Das Polyedermodell zur automatischen Schleifenparallelisierung

Christian Lengauer

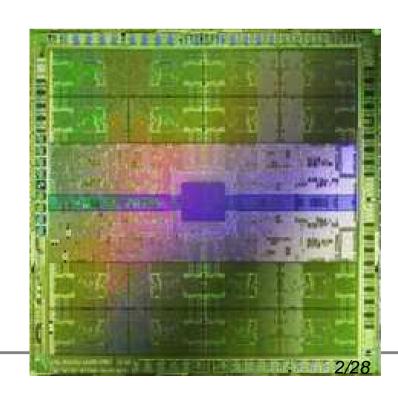
Prof. Peter Faber, Prof. Sergei Gorlatch, Priv.-Doz. Martin Griebl,
Dr. Armin Größlinger, Dr. Christoph A. Herrmann,
Dipl.-Inf. Andreas Simbürger, Tobias Grosser B.Sc.

Dr. Jean-François Collard, Prof. Paul Feautrier

InvasIC-Vortrag, Universität Erlangen-Nürnberg, 3. März 2011

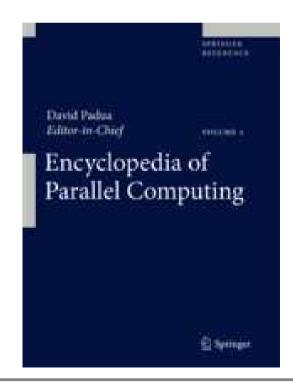
Massive Parallelität am Wendepunkt

- Die Vergangenheit: Massive Parallelität war...
 - ein Nischenthema
 - teuer und kaum verbreitet in Hardware
 - eingeschränkt in Software
 - von Spezialisten per Hand programmiert und optimiert
 - auf einer Assembler-ähnlichen Abstraktionsebene
 - kaum leistungsportabel
- Die Zukunft: Massive Parallelität wird (muss!) werden...
 - flächendeckend verfügbar
 - billig in Hardware
 - divers in Software
 - Nichtexperten zugänglich und von ihnen zwangsweise genutzt
 - auf diversen Problem-näheren Abstraktionsebenen und mit Werkzeug- und Laufzeitunterstützung
 - leistungsportabler



Das Polyedermodell

- Das Polyedermodell ist ca. 25 Jahre alt
- Die Entwicklung begann mit einem sehr eingeschränkten Basismodell
- Sie verlief in zwei Richtungen:
 - Weiterentwicklung der theoretischen Grundlagen des Basismodells
 - Erweiterung des Basismodells
- Abriss des Vortrags:
 - Skizze des Basismodells
 - Skizze von sieben Erweiterungen
 - Ausblick auf weitere Erweiterungen
- Lösungssuche in einer modellgerichteten Parallelisierung:
 - + "random-access": alle Lösungen sind gleich schwer erreichbar
 - + optimierend: findet das Optimum bezüglich einer Kostenfunktion
 - + vollautomatisch
 - Analyse und Zielcode möglicherweise komplex
 - Optimalität im Modell garantiert nicht effizienten Zielcode
- Referenz: Paul Feautrier and Christian Lengauer. The Polyhedron Model. In David Padua et al., editors, Encyclopedia of Parallel Computing. Springer-Verlag, Juni 2011.

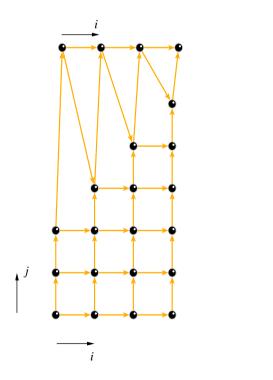


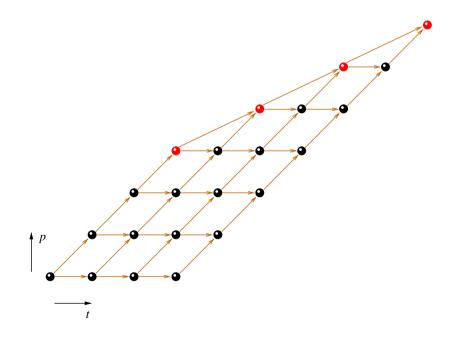
Ein erster Eindruck

od

for
$$i=1$$
 to n do for $j=0$ to $i+m$ do
$$A(i,j)=A(i-1,j)+A(i,j-1)$$
 od;
$$A(i,i+m+1)=A(i-1,i+m)+A(i,i+m)$$
 od

for t=0 to m+2*n-1 do $\text{parfor } p=\max(\mathbf{0},t-n+1) \text{ to } \min(t,\lceil(t+m)/2\rceil) \text{ do}$ if 2*p=t+m+1 then A(p-m,p+1)=A(p-m-1,p)+A(p-m,p) else A(t-p+1,p+1)=A(t-p,p+1)+A(t-p+1,p) fi od





