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Microprocessor Clock Speed Trends
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Managing power dissipation is limiting clock speed increases

Source: Michael Perrone, IBM
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Hardware Architecture Evolution

Constrained by:
• Power
• Complexity

Constrained by:
• Power
• Parallel software
availability
• Scalability

Enabled by:

• Abundant data parallelism

• Power-efficient GPUs

Limited by:
• Programming models

Hardware

Software

General

Purpose

Core

Sequential OpenMP, MPI Hybrid OpenMP/OpenCL
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Source: AMD, ISSCC2010, www.anandtech.com/show/2933
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Future Hardware Diversity

Intel:

• “Single chip 

cloud computer”

• 24 dual-core tiles

• Mesh 

interconnect
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Nvidia:

• “Fermi” GPGPU

• 512 CUDA cores

• Configurable 

L1 cache / 

scratchpad

AMD:

• “Fusion”
combines GPU 
and CPU

• 4 CPU cores

• 480 Stream 
processors
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Parallel Processing: Past and Future

• Parallel Processing has long been an essential component of 
scientific computing that drives natural and technical sciences.

• Parallel Processing appears to be merging with 
– embedded systems

– multi-media and entertainment

– reliable systems

– and more to come …

• Different application domains require different parameters to 
be optimized:
– performance

– cost

– energy

– reliability, etc.

• This makes HPC a multi-parameter optimization problem
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The Multicore Software Problem

• There is more than 1 million software engineers and 

programmers working in the EU

• A negligible fraction know how to program parallel 

computers.

• Enormous legacy investment in serial programming 

technology and training.

“[Multicore] could become the biggest software remediation

task of this decade.”

-- Gartner Group, January 31, 2007
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Current/Future Many-core

Architectures
Heterogeneous cores running at different speed
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Why is it so hard to optimize codes

for parallel systems?
10

• Question: 
– If  the strategy for I/O scheduling, process scheduling, cache 

replacement policy would be changed, how would you re-
write your code?

• Complexity, undecidability and difficulty to predict 
program and system behavior:
– Dynamic reallocation of cores, memory, clock frequency; 

external load, sharing of resources, etc.

– Processor and system architectures are so complex that  it 
is impossible for a human being to find best code 
transformation sequences

– Operating system, external load, queuing systems, caches 
often have non-deterministic behavior
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ADI/OpenMP Comparison
12

What is the optimal number of cores to use?
• Performance impact:  CPU architecture, cache size and memory hierarchy

• Ideal number of threads requires knowledge about the program and

architecture. 



TU Munich 2011-03-30

ADI/MPI Comparison

� Data is block-wise distributed onto set of MPI processes

� (N,M) → N row and M column block distribution

13

optimal distribution: (8,4) optimal distribution: (8,8)optimal distribution: (8,6)

Total of 32 coresTotal of 32 cores Total of 48 coresTotal of 48 cores Total of 64 threadsTotal of 64 threads
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ADI/MPI Message Strip Mining

Message strip mining enables computation pipelining for increased parallelism
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ADI/MPI Message Strip Mining

15

The optimal tile size for a “good” data 

layout depends on underlying 

architecture, program, problem size, 

etc.
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The Insieme System

• A multi-parameter optimizing Compiler for MPI, 
OpenMP and OpenCL
– Optimization across multi-parameters:

• performance, cost, energy consumption, reliability, etc.

– Sources of optimization

• program structure (transformations) 

• runtime environment parameters

– Analysis and optimization

• static and dynamic analysis for entire program and code regions

• based on historic date: executions of training kernels and 
applications

• uses machine learning to deal with huge search space for 
combinations of optimizations

• Insieme is currently under development at the 
University of Innsbruck

16
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Machine Learning based 

Optimization

• We propose the empirical model: 

– acquire optimization knowledge by learning from examples

– apply a large number of transformations to benchmark suites to 
generate code versions

– measure performance, energy consumption, cost, reliability, etc. for 
each code version and store in repository

– describe programs and its regions through program features

– Use machine learning to accurately model the system

– Deliver the final “trained machine”

19

Training 

data
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algorithm

Trained 
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New input program

Optimization

strategy

Optimization

strategy

Source: I. Guyon “Introduction to ML“
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• For each input program, the trained machine is queried to 

determine effective 

– transformation sequence for each program region

– parameter setting for runtime environment for a given machine 

and system status - depends on input data

• Advantages

– works for changing platforms

– no hard-wired heuristics that are soon out of date

– always based on evidence

20
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Performance Models to Drive 

Optimization
23

Execution timeParallel Programs

• How to describe a parallel programs in a way which is useful for
machine learning?

