Bridging the gap between embedded systems and

automation systems

Partha S Roop

August 5 2016

www.pretzel.ece.auckland.ac.nz/bio

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Embedded Systems

Application:
Control and data orientated\

Certification:
Mostly not required

— 1/0 response:

K Interrupts or polling
Programming: .
‘ b h h Connectivity:
Mostly C, but others such as . —Up—to the designer
Java, C++, etc. are also
considered Processing Unit:
Microcontrollers
Timing:
| mine.
Real-time and
non-real-time
— devi
Distribution: V(?E\/ICES.—.
" Microcontroller I/O pins
Distributed and
centralised

Power:
Mains or batteries

LN (N . o
N Physical size:
\ O & LN -’ j Small footprint
Quantity of deployment: Shell:
Large numbers Up-to the designer
(b) Embedded systems a

aYoong et al. Model driven design using IEC61499, Springer 2015.

iversity of Erlangen-Nurembe Invasive Computi

Automation Systems

Quantity of deployment:
Small numbers

Shell:

Application: Hardened for operational
Control environments

Physical size: Distribution:
Large footprint Distributed

)

Certification:
Required

1/0 response:
PLC scan cycle (polling)

Connectivity:
Manufacturer supported buses

Programming:
IEC 61131(i.e. ladder logic,
structured text, sequential

function charts) (J/Odevices:
Manufacturer provided

Power:
Mains (24dc, / \ X _ connectors
120Vac, 220Vac) Timing: Processing Unit:

Real-time PLCs
(a) Automation system 2

aYoong et al. Model driven design using IEC61499, Springer 2015.

iversity of Erlangen-Nurembe Invasive Computi

Distinction is blurring

@ Real-time control using PLCs alone is not feasible any longer.

@ PLCs are combined with FPGAs to bridge the gaps in timing. 2:
°

?Greenfiled D (2013) How embedded systems are changing automation, Automation World.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

The synchronous approach

o A family of languages developed in France in the early 80s, with
identical view of concurrency. “.

@ Inspired by synchronous circuits: all components trigger relative to a
global clock.

@ The reactive system operates infinitely fast relative to its environment.
This is known as the synchrony hypothesis.

@ Interleaving disappears in this semantics due to strict notions of
causality.

?A. Benveniste et al., The synchronous languages twelve years later, proceedings of IEEE, 91(1),
2003

(University of Erlangen-Nuremberg) Invasive Computing Seminar

|[EC61499 — a cruise con

controller
set set regulOff [1
off off regulSet [}
resume resume regulStdby [! throttle
quickAccel quickAccel regulResume [! cruiseOff throttleChg throttleChg
quickDecel quickDecel speedSet [cruiseOn
brakePressed brakePressed speedSet
cclock cclock cclock cclock

accelPressed

accelPressed

accelRell d
CruiseManager
speed cruiseSpeed [1
Throttle
cruiseSpeed throttleVal throttleVal
speedo speed
throttleOffset [] throttleOffset

cclock [] eclock

time [] time speedVal [}
rotaryCount [rotaryCount

of Erlangen-Nurembe Invasive Computing Semi

Synchronous approach for IEC61499

module CruiseControl:
input INIT, FootBrake, AccelHold, AccelRelease, CCOff;
input Resume, Clock, RUN, Distance : value integer;
output ThrottleChange, ThrottleValue : value integer;
output SpeedChange, CurrentSpeed : value integer;
signal Lever_ SetDesiredSpeed, Lever INITO,
Lever DesiredSpeed : value integer, ... in
run Throttle [...]

run CruiseController [...

run CruiseControlLever [...

