
TU Munich 2011-03-30

Insieme
Insieme - an Optimization System for

OpenMP, MPI and OpenCL Programs

Thomas Fahringer, Ivan Grasso, Klaus Kofler, Herbert Jordan, Hans Moritsch,

Simone Pellegrini, Radu Prodan, Heiko Studt, Peter Thoman, John Thomson

Institute of Computer Science

University of Innsbruck

TU Munich 2011-03-30

Computational Interdisciplinary Modelling

High Performance Parallel & Distributed ComputingHigh Performance Parallel & Distributed Computing

Our ResearchOur Research

TU Munich 2011-03-30

C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Microprocessor Clock Speed Trends
3

Managing power dissipation is limiting clock speed increases

Source: Michael Perrone, IBM

TU Munich 2011-03-30

Hardware Architecture Evolution

Constrained by:
• Power
• Complexity

Constrained by:
• Power
• Parallel software
availability
• Scalability

Enabled by:

• Abundant data parallelism

• Power-efficient GPUs

Limited by:
• Programming models

Hardware

Software

General

Purpose

Core

Sequential OpenMP, MPI Hybrid OpenMP/OpenCL

4

Source: AMD, ISSCC2010, www.anandtech.com/show/2933

TU Munich 2011-03-30

Hardware Architecture Evolution

Constrained by:
• Power
• Complexity

Constrained by:
• Power
• Parallel software
availability
• Scalability

Enabled by:

• Abundant data parallelism

• Power-efficient GPUs

Limited by:
• Programming models

InsiemeInsieme

5

Source: AMD, ISSCC2010, www.anandtech.com/show/2933

TU Munich 2011-03-30

Future Hardware Diversity

Intel:

• “Single chip

cloud computer”

• 24 dual-core tiles

• Mesh

interconnect

6

Nvidia:

• “Fermi” GPGPU

• 512 CUDA cores

• Configurable

L1 cache /

scratchpad

AMD:

• “Fusion”
combines GPU
and CPU

• 4 CPU cores

• 480 Stream
processors

TU Munich 2011-03-30

Parallel Processing: Past and Future

• Parallel Processing has long been an essential component of
scientific computing that drives natural and technical sciences.

• Parallel Processing appears to be merging with
– embedded systems

– multi-media and entertainment

– reliable systems

– and more to come …

• Different application domains require different parameters to
be optimized:
– performance

– cost

– energy

– reliability, etc.

• This makes HPC a multi-parameter optimization problem

TU Munich 2011-03-30

The Multicore Software Problem

• There is more than 1 million software engineers and

programmers working in the EU

• A negligible fraction know how to program parallel

computers.

• Enormous legacy investment in serial programming

technology and training.

“[Multicore] could become the biggest software remediation

task of this decade.”

-- Gartner Group, January 31, 2007

8

TU Munich 2011-03-30

Current/Future Many-core

Architectures
Heterogeneous cores running at different speed

9

Multicore
CPU

System Bus

main
memory

accelerator
accelerator

accelerator

Power
core

System Bus

main
memory

b
ri

d
g

e

accelerator
accelerator

accelerator

N
IC

N
IC

IB

System Bus

memory

b
ri

d
g

e

Multicore
CPU

System Bus

main
memory

b
ri

d
g

e

PCIe

accelerator
accelerator

accelerator

memory

Heterogeneous bus attached

IO bus attached Network attached

Multicore
CPU

System Bus

main
memory

b
ri

d
g

e

accelerator
accelerator

accelerator

N
IC

N
ICE’net System Bus

memory

b
ri

d
g

e

On-chip
I/O bus

Homogeneous bus attached

System Bus

main
memory

Multicore
CPU

Multicore
CPU

Source: Michael Perrone, IBM

TU Munich 2011-03-30

Why is it so hard to optimize codes

for parallel systems?
10

• Question:
– If the strategy for I/O scheduling, process scheduling, cache

replacement policy would be changed, how would you re-
write your code?

• Complexity, undecidability and difficulty to predict
program and system behavior:
– Dynamic reallocation of cores, memory, clock frequency;

external load, sharing of resources, etc.

– Processor and system architectures are so complex that it
is impossible for a human being to find best code
transformation sequences

– Operating system, external load, queuing systems, caches
often have non-deterministic behavior

TU Munich 2011-03-30

P
1

P
1P

0
P

0

Example: ADI Solver (Alternating

Direction Implicit)
11

Phase

1

Phase

2

u(i,j) = … u(i-1,j)…

u(i,j) = … u(i,j-1)…

OpenMP

Sequential Algorithm

T
0

T
1

T
2

T
3

T
0

T
1

T
2

T
3

MPI

N=2

M=2

P
2

P
2 P

3
P

3

P
0

P
0 P

1
P

1

P
2

P
2 P

3
P

3

Parallelization Strategies

Data

Dependence

Data

Dependence

Data

Dependence

Data

Dependence

MPI

Message

MPI

Message

TU Munich 2011-03-30

ADI/OpenMP Comparison
12

What is the optimal number of cores to use?
• Performance impact: CPU architecture, cache size and memory hierarchy

• Ideal number of threads requires knowledge about the program and

architecture.

