^y0=0

ON

TURN OFF ^y0=0
;

⌧^y= 1
10^y0=0

OFF

(d) Hybrid Input Output Automata (HIOA) of the gas burner. The reaction time
of the gas burner is
1
10

seconds.

Fig. 2. An example of a water tank heating system – adapted from [10]. Figure 2(a) presents the plant and the discrete controller. Figures 2(c)
and 2(d) captures the behaviour of the water tank and the gas burner. Figure 2(b) presents an example trace through a water tank heating system
(generated from our tool). The trace is a set of discrete points sampled every 0.2 seconds.

• Inv(l): Is a function that assigns a predicate to location l
whose free variables are from X and it constrains the possible
valuations of these when the HIOA is in location l.

• Flow(l): Is a function that assigns a predicate to location l
whose free variables are from X [ Ẋ and it constraints the
rate of change of these variables when the HIOA resides in l.

• Jump(e): Is a function that assigns to the edge ‘e’ a
predicate whose free variables are from X [X 0. This
predicate specifies when the mode switch using ‘e’ is possible
and what possible updates of the variables are when the
hybrid system makes this discrete change.

The semantics of an HIOA is specified using the notion
of timed transitions systems (TTS) using Definition 2.

Definition 2. The semantics of an HIOA
H = hLoc, Edge,⌃, Inv, F low, Jumpi is defined by a timed
transition system TTS = hQ, Q0,⌃,!i.

• Q is of the form (l, v) where l is a location and v 2 [X ! R]

such that (v, v0) satisfies Inv(l). Q is called the state-space
of H.

• Q0 ✓ Q of the form (l, v) such that v satisfies Init(l).
• ! is the set of transitions consisting of either:

1) Discrete transitions (instantaneous): For each edge
e = (l, �i, �o, l

0), we have (l, v)
�i�!
�o

(l0, v0) if (l, v) 2 Q,

(l0, v0) 2 Q, (v, v0) satisfies Jump(e).
2) Continuous transition (delay): For each non-negative real

�, we have (l, v)
�! (l, v0) if (l, v) 2 Q, (l, v0) 2 Q,

and there is a differentiable function f : [0, �] ! Rm

(which is a witness function of the above transition where
m = |X|) with first derivative ḟ : (0, �)! Rm such that
the following conditions hold:
– f(0) = v and f(�) = v0,
– for all ✏ 2 (0, �), f(✏) satisfies Inv(l) and

(f(✏), ḟ(✏)) satisfies Flow(l).

The TTS semantics of an HIOA encodes the state-space

Temperature of water inside a tank may be modelled as x(t) = Ie−Kt + h(1− e−Kt)
where:

I is the initial temperature.

K is a constant that depends on the tank conductivity.

h is a constant that depends on the power of the gas burner.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 15 / 46



A hybrid automata example
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 5

Plant

Water tank

Gas burner

Thermometer

Digital Controller

x

TURN_ON/
TURN_OFF/

(a) Water tank system overview

0 10 20 30 40 50
0

20

40

60

80

100

120

100

ON (0,20)

(13.2,100)
OFF (17.8,100)

ON (24.0,62)

Time (seconds)

Te
m

p
er

at
u

re
(�

C
)

(b) A trace generated from our tool, called Piha

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
F
F
^
x 0

=
x

;

O
N

^
x 0

=
x

;

(c) Hybrid Input Output Automata (HIOA) of the water tank

ẏ = 0

y = 0

b1

initial

ẏ = 1

y  1
10

b2

ẏ = 0

y = 0
b3

ẏ = 1

y  1
10

b4

TURN ON ^y0=0
;

⌧^y= 1
10^y0=0

ON

TURN OFF ^y0=0
;

⌧^y= 1
10^y0=0

OFF

(d) Hybrid Input Output Automata (HIOA) of the gas burner. The reaction time
of the gas burner is
1
10

seconds.

Fig. 2. An example of a water tank heating system – adapted from [10]. Figure 2(a) presents the plant and the discrete controller. Figures 2(c)
and 2(d) captures the behaviour of the water tank and the gas burner. Figure 2(b) presents an example trace through a water tank heating system
(generated from our tool). The trace is a set of discrete points sampled every 0.2 seconds.

• Inv(l): Is a function that assigns a predicate to location l
whose free variables are from X and it constrains the possible
valuations of these when the HIOA is in location l.

• Flow(l): Is a function that assigns a predicate to location l
whose free variables are from X [ Ẋ and it constraints the
rate of change of these variables when the HIOA resides in l.

• Jump(e): Is a function that assigns to the edge ‘e’ a
predicate whose free variables are from X [X 0. This
predicate specifies when the mode switch using ‘e’ is possible
and what possible updates of the variables are when the
hybrid system makes this discrete change.

The semantics of an HIOA is specified using the notion
of timed transitions systems (TTS) using Definition 2.

Definition 2. The semantics of an HIOA
H = hLoc, Edge,⌃, Inv, F low, Jumpi is defined by a timed
transition system TTS = hQ, Q0,⌃,!i.

• Q is of the form (l, v) where l is a location and v 2 [X ! R]

such that (v, v0) satisfies Inv(l). Q is called the state-space
of H.

• Q0 ✓ Q of the form (l, v) such that v satisfies Init(l).
• ! is the set of transitions consisting of either:

1) Discrete transitions (instantaneous): For each edge
e = (l, �i, �o, l

0), we have (l, v)
�i�!
�o

(l0, v0) if (l, v) 2 Q,

(l0, v0) 2 Q, (v, v0) satisfies Jump(e).
2) Continuous transition (delay): For each non-negative real

�, we have (l, v)
�! (l, v0) if (l, v) 2 Q, (l, v0) 2 Q,

and there is a differentiable function f : [0, �] ! Rm

(which is a witness function of the above transition where
m = |X|) with first derivative ḟ : (0, �)! Rm such that
the following conditions hold:
– f(0) = v and f(�) = v0,
– for all ✏ 2 (0, �), f(✏) satisfies Inv(l) and

(f(✏), ḟ(✏)) satisfies Flow(l).

The TTS semantics of an HIOA encodes the state-space

a

Four locations t1, ..t4 that represent the discrete modes.

Each location has some �ow predicates that specify the rate of change of
the continuous variables.

a

J-F Raskin, �An introduction to hybrid automata�, Handbook of Networked and Embedded Control
Systems Control Engineering 2005, pp 491-517.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 16 / 46



A hybrid automata example
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 5

Plant

Water tank

Gas burner

Thermometer

Digital Controller

x

TURN_ON/
TURN_OFF/

(a) Water tank system overview

0 10 20 30 40 50
0

20

40

60

80

100

120

100

ON (0,20)

(13.2,100)
OFF (17.8,100)

ON (24.0,62)

Time (seconds)

Te
m

p
er

at
u

re
(�

C
)

(b) A trace generated from our tool, called Piha

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
F
F
^
x 0

=
x

;

O
N

^
x 0

=
x

;

(c) Hybrid Input Output Automata (HIOA) of the water tank

ẏ = 0

y = 0

b1

initial

ẏ = 1

y  1
10

b2

ẏ = 0

y = 0
b3

ẏ = 1

y  1
10

b4

TURN ON ^y0=0
;

⌧^y= 1
10^y0=0

ON

TURN OFF ^y0=0
;

⌧^y= 1
10^y0=0

OFF

(d) Hybrid Input Output Automata (HIOA) of the gas burner. The reaction time
of the gas burner is
1
10

seconds.

Fig. 2. An example of a water tank heating system – adapted from [10]. Figure 2(a) presents the plant and the discrete controller. Figures 2(c)
and 2(d) captures the behaviour of the water tank and the gas burner. Figure 2(b) presents an example trace through a water tank heating system
(generated from our tool). The trace is a set of discrete points sampled every 0.2 seconds.

• Inv(l): Is a function that assigns a predicate to location l
whose free variables are from X and it constrains the possible
valuations of these when the HIOA is in location l.

• Flow(l): Is a function that assigns a predicate to location l
whose free variables are from X [ Ẋ and it constraints the
rate of change of these variables when the HIOA resides in l.

• Jump(e): Is a function that assigns to the edge ‘e’ a
predicate whose free variables are from X [X 0. This
predicate specifies when the mode switch using ‘e’ is possible
and what possible updates of the variables are when the
hybrid system makes this discrete change.