Quellpolyeder

Zielpolyeder

Das Basismodell

Anforderungen an den Quellcode:

- Ein (möglicherweise nicht perfekt) geschachtelter Schleifensatz
- Schleifenrumpf: Folge von Zuweisungen
- Variablen: Feldelemente oder Skalare
- In den Zählvariablen der umgebendenen Schleifen affin-lineare Schleifengrenzen
- In den Schleifenvariablen affin-lineare Feldindizes
- Strukturparameter sind an Stellen von Konstanten erlaubt
- Unterprogrammaufrufe werden als atomar angesehen und nicht parallelisiert
- Keine verzeigerten Strukturen, nur Felder
- Keine Objektorientierung

Leistungen des Modells:

- Vollautomatische Abhängigkeitsanalyse
- Optimierende Suche nach einer besten Lösung im Lösungsraum des Modells, bezogen auf eine Optimierungsfunktion
- Beispiele für Optimierungsfunktionen:
 - minimale Schrittzahl plus minimale Prozessorzahl
 - minimale Schrittzahl plus maximaler Durchsatz
 - minimale Zahl von Kommunikationen
- Herausforderung: effizienter Zielcode

Das Basismodell

- Optionen für Zielschleifensätze:
 - synchron (äußere Schleifen sequenziell)
 - asynchron (äußere Schleifen parallel)
- Nutzung:
 - Parallelisierung
 - Speicheroptimierung
- Referenzen:

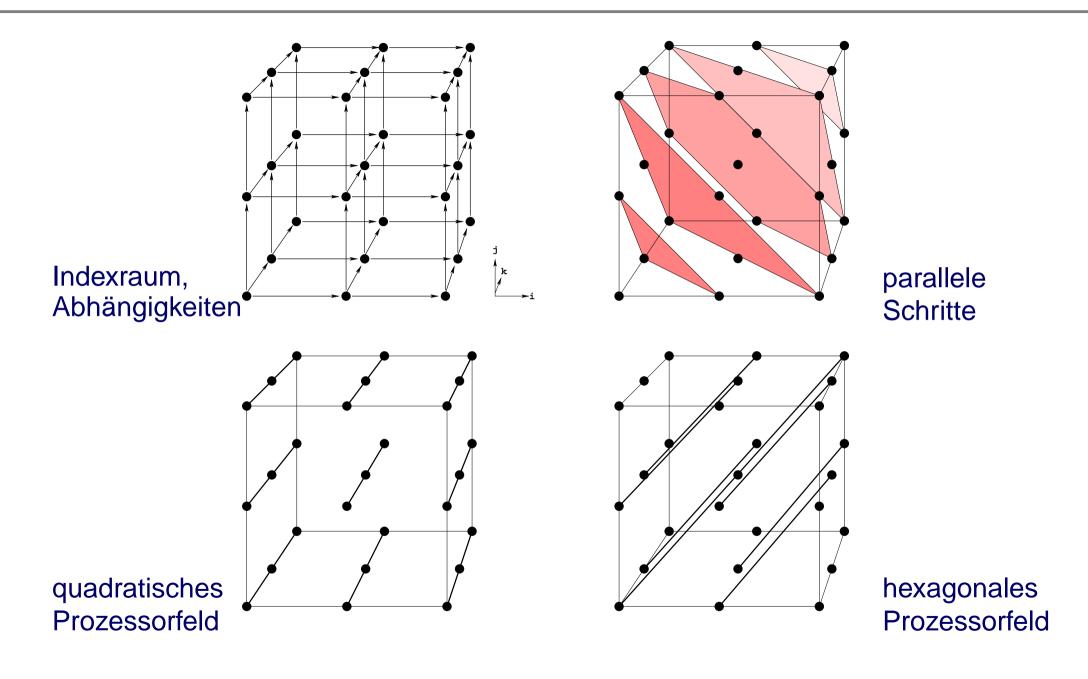
Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor, *CONCUR'93*, LNCS 715, pages 398–416. Springer-Verlag, 1993.