• We need to describe programs in terms of characteristics (program 
features) that define similarity, e.g.: control and data flow 
information, number of operations, cache misses, communication 
patterns, volume of data exchanged, …

• Programs with similar features are likely to have a similar behavior
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Machine Learning using Nearest 

Neighbour Classification
24

k-nearest neighbors algorithm (k-NN):
• We need to match our new unseen program to previously seen and 

recorded programs to determine 

how to optimize

• Nearest neighbors determines

the classification of our new 

program by measuring the 

distance in the feature space 

between the new program 

and all others

• We predict the new program 

shares the characteristics of its 

nearest neighbor

?



TU Munich 2011-03-30

Training

programs

3

Program Features

Transformation Sequence

Input Data Features

Runtime Parameters

Architecture Features

Exogenous Variables

Execution State

Performance Metrics

Cost Metrics

Energy Metrics

1

2

Feature Extraction

Transformations 

(Static Optimizations)

Program Versions

1 1.1 1.2 2 2.1

Runtime Optimizations

Training Data

Insieme Training Phase
26

Profiling on different architectures

OpenMP, MPI, OpenCL
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Insieme Architecture Overview
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Insieme Parallel Intermediate

Representation - InsPIRe

• Unified Representation of Parallel Programs

– structural type system

– closed set of generic types and operators

• Minimal language core

• Explicit Parallelism

• Language level synchronization / communication

• Extendable through composability

• Core module offers

– data structures to represent programs and annotations

– manipulation tools
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InsPIRe Example

C Input:
int main(int argc, char* argv[]) {

int a;

for(int i=0; i<10; i++) {

a += i;

}

}

InsPIRe:
fun(int<4> v1, array<ref<array<ref<char>,1>>,1> v2) {

decl ref<int<4>> v3 =  var(0);

for(decl ref<int<4>> v4 =  var(0) .. 10 : 1) {

v3 := v3+v4;

};

}
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InsPIRe Abstract Syntax Tree

XML 
export/import

Multiple 

references: 90% 

memory reduction
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Frontend

• Translates input program into InsPIRe - AST 

• Capable of supporting hybrid code

• Two steps

– Step1: C/C++ => IR (syntax) 

– Step2: eliminate MPI / OMP/ OpenCL (semantics) 

• clang for parsing input (step 1) 

• InsPIRe module for manipulations (step 2) 
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Optimizer

• High Level Transformations

• Pattern recognition

• High-level semantic optimizations

– e.g. optimized use of arrays/sets/lists exploiting

operator semantics

• Loop transformations

• Parallelization / Vectorization

• Integration of high-level knobs

– e.g. selection of algorithms, data representation
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Synthesizer

• „Simple“ Backend (first prototype) 

• Pure MPI Backend 

• Insieme Runtime Backend 

• Target specific synthesizers

– shared memory

– distributed memory

– accelerators

– integration of target specific knobs

– e.g. scheduling policies, communication protocols, group
sizes, thresholds for parallelism
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Insieme Runtime

• Runtime Library 

– called by target code

– target specific extensions (MPI, OpenCL,…) 

• Runtime Environment

– tuning of runtime parameters (knobs) 

– resource management (cores, nodes, 

accelerators, …) 
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Case Study: OpenMP Benchmarks

Achievable speedup is limited

37

Threads

Machine: 8 quadcore AMD CPUs (Sun X4600 M2)
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Multiple OpenMP applications with 

different job scheduling strategies
39
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Different strategies of reducing the number of threads assigned to each application
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Insieme OpenMP job scheduling

• For each region, optimal thread count is dynamically 

determined

• Optimization options:

– locality: 

increase locality

of threads assigned

to the same application

– clustering:

clusters of cores should 

be used by single

applications

40
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Automatic Tuning of MPI Runtime 

Parameters

• MPI implementations allow for tuning the 

runtime environment to better fit the 

underlying architecture, such as:

– eager/rendezvous send threshold:

• use eager or the rendezvous protocol depending on 

messages size

– processor affinity flag:

• bind an MPI process rank to a physical core

• Open MPI's Modular Component Architecture 

(MCA) provides 100’s of parameters

41
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Effects of MPI Runtime Parameter 

Tuning

FT, CG, IS and EP from NAS Parallel Benchmarks running on 
a cluster of SMPs nodes, using 8 vs. 32 nodes

42

parameter settings parameter settings

wrt. Open MPI 

default settings

wrt. Open MPI 

default settings
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Using Machine Learning to Predict

Optimal Parameter Settings

• Performance of predicted parameter setting, 
relative to best performance found during 
exploration, using two learning algorithms:

– Artificial Neural Network (ANN) 

– K Nearest Neighbors (k-NN)

43

B.P.C
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Summary

� Mult-Language support – MPI, OpenMP, OpenGL - for

heterogenous multicore systems

� Unified parallel intermediate representation

� Analytical aproach not feasible due to complexity

� Explore optimization space via experiments and machine

learning

� Static and Runtime Optimizations

� Program transformation

� Tuning  of runtime parameters