The semantics of an HIOA is specified using the notion
of timed transitions systems (TTS) using Definition 2.

Definition 2. The semantics of an HIOA
H = hLoc, Edge,⌃, Inv, F low, Jumpi is defined by a timed
transition system TTS = hQ, Q0,⌃,!i.

• Q is of the form (l, v) where l is a location and v 2 [X ! R]

such that (v, v0) satisfies Inv(l). Q is called the state-space
of H.

• Q0 ✓ Q of the form (l, v) such that v satisfies Init(l).
• ! is the set of transitions consisting of either:

1) Discrete transitions (instantaneous): For each edge
e = (l, �i, �o, l

0), we have (l, v)
�i�!
�o

(l0, v0) if (l, v) 2 Q,

(l0, v0) 2 Q, (v, v0) satisfies Jump(e).
2) Continuous transition (delay): For each non-negative real

�, we have (l, v)
�! (l, v0) if (l, v) 2 Q, (l, v0) 2 Q,

and there is a differentiable function f : [0, �] ! Rm

(which is a witness function of the above transition where
m = |X|) with first derivative ḟ : (0, �)! Rm such that
the following conditions hold:
– f(0) = v and f(�) = v0,
– for all ✏ 2 (0, �), f(✏) satisfies Inv(l) and

(f(✏), ḟ(✏)) satisfies Flow(l).

The TTS semantics of an HIOA encodes the state-space

Invariants are associated with locations e.g. 20 ≤ x ≤ 100 is an invariant
associated with t1. Execution remains in a location until the invariant
holds.

Some locations may have initialization conditions that provide the initial
values of the variables.

A transition is enabled when the input is present and the jump condition
associated with the transition holds. When a given transition is taken the
�nal value of the variables are updated.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 17 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



A hybrid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar 18 / 46



Syntax

De�nition
A hybrid automata H = < Loc,Edge,Σ, Inv ,Flow , Jump > where

Loc = {l1, .., ln} representing n control modes or locations.

Σ is the input alphabet comprising of event names.

Edge ⊆ Loc × Σ× Loc are the set of edges between locations.

Three sets for the set of continuous variables, their rate of change and their updated
values represented as follows: X = {x1, .., xm} Ẋ = {ẋ1, .., ˙xm} X ′ = {x ′1, .., x ′m}.
Init(l): Is a predicate whose free variables are from X . It speci�es the possible valuations
of these when the HA starts in l .

Inv(l): Is a predicate whose free variables are from X and it constrains these when the HA
resides in l .

Flow(l): Is a predicate whose free variables are from X ∪ Ẋ and it speci�es the rate of
change of these variables when the HA resides in l .

Jump(e): Is a function that assigns to the edge e a predicate whose free variables are
from X ∪ X ′. This predicate speci�es when the mode switch using e is possible. It also
speci�es the updated values of the variables when this mode switch happens.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 19 / 46



Semantics

De�nition

The semantics of a HA H= < Loc,Edge,Σ, Inv ,Flow , Jump > is provided
using a timed transition system TTA = < Q,Q0,Σ,→>

Q is for the form (l , v) where l is a location and v ∈ [X → R] such
that v satis�es Inv(l). Q is called the state space of H.

Q0 ⊆ Q of the form (l , v) such that v satis�es Init(l).

→ is the set of transitions consisting of either:

Discrete transitions: For each edge e = (l , σ, l ′), we have
(l , v)

σ→ (l ′, v ′) if (l , v) ∈ Q, (l ′, v ′) ∈ Q and (v , v ′) satisfy Jump(e).
These take zero time.
Continuous transitions: When control remains in a location and time
progresses. Here the continuous variables evolve according to the
ODEs as long as the invariant holds.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 20 / 46



Simulation-based validation

This validation is usually done open-loop.

System under validation is stimulated using an input trace to observe
its response.

Limitations: Coverage criteria dependent, exhaustive simulation
infeasible.

Simulation for validating a pacemaker

(University of Erlangen-Nuremberg) Invasive Computing Seminar 21 / 46



What is emulation?

Operating a controller under test in closed-loop with the actual
physical process (the plant or the environment) [5].

The design of the controller follows the principles of real-time systems.

The controller is digital in nature, while the plant usually exhibits
continuous dynamics and is uncontrollable.

Emulation for validating a pacemaker
(Actual heart + pacemaker model)

(University of Erlangen-Nuremberg) Invasive Computing Seminar 22 / 46



Limitations of emulation

The plant and the controller may need to be designed in parallel i.e. a
rehabilitation robot.

Model-in-the-loop simulation using Simulink and State�ow: semantic
issues [7, 1] and issues with model �delity.

Ptolemy [6] and Zélus [1] are tools with formal semantics. However,
these are suitable for the modelling of closed systems using HA
models. Also, like SL/SF they interact dynamically with ODE solvers.
This is not good for emulation.

Potemy has incorporated a QSS-based solver [2] to overcome the
above. This, however, is unsuitable for open systems.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 23 / 46



Problem statement

There is no approach for black-box validation of controllers (say
Pacemakers) using real-time plant models. This requires:

Open models of the plant using a network of hybrid input output
automata (HIOA [4]).

Formal semantics of HIOA models and their compositions.

Automatic techniques for modular code generation.

Static timing analysis of the plant for plant-controller timing
compatibility i.e. correct timing veri�cation to ensure that the
sampling time of the plant and controller match [3]

We propose the new technique of remulation for this.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 24 / 46



What is remulation?

Remulation stands for reverse emulation using an executable model of the
plant, we term a plant-on-a-chip (PoC). During remulation, the
plant-controller relationship is reversed.

We have to synthesize a suitable model of the r-controller (the
traditional plant).

The r-plant (the usual controller) acts as an environment for the
r-controller. The r-plant is black-box in nature.

Remulation for validating a pacemaker
(Heart model (real-time) + pacemaker actual/model)

(University of Erlangen-Nuremberg) Invasive Computing Seminar 25 / 46



Methodology overview
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 2

As alternatives to the actual plant-based emulation,
model-in-the-loop validation is extensively used in the
automotive domain [17]. Here a model of the plant is
implemented on a suitable hardware for the closed-loop
validation of controllers. However, these rely on code gener-
ation using Simulink R�/Stateflow R� and inherit the semantic
issues associated with these tools. Moreover, we show in
Section 5 that the generated code from these tools have
scalability issues. Finally, to the best of our knowledge,
existing works have not carefully examined the key issue
of timing associated with model generation from formal
models to enable real-time emulation of controllers [18]. Our
research, for the first time, proposes a formal foundation
for model-in-the-loop validation. Here, we seek to validate
black-box controllers (e.g. pacemakers) in closed loop with
an associated plant model (e.g. the electrical conduction
system of the human heart). To this end, we develop the
concept of plant-on-a-chip (PoC). A PoC is an open system,
that has to be designed using a formal model of the plant,
such that the designed system preserves the semantics and
timing requirements of the model to ensure correct valida-
tion of the block-box controllers. This would require new
research to facilitate the following:

• Capturing plant dynamics as open systems using a
network of hybrid input output automata (HIOA) [19].
Unlike earlier closed system models of the plant using
HA, we seek to develop a range of open benchmarks
using the developed approach, which will be the start-
ing point of further research on the use of HIOA-based
open models of practical systems for emulation. To
this end, we have already developed a range of HIOA
benchmarks of reasonable complexity, which will be
made open-source.

• Techniques to transform such models into low-level
code using semantic preserving transformation tech-
niques. To this end, this paper will propose a new
code generation technique from HIOA that is semantic
preserving.

• Ensure closed-loop validation of black-box controllers
using the PoC. This would require correct timing ver-
ification to ensure that the sampling time of the plant
and controller match [18]. To this end, we demonstrate
the technical feasibility of Worst Case Execution Time
(WCET) analysis [3] of the generated code for the
PoC, which is difficult with existing model-in-the-loop
validation techniques due to their reliance on numerical
solutions.