Il Dyer Thigtle
run SpeedGauge [...] INIT ~iNIT’ v INITO) iNIT v INTOINIT Throt§eChange)- ThrottleChange
AccelHold-{AccelHold SetDesiredSpeed peedChange ThrottleUP|HThrottieUP

end signal
end module

hange T ThrottleDOWN
ThrottleOff|{ThrottleOff

|AccelRelease
Off
Resume

AccelRelease
CCOff
Resume

CruiseController Throttle
ThrottleValue [-ThrottleValue

CruiseControlLever CurrentSpeed

DesiredSpeed

DesiredSpeed,

SpeedoGauge
(NT SpeedChange]

SpeedMeasure
Distance CurrentSpeed

Distance

iversity of Erlangen-Nurembe

Semantics: sequence

4.3.1.6 Sequential statement

Rule 4.11 expresses the fact that the sequence does not finish, if its left branch, t,
does not.

0,1
t,D—t’.D’
v

_ (4.11)
0,1
t;u,D 7 t’u, D’
If the left branch pauses, so does the sequence.
0,1
t,D T» t',D
! (4.12)

0,1
t;u,D — t’;u,D
1w

Moreover, if the left branch raises an exception (by exiting a trap), its right branch
will never get executed.
0.k
tD—>t. D k22
- (4.13)
0.k
t;u,D — t’,D
I
Otherwise, control will be immediately transferred to the right branch, u, when t
finishes.
0.0
t,D—t’,D
Y
e (4.14)
t;u,D 7 u,D

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Delayed composition for causality

FB1 B2 FB3 FB4
] En EO1 01 EB EO2 1 ES EO3 01 E7 EO4
[ER [E4 L] E6 []EB
Q Q < <
CruiseManager Throttle - p p p
Input Output Tnput Output Example1 Example2 Example3 Exampled
requlofs chrottlechg oal Qo a Qo oa Qo oa Qo
set
(a)

RV

Acruiseon

brakePressed—{—regulstdbys, EIl (k) = EO3(k-1);
Susceort——tnroreiochg EI3 (k) = EOL(k-1);
EI5 (k) = EO2(k-1);

Time Time

EI7 (k) = EO3(k-1);
Compute EOL (k) ;
Compute EO2 (k) ;
Compute EO3 (k) ;
Compute EO4 (k) ;

® 9o koW o —

(b)

iversity of Erlangen-Nurembe Invasive Computi

Semantics: parallel

0,1
t,D—t’,D’
1»

o1 .15)
tllu, D ,—,> t’|lu, D’
u,D Q—:> u’,D’
L (4.16)

0L
tllu,D — t|ju’,D’
i
Rule 4.17 uses the completion code synchronizer to specify the synchronized beha-

viour of the parallel statement. When both t and u perform finished transitions, the
parallel statement synchronizes their execution using their completion codes.

0.k 0.0
t,DTt’,D k>0 u,DTu’,D >0

4.17)
Q,syn(k,l)
tlu,D ,—,)> t’llu’,D

As already mentioned in the description for data assignment, write-write con-
currency on variables is disallowed, while read-write concurrency is semantically
forbidden by rule 4.8. This means that t and u will never operate on the same vari-
ables in the same instant. a

aYoong et al. A synchronous approach for IEC 61499 function block implementation, IEEE
Transactions on Computers, 58(12), 2009.

iversity of Erlangen-Nurembe Invasive Computi

Outcomes

Determinism: Given any state and any valid input combination, at
most one transition is enabled.

Reactivity: Given any state and any valid input combination, at least
one transition is enabled.

aYoong et al. A synchronous approach for IEC 61499 function block implementation, IEEE
Transactions on Computers, 58(12), 2009.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Cyber-physical systems

Cyber-physical systems (CPS)? use distributed embedded controllers to control

physical processes. Examples may be found in several domains: automotive,
robotics, medical devices, and smart grids.

“R. Alur, Principles of Cyber-Physical Systems. MIT Press, 2015.

!Figure reproduced from http://icc.mtu.edu/cps/
(University of Erlangen-Nuremberg)

Invasive Computing Seminar

Modelling Cyber-physical systems

@ Hybrid automata (HA) is a major enabler for the formalization of CPS.