TU Munich 2011-03-30

ADI/MPI Comparison

� Data is block-wise distributed onto set of MPI processes

� (N,M) → N row and M column block distribution

13

optimal distribution: (8,4) optimal distribution: (8,8)optimal distribution: (8,6)

Total of 32 coresTotal of 32 cores Total of 48 coresTotal of 48 cores Total of 64 threadsTotal of 64 threads

TU Munich 2011-03-30

P
0

P
0 P

1
P

1

P
2

P
2 P

3
P

3

P
0

P
0 P

1
P

1

P
2

P
2 P

3
P

3

P
0

P
0 P

1
P

1

P
2

P
2 P

3
P

3

P
1

P
1P

0
P

0

P
3

P
3P

2
P

2

ADI/MPI Message Strip Mining

Message strip mining enables computation pipelining for increased parallelism

14

T
T

Phase

1

Phase

2 Question
What is the optimal

tile size T ?

T

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

time

time

MPI w/o strip mining

MPI w strip mining

Tile sizeTile size

TU Munich 2011-03-30

ADI/MPI Message Strip Mining

15

The optimal tile size for a “good” data

layout depends on underlying

architecture, program, problem size,

etc.

pro
ble

m
 s

iz
e

pro
ble

m
 s

iz
e

pro
ble

m
 s

iz
e

TU Munich 2011-03-30

The Insieme System

• A multi-parameter optimizing Compiler for MPI,
OpenMP and OpenCL
– Optimization across multi-parameters:

• performance, cost, energy consumption, reliability, etc.

– Sources of optimization

• program structure (transformations)

• runtime environment parameters

– Analysis and optimization

• static and dynamic analysis for entire program and code regions

• based on historic date: executions of training kernels and
applications

• uses machine learning to deal with huge search space for
combinations of optimizations

• Insieme is currently under development at the
University of Innsbruck

16

TU Munich 2011-03-30

Machine Learning based

Optimization

• We propose the empirical model:

– acquire optimization knowledge by learning from examples

– apply a large number of transformations to benchmark suites to
generate code versions

– measure performance, energy consumption, cost, reliability, etc. for
each code version and store in repository

– describe programs and its regions through program features

– Use machine learning to accurately model the system

– Deliver the final “trained machine”

19

Training

data

Learning

algorithm

Trained

machine

New input program

Optimization

strategy

Optimization

strategy

Source: I. Guyon “Introduction to ML“

TU Munich 2011-03-30

• For each input program, the trained machine is queried to

determine effective

– transformation sequence for each program region

– parameter setting for runtime environment for a given machine

and system status - depends on input data

• Advantages

– works for changing platforms

– no hard-wired heuristics that are soon out of date

– always based on evidence

20

Training

data

Learning

algorithm

Trained

machine

New input program

Optimization

strategy

Optimization

strategy

Source: I. Guyon “Introduction to ML“

Machine Learning based

Optimization

TU Munich 2011-03-30

Performance Models to Drive

Optimization
23

Execution timeParallel Programs

• How to describe a parallel programs in a way which is useful for
machine learning?

• We need to describe programs in terms of characteristics (program
features) that define similarity, e.g.: control and data flow
information, number of operations, cache misses, communication
patterns, volume of data exchanged, …

• Programs with similar features are likely to have a similar behavior

TU Munich 2011-03-30

Machine Learning using Nearest

Neighbour Classification
24

k-nearest neighbors algorithm (k-NN):
• We need to match our new unseen program to previously seen and

recorded programs to determine

how to optimize

• Nearest neighbors determines

the classification of our new

program by measuring the

distance in the feature space

between the new program

and all others

• We predict the new program

shares the characteristics of its

nearest neighbor

?

TU Munich 2011-03-30

Training

programs

3

Program Features

Transformation Sequence

Input Data Features

Runtime Parameters

Architecture Features

Exogenous Variables

Execution State

Performance Metrics

Cost Metrics

Energy Metrics

1

2

Feature Extraction

Transformations

(Static Optimizations)

Program Versions

1 1.1 1.2 2 2.1

Runtime Optimizations

Training Data

Insieme Training Phase
26

Profiling on different architectures

OpenMP, MPI, OpenCL

TU Munich 2011-03-30

27

Trained

Machine

source-to-source

Translation

Optimal

Transformation

Sequence

Optimal Runtime

Parameter Settings

INSIEME Runtime

Optimized program

INSIEME Compiler

Training Data

OpenMP, MPI, OpenCL

input program

Program Features

Transformation Sequence

Input Data Features

Runtime Parameters

Architecture Features

Exogenous Variables

Execution State

Performance Metrics

Cost Metrics

Energy Metrics

Learning

Target

architecture

External load,

system load, etc.