As a PoC is an open system, we have used hybrid IO
automata (HIOA) of Lynch et al. [19] as the formal model for
modelling the plant. Given that Worst-Case Execution Time
(WCET) analysis is an essential requirement for PoC, the
proposed approach significantly extends the synchronous
approach [20] that is the default standard for designing
safety critical systems in many domains including civil avi-
ation. Consequently, our code generation relies on the well
known tenets of the synchronous approach. An overview
of the proposed methodology is presented in Figure 1. We
start with a specification that describes a network of HIOA
modelling a plant (step 1). To facilitate code generation,
we constrain such models using a set of well-formedness

Plant Specification
modelled as

an HIOA
(step 1)

Checking
well-formed

properties of HIOA
(step 2)

Modular
compilation

(step 3)

Linking
parallel

composition
(step 4)

C code and
math library

(step 5)

Static timing
analysis
(step 6)

Phase-locked loop
(PLL)

Deployment on the
embedded device

(step 7)

Pass

Fail–review the specification

WCET

Predictable Architecture

Black Box
Controller + Validation

Fig. 1. An overview of the proposed methodology

criteria, which can be statically checked (step 2). We then
introduce an abstraction called Synchronous Hybrid Input
Output Automata (SHIOA), that provides the semantics
of the generated code, and using this abstraction modular
compilation can be performed for each HIOA (step 3). Such
modular compilation is feasible due to the synchronous
semantics of a network of well formed HIOAs (WHIOA)
presented in Section 3.4. Using this semantics, we perform
a linking operation of the generated C code (step 4). Next,
we perform static timing analysis on the C code to obtain
its WCET (step 6). We do not use of dynamic numerical
solvers when generating ’C’ code from the plant model,
since dynamic numerical solvers hinder the WCET analysis
of the generated code. This WCET value is used to drive
the deployed plant model and the black box controller,
synchronously via a Phase-locked loop (PLL) (step 7). The
closed-loop system formed by deploying the PoC and the
black box controller together is used for controller valida-
tion. The proposed methodology is detailed in Section 4.

1.1 Related work
The design of CPS requires both formal analysis [21] and
testing-based validation. Of particular importance is the
need for emulation-based validation [16], as outlined above.
Hybrid automata and their compositions [10], [11] provide
a formal framework for the specification and simulation
of closed systems. There are well known negative results
on the decidability of the reachability problem over hybrid
automata, i.e., even the simplest class, called linear hybrid
automata, is undecidable [10]. Several restrictions have been
proposed with associated semi-decidable results that are
used for developing model checking-based solutions [22].
However, the negative decidability results mean that both
formal analysis and modular code generation are criti-
cal [13].

Commercial tools such as Simulink R� or Stateflow R� [12]
provide modular code generation from hybrid system mod-

(University of Erlangen-Nuremberg) Invasive Computing Seminar 26 / 46



Overview

1 Introduction

2 Background

3 Motivation / problem statement

4 Methodology

5 Compiling HIOA
Compilation overview
The �rst step of the compilation procedure
The second step of the compilation procedure
Correctly handling the invariant conditions

6 From a cell to the conduction network
Models

7 Results

(University of Erlangen-Nuremberg) Invasive Computing Seminar 27 / 46



Compilation overview

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 9

(v2, v
0
2) satisfies Jump(e2).

(Rule Inter-Intra) (q1, q2)
�i1��!
�o1

(q01, q
0
2) where

q1 = (l1, v1, i1, k), q2 = (l2, v2, i2, k),
q01 = (l01, v

0
1, i

0
1, 0), q02 = (l2, v

0
2, i

0
2, 0).

e1 = (q1, �i1, �o1, q
0
1) 2 Edge1 and (v1v

0
1) satisfies

Jump(e1). q2, q
0
2 2 Q2 and (v2, v

0
2) satisfy Inv(l2).

Finally, i02 = v2 and v02 = v2.

(Rule Intra-Inter) (q1, q2)
�i2��!
�o2

(q01, q
0
2) where

q1 = (l1, v1, i1, k), q2 = (l2, v2, i2, k),
q01 = (l1, v

0
1, i

0
1, 0), q02 = (l02, v

0
2, i

0
2, 0).

e2 = (q2, �i2, �o2, q
0
2) 2 Edge2 and (v2, v

0
2) satisfies

Jump(e2). q1, q
0
1 2 Q1 and (v1, v

0
1) satisfy Inv(l1).

Finally, i01 = v1 and v01 = v1.

– Intra-location transitions of the form:

(Rule Intra-Intra) (q1, q2)! (q01, q
0
2) where

q1 = (l1, v1, i1, k), q2 = (l2, v2, i2, k),
q01 = (l1, v

0
1, i1, k + 1), q02 = (l2, v

0
2, i2, k + 1), and

q1, q
0
1 2 Q1, (v1, v

0
1) satisfy Inv(l1),

Switness(l1, k, �, i1) = v1 and
Switness(l1, k + 1, �, i1) = v0

1. Similarly, q2, q
0
2 2 Q2,

(v2, v
0
2) satisfy Inv(l2), Switness(l2, k, �, i2) = v2

and Switness(l2, k + 1, �, i2) = v0
2 for any �.

In Definition 7, the DTTS corresponding to two SHIOAs
composed in parallel is computed by composing their re-
spective DTTSs. The state-space Q of the resultant DTTS is
a subset of the product of the state-space of the individual
constituents. The initial state-space Q0 is also a subset of
the product of the initial state-space of the constituents.
The transition relation consists of two types of transitions.
The inter-location transitions happen when any one of the
constituents or both constituents make an inter-location
transition (there are three different possibilities).

Rule Inter-Inter states that both constituents
can take a discrete transition to new locations.
Rule Inter-Intra states that when the first constituent
Q1 takes an inter-location transition from location l1 to
l01, Q2 is also forced to make such a transition. But, the
resultant location of Q2 does not change, i.e., Q2 can only
take a transition from l2 to l2. Moreover, upon taking the
transition the initial value i2 is set to the current valuation
v2, consequently implying that v02 = v2. Once in the new
state (l01, l2) vectors v1 and v2 start evolving according to
their individual witness functions. Rule Intra-Inter
is the dual of Rule Inter-Intra. Finally, intra-location
transition in the composition (Rule Intra-Intra)
happens only when both constituents make an intra-
location transition.

4 METHODOLOGY FOR CODE GENERATION

Figure 4 outlines the approach used to compile a single
HIOA. The compilation process consists of three steps. We
describe all three steps, in Sections 4.1-4.3, using the water
tank HIOA, which has been reproduced in Figure 5(a).

HIOA

Is a
WHIOA ?

(step 1,
Sec 4.1)

Invalid
input

FSM/
C-code

Generate
SHIOA
(step 2,
Sec 4.2)

SHIOA

Generate
backend

code (step
3, Sec 4.3)

no

yes

Fig. 4. Process for compiling a single Hybrid Input Output Automata
(HIOA)

4.1 Static analysis of Hybrid Input Output Automata
(HIOA)
Given an HIOA, the first step (Figure 4) in the compilation
process is to statically determine if the well-formedness
criteria defined in Section 3.1 are respected. If the HIOA
does not respect the well-formedness criteria, then an error
is generated.

Algorithm 1 The algorithm to check the well-formedness
criteria of a HIOA
Input: HIOA hioa
Output: Boolean

1: gset ;
2: for all edges 2 hioa do
3: for all guards 2 edges do
4: gset gset [ guards
5: end for
6: end for
7: for all loc 2 hioa do
8: for all invs 2 loc do
9: gset gset [ invs

10: end for
11: end for
12: // check that all location invariants and jump conditions

are of type CV (X)
13: for all g 2 gset do
14: assert type(g) 2 CV (X)
15: end for
16: for all loc 2 hioa do
17: for all ode 2 loc do
18: if solve ode(ode) then
19: (R1, R2) solve(ode.rhs > 0)
20: (R0

1, R
0
2) solve(ode.rhs < 0)

21: [N1, N2] get inv bounds(ode, loc)
22: if (R1, R2) \ [N1, N2] 6= ; ^ (R0

1, R
0
2) \ [N1, N2] 6= ;

then
23: // Slope of witness function changes sign
24: throw Exception (“Not a WHIOA”)
25: else
26: return True
27: end if
28: else
29: // No closed form solution, hence not a WHIOA
30: throw Exception(“Not a WHIOA”)
31: end if
32: end for
33: end for

The procedure to verify the well-formedness criteria is
presented in Algorithm 1, which takes an HIOA as input.