@ A combination of ODEs to model the continuous dynamics and FSMs
to model the discrete mode changes that are induced by the controller.

|\/|_0d6|1 Car) Model: Cell biology
D|scr.ete: Changing gears Discrete: External stimulus
Continuous: Throttle control Continuous: Flow of ions

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A water tank temperature controller

Water tank

’
’

- a

?J-F Raskin, “An introduction to hybrid automata”, Handbook of Networked and
Embedded Control Systems Control Engineering 2005, pp 491-517.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A water tank temperature controller

120 (13.2,100)
OFF (17.8,100)
100
o
‘8’ 80
£
5 60
s |
& 40 ON (24.0,62)
920 +— ON (0,20)
0 - - - -
0 10 20 30 40 50

Time (seconds)

@ Temperature of water inside a tank may be modelled as x(t) = le= Xt + h(1 — e—Kt)
where:

@ / is the initial temperature.
@ K is a constant that depends on the tank conductivity.

@ h is a constant that depends on the power of the gas burner.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A hybrid automata example

20 <z < 100 z =100
to , t3
T/\:L:l%(]/\;!‘ =z
T =0
ON Na'=x . OFF Ax'=ax
[[

t1

ity =0
initial

T =20 20 <z <100 a

TAT=20Az' =g
[

@ Four locations t1,..t4 that represent the discrete modes.

@ Each location has some flow predicates that specify the rate of change of
the continuous variables.

aJ—F Raskin, “An introduction to hybrid automata”, Handbook of Networked and Embedded Control
Systems Control Engineering 2005, pp 491-517.

iversity of Erlangen-Nuremberg) Invasive Computing Seminar

A hybrid automata example

20 <2 <100 z =100

t2

ON ra'=x OFF Ax'=ax
0 ()

t1

ity =0
initial

z =20 20 <z <100

ty

TAz=20A2"=x
0

@ Invariants are associated with locations e.g. 20 < x < 100 is an invariant
associated with t1. Execution remains in a location until the invariant
holds.

@ Some locations may have initialization conditions that provide the initial
values of the variables.

@ A transition is enabled when the input is present and the jump condition
associated with the transition holds. When a given transition is taken the
final value of the variables are updated.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A rid automata example

(University of Erlangen-Nuremberg) Invasive Computing Seminar

A hybrid automata H = < Loc, Edge, X, Inv, Flow, Jump > where
o

Loc = {h,..,In} representing n control modes or locations.
Y is the input alphabet comprising of event names.
Edge C Loc X ¥ X Loc are the set of edges between locations.

Three sets for the set of continuous variables, their rate of change and their updated
values represented as follows: X = {x1,..,xm} X = {x1,..,xm} X' = {x{,..,x,}.

Init(l): Is a predicate whose free variables are from X. It specifies the possible valuations
of these when the HA starts in /.

Inv(l): Is a predicate whose free variables are from X and it constrains these when the HA
resides in /.

Flow(l): Is a predicate whose free variables are from X U X and it specifies the rate of
change of these variables when the HA resides in /.

Jump(e): Is a function that assigns to the edge e a predicate whose free variables are
from X U X’. This predicate specifies when the mode switch using e is possible. It also
specifies the updated values of the variables when this mode switch happens.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Semantics

The semantics of a HA H= < Loc, Edge, ¥, Inv, Flow, Jump > is provided
using a timed transition system TTA = < Q, Q, XL, —>>

e Q is for the form (/, v) where / is a location and v € [X — R] such
that v satisfies Inv(/). Q is called the state space of H.

e Qo C Q of the form (/, v) such that v satisfies Init(/).

@ — is the set of transitions consisting of either:

o Discrete transitions: For each edge e = (/,0,/"), we have
(Lv) S (V) if (I,v) € Q, (I',v') € Q and (v, V') satisfy Jump(e).

o Continuous transitions: When control remains in a location and
. Here the continuous variables evolve according to the
ODEs as long as the invariant holds.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Simulation-based validation

@ This validation is usually done open-loop.

@ System under validation is stimulated using an input trace to observe
its response.

o Limitations: Coverage criteria dependent, exhaustive simulation
infeasible.