Features

Insieme Opimization Phase

TU Munich 2011-03-30

Insieme Architecture Overview

TU Munich 2011-03-30

Insieme Parallel Intermediate

Representation - InsPIRe

• Unified Representation of Parallel Programs

– structural type system

– closed set of generic types and operators

• Minimal language core

• Explicit Parallelism

• Language level synchronization / communication

• Extendable through composability

• Core module offers

– data structures to represent programs and annotations

– manipulation tools

TU Munich 2011-03-30

InsPIRe Example

C Input:
int main(int argc, char* argv[]) {

int a;

for(int i=0; i<10; i++) {

a += i;

}

}

InsPIRe:
fun(int<4> v1, array<ref<array<ref<char>,1>>,1> v2) {

decl ref<int<4>> v3 = var(0);

for(decl ref<int<4>> v4 = var(0) .. 10 : 1) {

v3 := v3+v4;

};

}

TU Munich 2011-03-30

InsPIRe Abstract Syntax Tree

XML
export/import

Multiple

references: 90%

memory reduction

TU Munich 2011-03-30

Frontend

• Translates input program into InsPIRe - AST

• Capable of supporting hybrid code

• Two steps

– Step1: C/C++ => IR (syntax)

– Step2: eliminate MPI / OMP/ OpenCL (semantics)

• clang for parsing input (step 1)

• InsPIRe module for manipulations (step 2)

TU Munich 2011-03-30

Optimizer

• High Level Transformations

• Pattern recognition

• High-level semantic optimizations

– e.g. optimized use of arrays/sets/lists exploiting

operator semantics

• Loop transformations

• Parallelization / Vectorization

• Integration of high-level knobs

– e.g. selection of algorithms, data representation

TU Munich 2011-03-30

Synthesizer

• „Simple“ Backend (first prototype)

• Pure MPI Backend

• Insieme Runtime Backend

• Target specific synthesizers

– shared memory

– distributed memory

– accelerators

– integration of target specific knobs

– e.g. scheduling policies, communication protocols, group
sizes, thresholds for parallelism

TU Munich 2011-03-30

Insieme Runtime

• Runtime Library

– called by target code

– target specific extensions (MPI, OpenCL,…)

• Runtime Environment

– tuning of runtime parameters (knobs)

– resource management (cores, nodes,

accelerators, …)

TU Munich 2011-03-30

Case Study: OpenMP Benchmarks

Achievable speedup is limited

37

Threads

Machine: 8 quadcore AMD CPUs (Sun X4600 M2)

TU Munich 2011-03-30

Multiple OpenMP applications with

different job scheduling strategies
39

to
ta

l
e

x
e
c

u
ti

o
n

 t
im

e

simultaneous applications simultaneous applications

Different strategies of reducing the number of threads assigned to each application

TU Munich 2011-03-30

Insieme OpenMP job scheduling

• For each region, optimal thread count is dynamically

determined

• Optimization options:

– locality:

increase locality

of threads assigned

to the same application

– clustering:

clusters of cores should

be used by single

applications

40

to
ta

l
ti
m

e
 (

s
)

67% of sequential

execution time

TU Munich 2011-03-30

Automatic Tuning of MPI Runtime

Parameters

• MPI implementations allow for tuning the

runtime environment to better fit the

underlying architecture, such as:

– eager/rendezvous send threshold:

• use eager or the rendezvous protocol depending on

messages size

– processor affinity flag:

• bind an MPI process rank to a physical core

• Open MPI's Modular Component Architecture

(MCA) provides 100’s of parameters

41

TU Munich 2011-03-30

Effects of MPI Runtime Parameter

Tuning

FT, CG, IS and EP from NAS Parallel Benchmarks running on
a cluster of SMPs nodes, using 8 vs. 32 nodes

42

parameter settings parameter settings

wrt. Open MPI

default settings

wrt. Open MPI

default settings

TU Munich 2011-03-30

Using Machine Learning to Predict

Optimal Parameter Settings

• Performance of predicted parameter setting,
relative to best performance found during
exploration, using two learning algorithms:

– Artificial Neural Network (ANN)

– K Nearest Neighbors (k-NN)

43

B.P.C

TU Munich 2011-03-30

Summary

� Mult-Language support – MPI, OpenMP, OpenGL - for

heterogenous multicore systems

� Unified parallel intermediate representation

� Analytical aproach not feasible due to complexity

� Explore optimization space via experiments and machine

learning

� Static and Runtime Optimizations

� Program transformation

� Tuning of runtime parameters