Figure: Overview of the proposed modular code generation approach

(University of Erlangen-Nuremberg) Invasive Computing Seminar 28 / 46



Overview

1 Introduction

2 Background

3 Motivation / problem statement

4 Methodology

5 Compiling HIOA
Compilation overview
The �rst step of the compilation procedure
The second step of the compilation procedure
Correctly handling the invariant conditions

6 From a cell to the conduction network
Models

7 Results

(University of Erlangen-Nuremberg) Invasive Computing Seminar 29 / 46



Well formed HIOA (WHIOA)

Discretisation: In HA semantics, when control resides in a location,
there are in�nite valuations of variables in any given interval of time.
This makes code generation di�cult. To facilitate code generation, we
make evaluations only at discrete intervals. These intervals correspond
to the ticks of a synchronous program that will be used for code
generation.

Symbolic solution: The ODEs which de�ne �ow constraints in any
location of the form ẋ = f (x) must be of closed form nature. This
property ensures that such ODEs are symbolically solvable so that the
witness functions needed for the generated code are symbolically
computable.

Monotonicity: All witness functions must be monotonic. This property
is needed so that the generated code can compute correct valuation of
invariants and jump conditions.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 30 / 46



Recap: the heating system

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 5

Plant

Water tank

Gas burner

Thermometer

Digital Controller

x

TURN_ON/
TURN_OFF/

(a) Water tank system overview

0 10 20 30 40 50
0

20

40

60

80

100

120

100

ON (0,20)

(13.2,100)
OFF (17.8,100)

ON (24.0,62)

Time (seconds)

Te
m

p
er

at
u

re
(�

C
)

(b) A trace generated from our tool, called Piha

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
F
F
^
x 0

=
x

;

O
N

^
x 0

=
x

;

(c) Hybrid Input Output Automata (HIOA) of the water tank

ẏ = 0

y = 0

b1

initial

ẏ = 1

y  1
10

b2

ẏ = 0

y = 0
b3

ẏ = 1

y  1
10

b4

TURN ON ^y0=0
;

⌧^y= 1
10^y0=0

ON

TURN OFF ^y0=0
;

⌧^y= 1
10^y0=0

OFF

(d) Hybrid Input Output Automata (HIOA) of the gas burner. The reaction time
of the gas burner is
1
10

seconds.

Fig. 2. An example of a water tank heating system – adapted from [10]. Figure 2(a) presents the plant and the discrete controller. Figures 2(c)
and 2(d) captures the behaviour of the water tank and the gas burner. Figure 2(b) presents an example trace through a water tank heating system
(generated from our tool). The trace is a set of discrete points sampled every 0.2 seconds.

• Inv(l): Is a function that assigns a predicate to location l
whose free variables are from X and it constrains the possible
valuations of these when the HIOA is in location l.

• Flow(l): Is a function that assigns a predicate to location l
whose free variables are from X [ Ẋ and it constraints the
rate of change of these variables when the HIOA resides in l.

• Jump(e): Is a function that assigns to the edge ‘e’ a
predicate whose free variables are from X [X 0. This
predicate specifies when the mode switch using ‘e’ is possible
and what possible updates of the variables are when the
hybrid system makes this discrete change.

The semantics of an HIOA is specified using the notion
of timed transitions systems (TTS) using Definition 2.

Definition 2. The semantics of an HIOA
H = hLoc, Edge,⌃, Inv, F low, Jumpi is defined by a timed
transition system TTS = hQ, Q0,⌃,!i.

• Q is of the form (l, v) where l is a location and v 2 [X ! R]

such that (v, v0) satisfies Inv(l). Q is called the state-space
of H.

• Q0 ✓ Q of the form (l, v) such that v satisfies Init(l).
• ! is the set of transitions consisting of either:

1) Discrete transitions (instantaneous): For each edge
e = (l, �i, �o, l

0), we have (l, v)
�i�!
�o

(l0, v0) if (l, v) 2 Q,

(l0, v0) 2 Q, (v, v0) satisfies Jump(e).
2) Continuous transition (delay): For each non-negative real

�, we have (l, v)
�! (l, v0) if (l, v) 2 Q, (l, v0) 2 Q,

and there is a differentiable function f : [0, �] ! Rm

(which is a witness function of the above transition where
m = |X|) with first derivative ḟ : (0, �)! Rm such that
the following conditions hold:
– f(0) = v and f(�) = v0,
– for all ✏ 2 (0, �), f(✏) satisfies Inv(l) and

(f(✏), ḟ(✏)) satisfies Flow(l).

The TTS semantics of an HIOA encodes the state-space

(University of Erlangen-Nuremberg) Invasive Computing Seminar 31 / 46



Step-1: translating ODEs to witness functions

Symbolic approach using the synchronous abstraction

ẋ = K (h − x), K = 150, h = 0.075 (1)

x [k] = C1 × e−0.075×δ×k (2)

Explanation

Equation (1), Ordinary Di�erential Equation (ODE) captures the evolution of the
continuous variable x that represents the temperature in the tank.

The witness function, for the ODE, is the symbolic (closed form solution) to the ODE, if
one exists.

Equation (2) evolves x iteratively while the invariant condition (10 ≤ x ≤ 100) on the
location (t2) holds.

This iterative evolution of the continuous variables at discrete points in time is akin to
transitions on a logical tick of a synchronous program.

We term the Hybrid Input Output Automata (HIOA) obtained after replacing each ODE
with its equivalent witness function Synchronus Hybrid Input Output Automata (SHIOA).

(University of Erlangen-Nuremberg) Invasive Computing Seminar 32 / 46



Overview

1 Introduction

2 Background

3 Motivation / problem statement

4 Methodology

5 Compiling HIOA
Compilation overview
The �rst step of the compilation procedure
The second step of the compilation procedure
Correctly handling the invariant conditions

6 From a cell to the conduction network
Models

7 Results

(University of Erlangen-Nuremberg) Invasive Computing Seminar 33 / 46



Compilation step 2: Compiling HIOA to SHIOA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 5

Plant

Water tank

Gas burner

Thermometer

Digital Controller

x

TURN_ON/
TURN_OFF/

(a) Water tank system overview

0 10 20 30 40 50
0

20

40

60

80

100

120

100

ON (0,20)

(13.2,100)
OFF (17.8,100)

ON (24.0,62)

Time (seconds)

Te
m

p
er

at
u

re
(�

C
)

(b) A trace generated from our tool, called Piha

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
F
F
^
x 0

=
x

;

O
N

^
x 0

=
x

;

(c) Hybrid Input Output Automata (HIOA) of the water tank

ẏ = 0

y = 0

b1

initial

ẏ = 1

y  1
10

b2

ẏ = 0

y = 0
b3

ẏ = 1

y  1
10

b4

TURN ON ^y0=0
;

⌧^y= 1
10^y0=0

ON

TURN OFF ^y0=0
;

⌧^y= 1
10^y0=0

OFF

(d) Hybrid Input Output Automata (HIOA) of the gas burner. The reaction time
of the gas burner is
1
10

seconds.

Fig. 2. An example of a water tank heating system – adapted from [10]. Figure 2(a) presents the plant and the discrete controller. Figures 2(c)
and 2(d) captures the behaviour of the water tank and the gas burner. Figure 2(b) presents an example trace through a water tank heating system
(generated from our tool). The trace is a set of discrete points sampled every 0.2 seconds.

• Inv(l): Is a function that assigns a predicate to location l
whose free variables are from X and it constrains the possible
valuations of these when the HIOA is in location l.

• Flow(l): Is a function that assigns a predicate to location l
whose free variables are from X [ Ẋ and it constraints the
rate of change of these variables when the HIOA resides in l.

• Jump(e): Is a function that assigns to the edge ‘e’ a
predicate whose free variables are from X [X 0. This
predicate specifies when the mode switch using ‘e’ is possible
and what possible updates of the variables are when the
hybrid system makes this discrete change.

The semantics of an HIOA is specified using the notion
of timed transitions systems (TTS) using Definition 2.

Definition 2. The semantics of an HIOA
H = hLoc, Edge,⌃, Inv, F low, Jumpi is defined by a timed
transition system TTS = hQ, Q0,⌃,!i.