Simulation for validating a pacemaker

(University of Erlangen-Nuremberg) Invasive Computing Seminar

What is emulation?

@ Operating a controller under test in closed-loop with the actual
physical process (the plant or the environment) [5].

@ The design of the controller follows the principles of real-time systems.

@ The controller is digital in nature, while the plant usually exhibits
continuous dynamics and is uncontrollable.

Emulation for validating a pacemaker
(Actual heart + pacemaker model)

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Limitations of emulation

@ The plant and the controller may need to be designed in parallel i.e. a
rehabilitation robot.

@ Model-in-the-loop simulation using Simulink and Stateflow: semantic
issues [7, 1] and issues with model fidelity.

e Ptolemy [6] and Zélus [1] are tools with formal semantics. However,
these are suitable for the modelling of closed systems using HA
models. Also, like SL/SF they interact dynamically with ODE solvers.
This is not good for emulation.

e Potemy has incorporated a QSS-based solver [2] to overcome the
above. This, however, is unsuitable for open systems.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Problem statement

There is no approach for black-box validation of controllers (say
Pacemakers) using real-time plant models. This requires:

@ Open models of the plant using a network of hybrid input output
automata (HIOA [4]).

@ Formal semantics of HIOA models and their compositions.
@ Automatic techniques for modular code generation.

@ Static timing analysis of the plant for plant-controller timing
compatibility i.e. correct timing verification to ensure that the
sampling time of the plant and controller match [3]

We propose the new technique of remulation for this.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

What is remulation?

stands for using an executable model of the
plant, we term a plant-on-a-chip (PoC).

@ We have to synthesize a suitable model of the r-controller (the
traditional plant).

@ The r-plant (the usual controller) acts as an environment for the
r-controller. The r-plant is black-box in nature.

Remulation for validating a pacemaker
(Heart model (real-time) + pacemaker actual/model)

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Methodology overview

Fail-review the specification
A J 1
() (
Plant Specification Checking
modelled as - well-formed Pass I;/Inoc%ll;ltairn
an HIOA ¥ Iproperties of HIOA| - CO(SE 3)0
(step 1) (step 2) P
(. J (. J
ll’redictable Architecture l
)
e D e a inki
Static timing C code and Lg;l;ﬁg
analysis < math library |« coxrx)lposition
(step 6)] L (step 5)) (step 4)
-
WCET,
Y —
)
Phase-locked loop o~ Depllyozlircrllegt dor\ 'the
(PLL) | embedded device
(step 7)
I/
Y

Black B . .
fnin (4 —> validation

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Overview

© Compiling HIOA

@ Compilation overview

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Compilation overview

Isa
WHIOA ?
(step 1,
Sec 4.1)

HIOA |=—>

FSM/
C-code

Generate
backend

Generate

SHIOA

(step 2, SHIOA

Sec 4.2)

code (step
3, Sec 4.3)

Figure: Overview of the proposed modular code generation approach

(University of Erlangen-Nuremberg) Invasive Computing Seminar

© Compiling HIOA

@ The first step of the compilation procedure

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Well formed HIOA (WHIOA)

° : In HA semantics, when control resides in a location,
there are infinite valuations of variables in any given interval of time.
This makes code generation difficult. To facilitate code generation, we
make evaluations only at discrete intervals. These intervals correspond
to the ticks of a synchronous program that will be used for code
generation.

° : The ODEs which define flow constraints in any
location of the form x = f(x) must be of closed form nature. This
property ensures that such ODEs are symbolically solvable so that the
witness functions needed for the generated code are symbolically
computable.

° : All witness functions must be monotonic. This property
is needed so that the generated code can compute correct valuation of
invariants and jump conditions.

v

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Recap: the heating system

20 < x <100 x =100
to ts
T/\I:l[(]a(]/\l‘ T
T =0
o
ON Az'=z 2, OFF pa'=ax
[[
ty
ety z=0 ;
initial %
z =20 20 < x <100

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Step-1: translating ODEs to witness functions

Symbolic approach using

x = K(h—x), K =150, h = 0.075 (1)

X[k] — Cl % e—0.075><6><k (2)

Explanation

@ Equation (1), Ordinary Differential Equation (ODE) captures the evolution of the
continuous variable x that represents the temperature in the tank.