Paul Feautrier. Automatic parallelization in the polytope model. In Guy-René Perrin and Alain Darte, editors, *The Data Parallel Programming Model*, LNCS 1132, pages 79–103. Springer-Verlag, 1996.

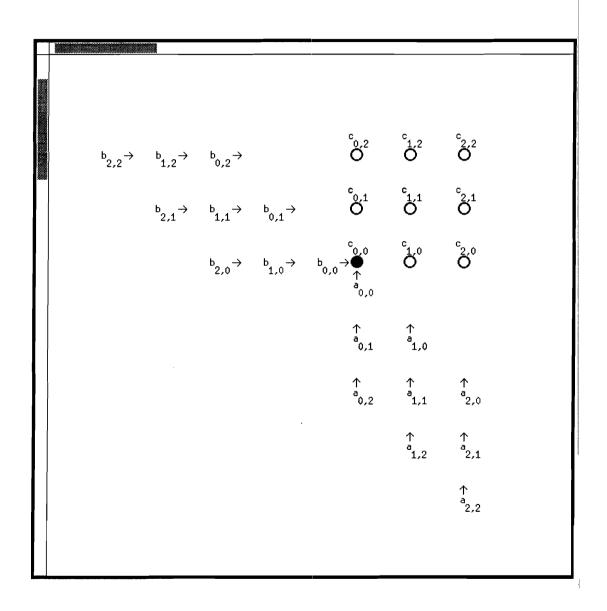
Standardbeispiel: Produkt quadratischer Matrizen

```
for i:=\mathbf{0} to n-\mathbf{1} do for j:=\mathbf{0} to n-\mathbf{1} do for k:=\mathbf{0} to n-\mathbf{1} do C(i,j):=C(i,j)+A(i,k)*B(k,j) od od
```

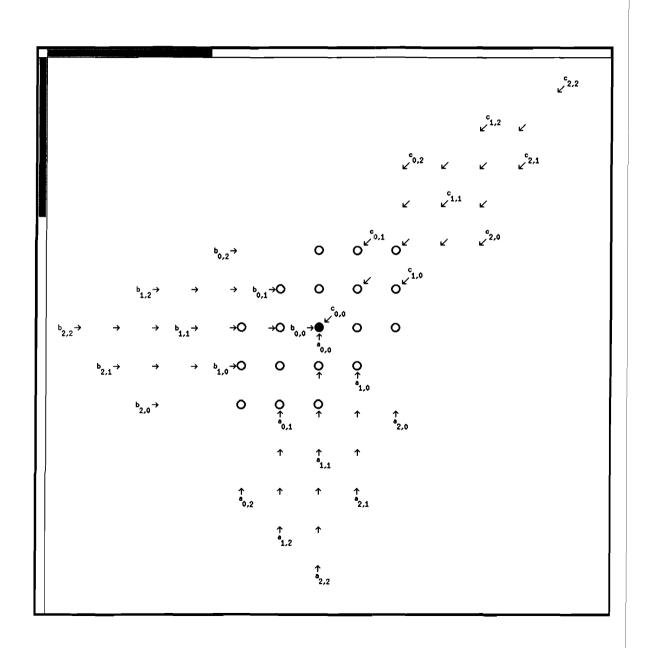
Beispiel: Produkt quadratischer Matrizen



Quadratische Lösung



Hexagonale Lösung



Erweiterung 1: Fallunterscheidungen im Schleifenrumpf

Konsequenz:

[Jean-François Collard, Martin Griebl]

Abhängigkeiten können von bedingt variieren.

```
real A[\mathbf{0} \dots \mathbf{2}*N+\mathbf{1}] for i:=\mathbf{0} to N do for j:=\mathbf{0} to N do A[i+j+1]:=\dots if cond then A[i+j]:=\dots fi; ...:= A[i+j] od od
```

cond wahr

Erweiterung 1: Fallunterscheidungen im Schleifenrumpf

Konsequenz:

[Jean-François Collard, Martin Griebl]

Abhängigkeiten können von bedingt variieren.

```
real A[\mathbf{0} \dots \mathbf{2} * N + \mathbf{1}] for i := \mathbf{0} to N do for j := \mathbf{0} to N do A[i+j+1] := \dots if cond then A[i+j] := \dots fi; \dots := A[i+j] od od
```

cond unwahr

Erweiterung 1: Fallunterscheidungen im Schleifenrumpf

Methode:

- Eine präzise Reaching-Definition-Analyse, die folgendes kombiniert:
 - die rückwärtig iterative, klassische Lösung von Datenflussgleichungen (erkennt Abhängigkeiten zwischen ganzen Feldern, kann Fallunterscheidungen behandeln)
 - lineare Integerprogrammierung à la Polyedermodell (erkennt Abhängigkeiten zwischen einzelnen Feldelementen)
- Versieht Abhängigkeiten mit Bedingungen.
- Berechnet die Vereinigung aller Abhängigkeiten.
- Name: Control flow fuzzy array dependence analysis (CfFADA)
- Referenz: Jean-François Collard and Martin Griebl. A precise fixpoint reaching definition analysis for arrays. In Larry Carter and Jean Ferrante, editors, Languages and Compilers for Parallel Computing (LCPC'99), LNCS 1863, pages 286–302. Springer-Verlag, 1999.

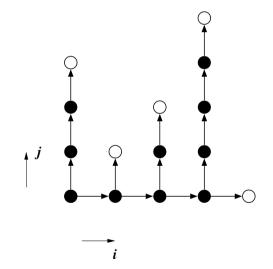
Erweiterung 2: WHILE-Schleifen im Schleifensatz

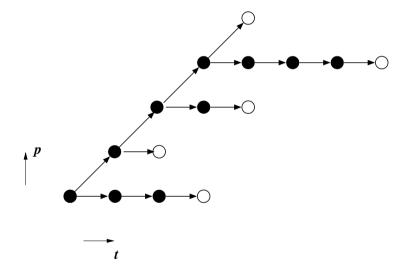
Konsequenzen:

[Jean-François Collard, Martin Griebl]

- In WHILE-Dimensionen steht die Anzahl der Schritte erst zur Laufzeit fest.
- Der statische Indexraum ist kein Polytop, sondern ein Polyeder.
- Der dynamische Indexraum ist in WHILE-Richtung uneben (ein "Kamm").

```
for i := \mathbf{0} while cond_{\mathbf{1}}(i) do for j := \mathbf{0} while cond_{\mathbf{2}}(i,j) do body(i,j) od od od
```





Erweiterung 2: Zwei Ansätze

Konservativ: [Martin Griebl]

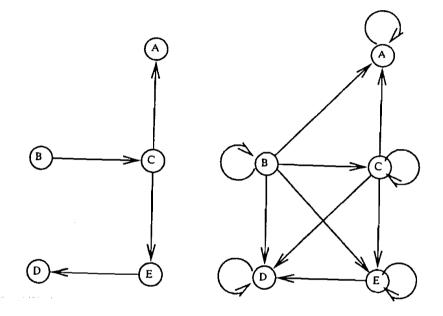
- Die Kontrollabhängigkeit der WHILE-Schleife wird berücksichtigt.
- Ein einzelnes WHILE bleibt sequenziell, kann aber verteilt ablaufen.
- Ein Satz von WHILE-Schleifen kann parallel ablaufen.
- Herausforderung: Globale Termination (Gelöst für gemeinsamen und verteilten Speicher.)
- Referenz: Martin Griebl. The Mechanical Parallelization of Loop Nests Containing while Loops. Dissertation, Universität Passau, 1996. Technical Report MIP-9701

Spekulativ: [Jean-François Collard]

- Die Kontrollabhängigkeit einer außen liegenden WHILE-Schleife wird ignoriert.
- Das WHILE kann parallel ablaufen.
- Zusätzlicher Speicherbedarf ist möglich.
- Ein Rollback von Schleifenschritten kann notwendig werden.
- Herausforderungen:
 - Implementierung von Rollbacks
 - Minimierung von Rollbacks
 - Minimierung des Speicherbedarfs
- Referenz: Jean-François Collard. Automatic parallelization of while-loops using speculative execution. Int. J. Parallel Programming, 23(2):191–219, 1995

Beispiel: Reflexive transitive Hülle; die Datenstruktur

n	node	nrsuc	suc	rt
0	A	0		A
1	$\mid B \mid$	1	C	B, C, A, E, D
$\mid 2 \mid$	C	2	A, E	B, C, A, E, D C, A, E, D
3	$\mid D \mid$	0		D
4	\mathbf{E}	1	D	E, D