• Q is of the form (l, v) where l is a location and v 2 [X ! R]

such that (v, v0) satisfies Inv(l). Q is called the state-space
of H.

• Q0 ✓ Q of the form (l, v) such that v satisfies Init(l).
• ! is the set of transitions consisting of either:

1) Discrete transitions (instantaneous): For each edge
e = (l, �i, �o, l

0), we have (l, v)
�i�!
�o

(l0, v0) if (l, v) 2 Q,

(l0, v0) 2 Q, (v, v0) satisfies Jump(e).
2) Continuous transition (delay): For each non-negative real

�, we have (l, v)
�! (l, v0) if (l, v) 2 Q, (l, v0) 2 Q,

and there is a differentiable function f : [0, �] ! Rm

(which is a witness function of the above transition where
m = |X|) with first derivative ḟ : (0, �)! Rm such that
the following conditions hold:
– f(0) = v and f(�) = v0,
– for all ✏ 2 (0, �), f(✏) satisfies Inv(l) and

(f(✏), ḟ(✏)) satisfies Flow(l).

The TTS semantics of an HIOA encodes the state-space

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 10

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
FF ^x 0

=x
;

O
N ^x 0

=x
;

(a) Hybrid Input Output Automata (HIOA) (and also a WHIOA), see
Definition 1. Reproduced from Figure 2(c). Symbols K and h are constants
with values 0.075 and 150, respectively.

x(t) = 20
x(0) 2 [20,20]

x = 20

t1

initial

x(t) = F1(t,C1)

x(0) 2 [20,100]

20  x  100t2

x(t) = 100
x(0) 2 [100,100]

x = 100 t3

x(t) = F2(t,C1)

x(0) 2 [20,100]

20  x  100

t4

ON^x0=x
;

⌧^x=100^x0=x
;

OFF^x0=x
;

⌧^x=20^x0=x
;

OFF^x 0
=x

;

ON^x 0
=x;

(b) Synchronous Hybrid Input Output Automata (SHIOA), see Defini-
tion 5. Flow predicates are described using witness functions. Values of the
constants h and K are 150 and 0.075, respectively. Furthermore, witness
function F1 = C1e�0.075⇥t + 150.0 and F2 = C1e�0.075⇥t

t1

initial
x[0] = 20,
k = 0

t2 t3

t4

O
N

^x
[k

]=
2
0

C
1
=

x
[k

]�
1
5
0
,x

[0
]=

x
[k

],
k
=

0

x[k]=100
x[0]=x[k],k=0

x[k]=20
x[0]=x[k],k=0

O
F

F
^x

[k
]=

1
0
0

C
1
=

x
[k

],
x
[0

]=
x
[k

],
k
=

0

ON^OFF^(20x[k]100)
x[k+1]=F1(�,k,C1),k=k+1

ON^OFF^(x[k]=100)
x[k+1]=x[k],k=k+1

ON^OFF^(x[k]=100)
x[k+1]=F2(�,k,C1),k=k+1

ON^OFF^(x[k]=20)
x[k+1]=x[k],k=k+1

O
F
F

C
1=

x[k],x[0]=
x[k],k=

0

O
N

C
1=

x[k]�
150,x[0]=

x[k],k=
0

(c) Synchronous Witness Input Output Automata (SWIOA). We abuse
the notation x[k] to update the value of x, although x[k] represents the
valuation of the continuous variable x. The physical time t = k ⇥ �,
where k is the logical tick and � is the tick length. Enforcement of equality
x[k] = 100 is via so called Saturation as explained later in Section 4.4.

Fig. 5. The water tank component from the running example.

Three well-formedness criteria need to be guaranteed. First,
the invariants and the jump conditions need to be of the
form CV (X) (Definition 3). Lines 2-15 guarantee that this
criterion is met. The second and third criteria require that
each ODE, in every location, of the HIOA should have a
closed form solution and should be monotonic. Lines 16-33
ensure that these criteria are satisfied.

Consider the running example HIOA – the water tank
system presented in Figure 5(a). Lines 2-15 in Algorithm 1
collect all the invariant and jump conditions from the loca-
tions and the edges, respectively. Once collected in set gset,
an assertion statement guarantees that all these conditions
are of the form CV (X) (line 14). Lines 16-33 iterate through
each location of the HIOA. Upon visiting a location, all
ODEs within the location are solved symbolically (line 18).
If no closed form solution exists, then an exception is gener-
ated (line 30).

Given that a closed form solution exists, we then guaran-
tee that all ODEs in a location are monotonic (not necessarily
strictly monotonic). We use the definition that any given
(witness) function is considered monotonic if and only if
the first derivative of the function does not change sign [46].
Flow conditions evolve one or more ODEs within a given lo-
cation as long as the invariant on the location is not violated.
Hence, in our case, the definition of a monotonic function
can be made more specific: any given (witness) function is
monotonic if and only if its first derivative does not change
sign within the interval specified by the invariant(s) of the
location.

The right hand side of the ODEs specify the first deriva-
tives of the witness functions. We need to ensure that the
right hand side expression of the ODE (the slope) does not
change signs within the invariant bounds. The lines 19-24
ensure that these conditions are satisfied. Line 19 obtains
the real number line interval (denoted by (R1, R2)) such
that the derivative of the witness function is always greater
than zero, i.e., an increasing function. Line 20 obtains the
real number line interval (denoted by (R0

1, R
0
2)), such that

the first derivative of the witness function is less than zero.
Next, we obtain the invariant interval (denoted [N1, N2]),
bounding the value of the evolving variable in the ODE,
from the invariant(s) on the location. A non-empty interval
(R1, R2) \ [N1, N2] indicates that the witness function is
increasing within the location intervals. Similarly, a non-
empty interval (R0

1, R
0
2) \ [N1, N2] indicates that the wit-

ness function is a decreasing function within the location
invariants. If both sets are non-empty, the witness function
increases and decreases within the invariants specified on
the location, and hence, the witness function is not mono-
tonic. We have built our code generation infrastructure
in python using the Sympy symbolic algebra library [47].
The solve_ode and solve functions in Algorithm 1 are
polymorphic functions used to solve ODEs and functions,
respectively.

Consider the running example in Figure 5(a) and specif-
ically consider location t2. The steps to determine if the
witness function in location t2 is monotonic are as follows:

1) Compute the real number line interval for x such that
the right hand side of the ODE is strictly greater
than zero: x 2 solve((0.075 ⇤ (150� x) > 0) results in
x 2 (�1, 150)

a

aF1 = C1× e−0.075×t + 150.0
and F2 = C1× e−0.075×t

(University of Erlangen-Nuremberg) Invasive Computing Seminar 34 / 46



Compilation step 3: SWIOA / back-end code generation
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 10

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
FF ^x 0

=x
;

O
N ^x 0

=x
;

(a) Hybrid Input Output Automata (HIOA) (and also a WHIOA), see
Definition 1. Reproduced from Figure 2(c). Symbols K and h are constants
with values 0.075 and 150, respectively.

x(t) = 20
x(0) 2 [20,20]

x = 20

t1

initial

x(t) = F1(t,C1)

x(0) 2 [20,100]

20  x  100t2

x(t) = 100
x(0) 2 [100,100]

x = 100 t3

x(t) = F2(t,C1)

x(0) 2 [20,100]

20  x  100

t4

ON^x0=x
;

⌧^x=100^x0=x
;

OFF^x0=x
;

⌧^x=20^x0=x
;

OFF^x 0
=x

;

ON^x 0
=x;

(b) Synchronous Hybrid Input Output Automata (SHIOA), see Defini-
tion 5. Flow predicates are described using witness functions. Values of the
constants h and K are 150 and 0.075, respectively. Furthermore, witness
function F1 = C1e�0.075⇥t + 150.0 and F2 = C1e�0.075⇥t

t1

initial
x[0] = 20,
k = 0

t2 t3

t4

O
N

^x
[k

]=
2
0

C
1
=

x
[k

]�
1
5
0
,x

[0
]=

x
[k

],
k
=

0

x[k]=100
x[0]=x[k],k=0

x[k]=20
x[0]=x[k],k=0

O
F

F
^x

[k
]=

1
0
0

C
1
=

x
[k

],
x
[0

]=
x
[k

],
k
=

0

ON^OFF^(20x[k]100)
x[k+1]=F1(�,k,C1),k=k+1

ON^OFF^(x[k]=100)
x[k+1]=x[k],k=k+1

ON^OFF^(x[k]=100)
x[k+1]=F2(�,k,C1),k=k+1

ON^OFF^(x[k]=20)
x[k+1]=x[k],k=k+1

O
F
F

C
1=

x[k],x[0]=
x[k],k=

0

O
N

C
1=

x[k]�
150,x[0]=

x[k],k=
0

(c) Synchronous Witness Input Output Automata (SWIOA). We abuse
the notation x[k] to update the value of x, although x[k] represents the
valuation of the continuous variable x. The physical time t = k ⇥ �,
where k is the logical tick and � is the tick length. Enforcement of equality
x[k] = 100 is via so called Saturation as explained later in Section 4.4.