@ The witness function, for the ODE, is the symbolic (closed form solution) to the ODE, if
one exists.

@ Equation (2) evolves x iteratively while the invariant condition (10 < x < 100) on the
location (t2) holds.

@ This iterative evolution of the continuous variables at discrete points in time is akin to
transitions on a logical tick of a synchronous program.

@ We term the Hybrid Input Output Automata (HIOA) obtained after replacing each ODE
with its equivalent witness function Synchronus Hybrid Input Output Automata (SHIOA).
v

(University of Erlangen-Nuremberg) Invasive Computing Seminar

© Compiling HIOA

@ The second step of the compilation procedure

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Compilation step 2: Compiling HIOA to SHIOA

20 <z <100 -
¢, 20ses po100

OFF ns'=s
g

£ =20 20 <z <100

iversity of Erlangen-Nuremberg)

to 20 <2 <100

x(t) = F1(t,C1)
x(0) € [20,100]

151

o x(t) =20
initial| %(0) € [20,20]

x =20

TAz=100Az'=
0

TAT=20A2'=x
0

z=100 g
.

x(t) = 100
x(0) € [100,100]

x(t) = Fa(t,C1)
x(0) € [20,100]

20 <z <100

F1

Invasive Computing Seminar

C1 x e 2075%t L 150.0
and F2 = C1 x ¢ 0:075x¢

Compilation step 3: SWIOA / back-end code generation

ty 20< <100

r=100 tg

)
x(0) € [20,100] x((

0) € [100,100]

x(t) = 100]

OFFas'=s
g

ta

x(t) = 20

N (t) x(t) = Fa(t,C1)
initial | x(0) € [20,20] zae=t0ns'=; | X(0) €120,100]
v

T =20 20 < 2 <100

ersity of Erlangen-Nurembe

ONANOFFA(20<z[k]<100)
TR 1]=F1(6,k,C1),k=Fk+1

7
ol
Sk
&
=L
52
NE
SE
Slif
<
initial
x[0] = 20,

ONAOFFA(x]

ONAOFFA(x[k]=100)
TR+ 1=alk] k=k+1

3F1 = C1 x e %075%t 4 150.0

nd — ,—0.075xt

X
Invasive Computing Sem|

© Compiling HIOA

@ Correctly handling the invariant conditions

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Need for saturation

. ty ty
intial Ax 100 120 (4,111.2)
0) =---> % =02x x=0
>5((()) 100
x <120 x > 100 N 80
() Case 1: an increasing function and it does not need saturation 2
o« 50 (3.45.5)
. t3 ta o
intial) ry—50) 8 5
y(0) =--- y =285 y=0 =
20 >0
y <50 y>=50 ~10 _'
(b) Case 2: due to equality there is a need for saturation —30
—50

ts to 0 1 2 3 4 5 6 7
intial PR Az<-10 @ Time (in seconds)
2(0) =10
(d) The behaviours of the three example HAs are depicted us-
z>-30 z<-10 ing solid lines. Our synchronous approximations are depicted

(c) Case 3: a decreasing function and it does not need saturation using dashed lines. Each tick is one second long.

Figure: The need for saturation depends on the location invariant, the guard in
HA, and the step size. Out of the three cases, only Case 2 requires saturation, see
Figure 2(d).

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Saturation Lemma

It is always possible to uniquely determine the saturation value for any continuous variable at
time instant k when the state (location) switch from | to I’ is to be taken in a SHIOA.

The proof of this lemma follows from the following observations.

@ Observation 1: All witness functions x(t) for any x € X are monotonic in every location
(additional requirement).

@ Observation 2: All witness functions x(t) for any x € X are continuous as they are
differentiable in any interval.