Fig. 5. The water tank component from the running example.

Three well-formedness criteria need to be guaranteed. First,
the invariants and the jump conditions need to be of the
form CV (X) (Definition 3). Lines 2-15 guarantee that this
criterion is met. The second and third criteria require that
each ODE, in every location, of the HIOA should have a
closed form solution and should be monotonic. Lines 16-33
ensure that these criteria are satisfied.

Consider the running example HIOA – the water tank
system presented in Figure 5(a). Lines 2-15 in Algorithm 1
collect all the invariant and jump conditions from the loca-
tions and the edges, respectively. Once collected in set gset,
an assertion statement guarantees that all these conditions
are of the form CV (X) (line 14). Lines 16-33 iterate through
each location of the HIOA. Upon visiting a location, all
ODEs within the location are solved symbolically (line 18).
If no closed form solution exists, then an exception is gener-
ated (line 30).

Given that a closed form solution exists, we then guaran-
tee that all ODEs in a location are monotonic (not necessarily
strictly monotonic). We use the definition that any given
(witness) function is considered monotonic if and only if
the first derivative of the function does not change sign [46].
Flow conditions evolve one or more ODEs within a given lo-
cation as long as the invariant on the location is not violated.
Hence, in our case, the definition of a monotonic function
can be made more specific: any given (witness) function is
monotonic if and only if its first derivative does not change
sign within the interval specified by the invariant(s) of the
location.

The right hand side of the ODEs specify the first deriva-
tives of the witness functions. We need to ensure that the
right hand side expression of the ODE (the slope) does not
change signs within the invariant bounds. The lines 19-24
ensure that these conditions are satisfied. Line 19 obtains
the real number line interval (denoted by (R1, R2)) such
that the derivative of the witness function is always greater
than zero, i.e., an increasing function. Line 20 obtains the
real number line interval (denoted by (R0

1, R
0
2)), such that

the first derivative of the witness function is less than zero.
Next, we obtain the invariant interval (denoted [N1, N2]),
bounding the value of the evolving variable in the ODE,
from the invariant(s) on the location. A non-empty interval
(R1, R2) \ [N1, N2] indicates that the witness function is
increasing within the location intervals. Similarly, a non-
empty interval (R0

1, R
0
2) \ [N1, N2] indicates that the wit-

ness function is a decreasing function within the location
invariants. If both sets are non-empty, the witness function
increases and decreases within the invariants specified on
the location, and hence, the witness function is not mono-
tonic. We have built our code generation infrastructure
in python using the Sympy symbolic algebra library [47].
The solve_ode and solve functions in Algorithm 1 are
polymorphic functions used to solve ODEs and functions,
respectively.

Consider the running example in Figure 5(a) and specif-
ically consider location t2. The steps to determine if the
witness function in location t2 is monotonic are as follows:

1) Compute the real number line interval for x such that
the right hand side of the ODE is strictly greater
than zero: x 2 solve((0.075 ⇤ (150� x) > 0) results in
x 2 (�1, 150)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , XXXX XXXX 10

ẋ = 0

x = 20

t1

initial

ẋ = K(h� x)

20  x  100
t2

ẋ = 0

x = 100
t3

ẋ = �Kx

20  x  100

t4

ON ^x0=x
;

⌧^x=100^x0=x
;

OFF ^x0=x
;

⌧^x=20^x0=x
;

O
FF ^x 0

=x
;

O
N ^x 0

=x
;

(a) Hybrid Input Output Automata (HIOA) (and also a WHIOA), see
Definition 1. Reproduced from Figure 2(c). Symbols K and h are constants
with values 0.075 and 150, respectively.

x(t) = 20
x(0) 2 [20,20]

x = 20

t1

initial

x(t) = F1(t,C1)

x(0) 2 [20,100]

20  x  100t2

x(t) = 100
x(0) 2 [100,100]

x = 100 t3

x(t) = F2(t,C1)

x(0) 2 [20,100]

20  x  100

t4

ON^x0=x
;

⌧^x=100^x0=x
;

OFF^x0=x
;

⌧^x=20^x0=x
;

OFF^x 0
=x

;

ON^x 0
=x;

(b) Synchronous Hybrid Input Output Automata (SHIOA), see Defini-
tion 5. Flow predicates are described using witness functions. Values of the
constants h and K are 150 and 0.075, respectively. Furthermore, witness
function F1 = C1e�0.075⇥t + 150.0 and F2 = C1e�0.075⇥t

t1

initial
x[0] = 20,
k = 0

t2 t3

t4

O
N

^x
[k

]=
2
0

C
1
=

x
[k

]�
1
5
0
,x

[0
]=

x
[k

],
k
=

0

x[k]=100
x[0]=x[k],k=0

x[k]=20
x[0]=x[k],k=0

O
F

F
^x

[k
]=

1
0
0

C
1
=

x
[k

],
x
[0

]=
x
[k

],
k
=

0

ON^OFF^(20x[k]100)
x[k+1]=F1(�,k,C1),k=k+1

ON^OFF^(x[k]=100)
x[k+1]=x[k],k=k+1

ON^OFF^(x[k]=100)
x[k+1]=F2(�,k,C1),k=k+1

ON^OFF^(x[k]=20)
x[k+1]=x[k],k=k+1

O
F
F

C
1=

x[k],x[0]=
x[k],k=

0

O
N

C
1=

x[k]�
150,x[0]=

x[k],k=
0

(c) Synchronous Witness Input Output Automata (SWIOA). We abuse
the notation x[k] to update the value of x, although x[k] represents the
valuation of the continuous variable x. The physical time t = k ⇥ �,
where k is the logical tick and � is the tick length. Enforcement of equality
x[k] = 100 is via so called Saturation as explained later in Section 4.4.

Fig. 5. The water tank component from the running example.

Three well-formedness criteria need to be guaranteed. First,
the invariants and the jump conditions need to be of the
form CV (X) (Definition 3). Lines 2-15 guarantee that this
criterion is met. The second and third criteria require that
each ODE, in every location, of the HIOA should have a
closed form solution and should be monotonic. Lines 16-33
ensure that these criteria are satisfied.

Consider the running example HIOA – the water tank
system presented in Figure 5(a). Lines 2-15 in Algorithm 1
collect all the invariant and jump conditions from the loca-
tions and the edges, respectively. Once collected in set gset,
an assertion statement guarantees that all these conditions
are of the form CV (X) (line 14). Lines 16-33 iterate through
each location of the HIOA. Upon visiting a location, all
ODEs within the location are solved symbolically (line 18).
If no closed form solution exists, then an exception is gener-
ated (line 30).

Given that a closed form solution exists, we then guaran-
tee that all ODEs in a location are monotonic (not necessarily
strictly monotonic). We use the definition that any given
(witness) function is considered monotonic if and only if
the first derivative of the function does not change sign [46].
Flow conditions evolve one or more ODEs within a given lo-
cation as long as the invariant on the location is not violated.
Hence, in our case, the definition of a monotonic function
can be made more specific: any given (witness) function is
monotonic if and only if its first derivative does not change
sign within the interval specified by the invariant(s) of the
location.

The right hand side of the ODEs specify the first deriva-
tives of the witness functions. We need to ensure that the
right hand side expression of the ODE (the slope) does not
change signs within the invariant bounds. The lines 19-24
ensure that these conditions are satisfied. Line 19 obtains
the real number line interval (denoted by (R1, R2)) such
that the derivative of the witness function is always greater
than zero, i.e., an increasing function. Line 20 obtains the
real number line interval (denoted by (R0

1, R
0
2)), such that

the first derivative of the witness function is less than zero.
Next, we obtain the invariant interval (denoted [N1, N2]),
bounding the value of the evolving variable in the ODE,
from the invariant(s) on the location. A non-empty interval
(R1, R2) \ [N1, N2] indicates that the witness function is
increasing within the location intervals. Similarly, a non-
empty interval (R0

1, R
0
2) \ [N1, N2] indicates that the wit-

ness function is a decreasing function within the location
invariants. If both sets are non-empty, the witness function
increases and decreases within the invariants specified on
the location, and hence, the witness function is not mono-
tonic. We have built our code generation infrastructure
in python using the Sympy symbolic algebra library [47].
The solve_ode and solve functions in Algorithm 1 are
polymorphic functions used to solve ODEs and functions,
respectively.

Consider the running example in Figure 5(a) and specif-
ically consider location t2. The steps to determine if the
witness function in location t2 is monotonic are as follows:

1) Compute the real number line interval for x such that
the right hand side of the ODE is strictly greater
than zero: x 2 solve((0.075 ⇤ (150� x) > 0) results in
x 2 (�1, 150)

a

aF1 = C1× e−0.075×t + 150.0
and F2 = C1× e−0.075×t

(University of Erlangen-Nuremberg) Invasive Computing Seminar 35 / 46



Overview

1 Introduction

2 Background

3 Motivation / problem statement

4 Methodology

5 Compiling HIOA
Compilation overview
The �rst step of the compilation procedure
The second step of the compilation procedure
Correctly handling the invariant conditions

6 From a cell to the conduction network
Models

7 Results

(University of Erlangen-Nuremberg) Invasive Computing Seminar 36 / 46



Need for saturation

ẋ = 0.2x

x ≤ 120

t1

ẋ = 0

x ≥ 100

t2
A, x > 100intial

x(0) =
50

(a) Case 1: an increasing function and it does not need saturation

ẏ = 8.5

y < 50

t3

ẏ = 0

y >= 50

t4
intial
y(0) =
20

τ, y = 50

(b) Case 2: due to equality there is a need for saturation

ż = −5.5

z > −30

t5

ż = 0

z ≤ −10

t6
intial
z(0) = 0

A, z < −10

(c) Case 3: a decreasing function and it does not need saturation

0 1 2 3 4 5 6 7
−50

0

50

100

120

100

80

50

20

0
−10
−30

(4,111.2)

(3,45.5)

Time (in seconds)

V
a
lu
es

o
f
x
,y
,z

(d) The behaviours of the three example HAs are depicted us-
ing solid lines. Our synchronous approximations are depicted
using dashed lines. Each tick is one second long.

Figure: The need for saturation depends on the location invariant, the guard in
HA, and the step size. Out of the three cases, only Case 2 requires saturation, see
Figure 2(d).

(University of Erlangen-Nuremberg) Invasive Computing Seminar 37 / 46



Saturation Lemma

Lemma
It is always possible to uniquely determine the saturation value for any continuous variable at
time instant k when the state (location) switch from l to l ′ is to be taken in a SHIOA.

Proof.
The proof of this lemma follows from the following observations.

Observation 1: All witness functions x(t) for any x ∈ X are monotonic in every location
(additional requirement).

Observation 2: All witness functions x(t) for any x ∈ X are continuous as they are
di�erentiable in any interval.

Observation 3: Given the above two observations, the saturation value for any variable x
always exists in the time interval [(k − 1)× δ, k × δ] when the location switch happens at
instant k × δ.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 38 / 46



Overview

1 Introduction

2 Background

3 Motivation / problem statement

4 Methodology

5 Compiling HIOA
Compilation overview
The �rst step of the compilation procedure
The second step of the compilation procedure
Correctly handling the invariant conditions

6 From a cell to the conduction network
Models

7 Results

(University of Erlangen-Nuremberg) Invasive Computing Seminar 39 / 46



UoA Model - Cell

v̇x = C1vx
v̇y = C2vy
v̇z = C3vz

v = vx − vy + vz

v < VT ∧ g(~vI ) < VT

q0

initial
vx = 0 ∧ vy = 0
∧vz = 0 ∧ θ = 0

v̇x = C4vx + C7g(~vI )
v̇y = C5vy +C8g(~vI )
v̇z = C6vz + C9g(~vI )
v = vx − vy + vz

v < VT ∧ g(~vI ) > 0

q1

v̇x = C10vx
v̇y = C11vy
v̇z = C12vz

v = vx − vy + vz

v < VO − 80.1
√
θq2

v̇x = C13vx f (θ)
v̇y = C14vy f (θ)
v̇z = C15vz

v = vx − vy + vz

v > VR
q3

{τ},
{g(~vI ) ≥ VT},

v ′x = 0.3v
v ′y = 0.0v
v ′z = 0.7v
θ′ = v/VT


{τ},

{g(~vI ) ≤ 0 ∧ v < VT},
v ′x = vx
v ′y = vy
v ′z = vz


{τ},

{v ≥ VT},
v ′x = vx
v ′y = vy
v ′z = vz



{τ},
{v ≥ VO − 80.1

√
θ},

v ′x = vx
v ′y = vy
v ′z = vz



{τ},
{v ≤ VR},
v ′x = vx
v ′y = vy
v ′z = vz



0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

vR

vT
50

100

vO

150

Time (ms)

P
ot
en
ti
al

(m
V
)

RP ST UP ERP RRP RP

HA based onVentricular AP.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 40 / 46



Conduction Network

(University of Erlangen-Nuremberg) Invasive Computing Seminar 41 / 46



Simulink vs Piha � Execution time

On average 9.8 times
faster than Simulink. For
the heart conduction
system it is two orders of
magnitude faster.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 42 / 46



Scalability Relative to Simulink

of Piha and Simulink R� as the number of cells in the Net-
work of Heart Nodes (NHN) model increases. In the second
experiment, we select benchmarks that span across different
application domains such as medical, physics, and industrial
automation to illustrate the diversity of the proposed approach.
We compare each of these benchmarks against Simulink R� in
terms of execution time and maximum memory usage.

A. Experimental set-up

The following aspects were considered in order to achieve
a fair comparison between Piha and Simulink R�:

Solver To reflect the synchronous execution model, we
used a discrete numerical solver with a fixed
step in Simulink R�, namely ode1 (Forward
Euler).

Step Size For all benchmarks the step size in Simulink R�

is fixed to 0.01 milliseconds. The same step size
is also used in Piha, � = 0.01 milliseconds.

Time All benchmarks were simulated for 10 seconds
of simulation time. Based on a step size of
0.01 milliseconds this translates to 1 million
iterations.

Compiler All code was compiled using the Microsoft
Visual C++ compiler. Piha code was compiled
using both no optimisation (O0) and O2 opti-
misation. Simulink R� code was compiled using
the automatically generated Makefile.

The experiments were evaluated using an Intel i7-4790
processor with 8 GB RAM on Windows 7.

B. Scalability

0 200 400 600 800 1,000
0

50

100

150

Real Time

Number of Heart Nodes

E
xe

cu
tio

n
Ti

m
e

(s
)

Simulink R� Piha

Fig. 5. Scalability in execution time of Simulink R� and Piha against number
of nodes in the Network of Heart Nodes (NHN) model.

For the purposes of this experiment we aim to validate the
scalability of Piha through the running example of the NHN

whilst comparing it to Simulink R�. Code was generated for
varying network sizes (33 cells, 66 cells, 99 cells, etc.) and
the execution time recorded. The experimental set-up was the
same as described in Section VI-A, ie. 1 million iterations at
a 0.01 millisecond step size.

The results are shown in Figure 5, with the most obvious
feature being that no data is recorded for Simulink R� for
complexities greater than 297 cells. Simulink R� imposes an
inbuilt requirement that the generated code use less than 2GB
of memory. This discontinuity represents the point after which
the memory usage exceeds this limit.1 Piha, on the other hand,
is able to continue past this point.