@ Observation 3: Given the above two observations, the saturation value for any variable x
always exists in the time interval [(k — 1) x 6, k X §] when the location switch happens at
instant k x 4.

O

4

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Overview

@ From a cell to the conduction network
@ Models

(University of Erlangen-Nuremberg) Invasive Computing Seminar

UoA Model - Cell

initial 150
Iw=0Av, =0 {rh
| Av:=0A0=0 {g(vi) > Vr},

v, =03v

v< VrAg(vi) >0
Vx = Gavy + Grg(vi)
vy = Gsvy, + Geg(vi)

V. = Gov + Gog(vi)| %

{rh v =

{g(v) <0Av<vr}, a H

V= £

v=v I
vi—v.

Vx = Giavxf(0)
vy = CuVyf(G)

V; = Gsvz {7},
V=v— Vy+ v, v> Va—80.1\/§}‘ 0 20 40 60 B0 100 120 -;;::e (lmﬁg) 180 200 220 240 260 280 300
L ERESA {VX,:VX}
vi=v
vi=v: I RP lsTIUFI ERP I RRP I RP I

HA based onVVentricular AP.)

iversity of Erlangen-Nurembe

Conduction Network

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Simulink vs Piha — Execution time

On average 9.8 times
faster than Simulink. For
the heart conduction
system it is two orders of
magnitude faster.

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Scalability Relative to Simulink

150
< 00
E
E .
5 @ 5 times more scalable
g
8 501 @ 40 vs 200 cells for
[a] 5 o
real-time emulation
A S Real Time
A
0 200 400 600 800 1,000

Number of Heart Nodes

—— Simulink® —— Piha

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Methodology for PoC design for automation

Fail-review the specification

Y |
 EEEEE—
Plant specification (. D (
is syrihronous Checking HIOAs
composition > well-formed Pasg | translated
of II?IIO As ¥ Iproperties of HIOA] #7| to SHIOAs
tep 2 tep 3
(step 1) L (step 2)) L (s e;))
EEEE—
ss—
eomposed SHIOAS
Controller BFBls) info . translated
designed as CFB i to BFBs
\ plant CFB (step 4)
A (step 5) P
Fail—reﬁnﬁ 'controller /
)
Validation
troll FB Pass
CﬁnPlgnte ngB > Iv’ lidated Conh'olle}
(step 6)
—

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Conclusions

@ We discuss the need for a unified design approach for embedded /
automation systems.

@ We adopt the well known for designing the controller
(using the IEC61499 standard) and the plant (also using the same standard).

@ We propose a new technique called to design
a plant-on-a-chip (PoC).

e A is a model of the plant that offers real-time response similar to the
actual plant.

@ A key idea is to avoids dynamic interaction with numerical solvers to enable
real-time implementations.

@ The approach is based on a new class of hybrid automata, we call
synchronous hybrid automata.

@ We have compared our approach with Simulink and the results are
favourable.

@ Future work: comparison with Ptolemy and the QSS-based approach,

(University of Erlangen-Nuremberg) Invasive Computing Seminar

Key references

o N Allen, S. Andalam, P. S. Roop, A. Malik, M. Trew and N. Patel,
“Modular code generation for emulating the electrical conduction
system of the human heart”, Design Automation and Test in Europe
(DATE), Dresden, Germany, 14-18 March 2016.

@ A. Malik, P. S. Roop, S. Andalam, E. Yip and M. Trew, “A
synchronous rendering of hybrid systems for designing Plant-on-a-Chip
(PoC)", arXiv preprint arXiv:1510.04336 (under review at IEEE
Transactions on Software Engineering).

(University of Erlangen-Nuremberg) Invasive Computing Seminar

	Introduction
	Background
	Motivation / problem statement
	Methodology
	Compiling HIOA
	Compilation overview
	The first step of the compilation procedure
	The second step of the compilation procedure
	Correctly handling the invariant conditions

	From a cell to the conduction network
	Models

	Results