These results also illustrate that Piha has a smaller increase
in Execution Time as network size increases meaning that it is
able to maintain real-time with a model roughly 5 times larger
(200 cells vs 40 cells) than Simulink R�. It is also of note that
the change in gradient of Piha around the 200 cell mark is
due to the memory usage exceeding the L3 cache size (8MB
in our CPU).

C. Diversity

The purpose of the second experiment, we use the five
benchmarks presented in Table I. The table also presents
the number of locations (#L) in each hybrid automata. For
example, (250) denotes that the Thermostat Network (TSN)
benchmark is described by 50 instances of an HIOA with two
locations.

For all the benchmarks, the executable for the Simulink R�

models are generated using the in-built Real-time Workshop R�

C code generator. Similarly, for Piha, we generate equivalent
C code, and compile it using a standard C compiler. The
execution times and executable sizes of the generated
programs are reported below and illustrated in Figure 6.

Execution time: Figure 6(a) shows that for all benchmarks
the execution time of Piha (both with no optimisation and
with optimisation level O2) is faster than that of Simulink R�.
On average, we show that Piha is 9.8 times faster than
Simulink R�. For our most complicated example, the NHN,
we observe an improvement of 20.3 times.

Code size: Figure 6(b) shows that the code generated by
Piha is also, generally, more compact than that generated
by Simulink R�. On average, the optimised code of Piha is
54% smaller than Simulink R� when compiled. For the NHN
example, the unoptimised code of Piha is comparable to that
of Simulink R� while the optimised code sees improvements
similar to that of the other benchmarks.

In summary, the code generated by Piha executes 9.8 times
faster on average, with the executable size being 54% smaller
on average when compared to Simulink R�.

1Simulink R� memory usage at a 297 cell network is 1.8GB.

5 times more scalable

40 vs 200 cells for
real-time emulation

(University of Erlangen-Nuremberg) Invasive Computing Seminar 43 / 46



Methodology for PoC design for automation

1

Designing Plant-on-a-Chip (PoC) for
cyber-physical systems using IEC-61499

Avinash Malik, Partha S Roop, and Théo Steger

F

Abstract—Automation systems used in smart grid, transportation, and
medical electronics are cyber-physical in nature. Here a set of dis-
tributed controllers are used for controlling physical processes also
known as the plant. Automation standards, such as the emerging IEC-
61499 standard, while well suited to the design of discrete controllers,
are not ideally suited to model the dynamics of the plant. Such modelling
is essential for emulation-based validation of the controllers in the cyber-
physical systems (CPS) domain.

To this end, we propose the first approach for the design of Plant-
on-a-Chip (PoC) in the automation domain. A PoC is the implementation
of a suitable abstraction of a plant on a computer chip, so that it can be
connected to a discrete controller to provide real-time response like the
real plant. Thus, a PoC may be used for emulation of diverse controllers
in CPS, without using the actual plant. We provide an approach based
on the IEC-61499 standard as the basis for PoC design process. No ex-
tensions to the standard are needed using the developed methodology.

We use a well-known formal model for CPS, called Hybrid Input
Output Automata (HIOA), as the main vehicle in the proposed formula-
tion. A physical process (the plant) may be described as a synchronous
composition of a network of such HIOA. We provide an approach to
transform such a network to a Composite Function Block (CFB) in IEC-
61499. This transformation is also shown to be semantics preserving.
We also develop an approach for synchronous code generation from
such plant models such that the generated code can be executed on
a computer chip to provide real-time response to their adjoining con-
trollers. Through many practical examples, we illustrate the scalability
and practicability of the proposed approach. The developed approach,
for the first time, enables the design of a Plant-on-a-Chip (PoC) for the
emulation of physical processes in industrial automation, without using
the actual plant.

Index Terms—IEC-61499, Hybrid Automata, Cyber Physical Systems
(CPS), Simulink, Co-simulation.

1 INTRODUCTION

PROGRAMMABLE logic controllers (PLC) are the most
popular means of controlling physical processes, also

called the plant, such as nuclear plants [1], energy grids [2],
automobile control [3], etc. The formal semantics of Pro-
grammable Logic Controller (PLC) programming languages
such as IEC-61131-3 [4] and IEC-61499 [5], [6] are based on
the discrete Model of Computation (MoC). In this MoC, the
PLC program samples inputs from the plant, computes the
desired state of the plant and finally emits outputs back to
the plant in order to guide it to the required state. The plant

Plant specification
is synchronous

composition
of HIOAs

(step 1)

Checking
well-formed

properties of HIOA
(step 2)

HIOAs
translated
to SHIOAs

(step 3)

SHIOAs
translated

to BFBs
(step 4)

Synchronously
composed
BFBs into
plant CFB

(step 5)

Controller
designed as CFB

Validation
Controller CFB
|| Plant CFB

(step 6)

Validated controller

Pass

Fail–review the specification

Fail–refine controller

Pass

Fig. 1. Proposed controller validation approach

keeps on changing continuously, while the PLC proceeds in
discrete steps, together forming a so called Hybrid system.

Most PLC applications are considered safety critical,
where a single fault can lead to catastrophic damage [7].
In view of the safety critical nature of PLCs, rigorous val-
idation of the PLC control logic is an essential component
of controller design. During the design phase, the controller
properties are validated using a plant model. The discrete
nature of the PLC, does not allow capturing the continuous
dynamics of the plant using the PLC programming lan-
guages. Hence, the de facto industry standard for validation
of PLC control logic is using the concept of co-simulation.
During co-simulation, the continuous dynamics of the plant
are captured using dedicated Computer Aided Production
Engineering (CAPE) frameworks [8] or general discrete
event simulation frameworks such as Simulink [9]. The
continuous plant modeled in a framework such as Simulink
can interact with the model of a PLC or a hardware PLC
running the control logic. In the latter case it is also called
hardware in the loop simulation. TCP/IP as described in [2]
or OPC [10] are the common communication mechanisms
employed during co-simulation.

The co-simulation approach suffers from many draw-
backs as identified in [11], [12]:

• Lack of time synchronization The plant simulation and
the PLC execute at their individual pace – termed as

(University of Erlangen-Nuremberg) Invasive Computing Seminar 44 / 46



Conclusions

We discuss the need for a uni�ed design approach for embedded /
automation systems.

We adopt the well known synchronous approach for designing the controller
(using the IEC61499 standard) and the plant (also using the same standard).

We propose a new technique called reverse emulation (remulation) to design
a plant-on-a-chip (PoC).

A PoC is a model of the plant that o�ers real-time response similar to the
actual plant.

A key idea is to avoids dynamic interaction with numerical solvers to enable
real-time implementations.

The approach is based on a new class of hybrid automata, we call
synchronous hybrid automata.

We have compared our approach with Simulink and the results are
favourable.

Future work: comparison with Ptolemy and the QSS-based approach,
veri�cation algorithms, personalisation of the heart models, and exploring
applications in other domains such as smart grids, and automotive.

(University of Erlangen-Nuremberg) Invasive Computing Seminar 45 / 46



Key references

R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. �Hybrid
automata: An algorithmic approach to the speci�cation and
veri�cation of hybrid systems. In Hybrid Systems� , volume 736 of
Lecture Notes in Computer Science. Springer-Verlag, 1993.

E. A. Lee et al. �Modeling and Simulating Cyber-Physical Systems
using CyPhySim�, ACM Embedded Software (EMSOFT) conference,
2015.

N Allen, S. Andalam, P. S. Roop, A. Malik, M. Trew and N. Patel,
�Modular code generation for emulating the electrical conduction
system of the human heart�, Design Automation and Test in Europe
(DATE), Dresden, Germany, 14-18 March 2016.

A. Malik, P. S. Roop, S. Andalam, E. Yip and M. Trew, �A
synchronous rendering of hybrid systems for designing Plant-on-a-Chip
(PoC)�, arXiv preprint arXiv:1510.04336 (under review at IEEE
Transactions on Software Engineering).

(University of Erlangen-Nuremberg) Invasive Computing Seminar 46 / 46


	Introduction
	Background
	Motivation / problem statement
	Methodology
	Compiling HIOA
	Compilation overview
	The first step of the compilation procedure
	The second step of the compilation procedure
	Correctly handling the invariant conditions

	From a cell to the conduction network
	Models

	Results