Beispiel: Reflexive transitive Hülle; das Quellprogramm

```
for n := \mathbf{0} while node[n] \neq \bot do rt[n, \mathbf{0}] := n; nxt[n] := \mathbf{1}; for d := \mathbf{0} while rt[n, d] \neq \bot do if \neg tag[n[rt[n, d]] then tag[n, rt[n, d]] := \text{true} for s := \mathbf{0} to nrsuc[rt[n, d]] - \mathbf{1} do rt[n, nxt[n] + s] := suc[rt[n, d], s] od nxt[n] := nxt[n] + nrsuc[rt[n, d]] fi od od
```

Parallelisierung: lineare Schrittzahl

Erweiterung 3: Index Set Splitting

Idee:

[Martin Griebl, Paul Feautrier]

Partitioniere den Indexraum automatisch mit dem Ziel, ein Abhängigkeitsmuster zu zerlegen und die Parallelität zu erhöhen.

for
$$i := \mathbf{0}$$
 to $\mathbf{2} * n - \mathbf{1}$ do
$$A(i) := \dots A(\mathbf{2} * n - i - \mathbf{1}) \Longrightarrow$$

Schrittfunktion: $\lfloor i/2 \rfloor$ (linear)

for
$$i := \mathbf{0}$$
 to $n-1$ do $A(i) := \ldots A(\mathbf{2}*n-i-1)$ od; for $i := n$ to $\mathbf{2}*n-1$ do $A(i) := \ldots A(\mathbf{2}*n-i-1)$ od

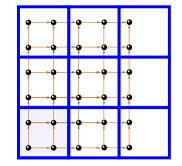
Schrittfunktion: $\lfloor i/n \rfloor$ (konstant)

Methode:

- Trenne die Senken des Graphen vom Rest.
- Propagiere die Trennungen rückwärts durch den Graphen
- Herausforderung: Termination bei Zyklen (Schrittgrenze)
- Referenz: Martin Griebl, Paul Feautrier, and Christian Lengauer. Index set splitting. Int. J. Parallel Programming, 28(6):607–631, 2000.

Erweiterung 4: Kacheln (*Tiling*)

- Goal: Bestimmte optimale Granularität der Parallelität [Martin Griebl]
 - Wie? (Form und Größe der Kacheln)
 - Wann? (Vor oder nach der Parallelisierung)
 - Was? (Raum oder Zeit)



- Wann: Nach der Parallelisierung
 - Allgemeiner:
 - Flexible Raumzeitabbildung vor inflexiblem Kacheln.
 - In den Raumdimensionen ist jede Kachelung ist erlaubt.
 - Einfacher: Ein einziger, perfekter Zielschleifensatz.
 - Einheitlicher: eine Kachelform für das gesamte Koordinatensystem.
- Was:
 - Raum: Anpassung an Betriebsmittel (Anzahl der Prozessoren)
 - Zeit: Anpassung an Performanz (Verhältnis Berechnung/Kommunikation)
- Referenzen: zum Kacheln nach der Raumzeitabbildung

Martin Griebl, Peter Faber, and Christian Lengauer. Space-time mapping and tiling: A helpful combination. *Concurrency and Computation: Practice and Experience*, 16(3):221–246, 2004.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. PLUTO: A practical and fully automatic polyhedral program optimization system. *Proc. ACM SIGPLAN 2008 Conf. on Programming Language Design and Implementation (PLDI 2008)*, ACM Press, 2008.

Erweiterung 5: Ausdrücke

Ziel: Vermeide wiederholte Berechnungen

- [Peter Faber]
- Methode: Schleifengetragene Codeplatzierung (Loop-carried code placement)
 - Identifiziert Ausdrücke, die denselben Wert haben.
 - Bestimmt optimalen Zeitpunkt und Platz für die Auswertung.
 - Bestimmt optimalen Platz für das Ergebnis.
- Example: Flachwassersimulation

```
FORALL (j=1:n,i=1:m) H(i,j) =

& P(i,j) + 0.25 * (U(i+1,j)*U(i+1,j) + U(i,j)*U(i,j)

& + V(i,j+1)*V(i,j+1) + V(i,j)*V(i,j))

FORALL (j=1:n,i=1:m+1) TMP1(i,j) = U(i,j)*U(i,j)

FORALL (j=1:n+1,i=1:m) TMP2(i,j) = V(i,j)*V(i,j)

FORALL (j=1:n,i=1:m) H(i,j) =

& P(i,j) + 0.25 * (TMP1(i+1,j) + TMP1(i,j)

& + TMP2(i,j+1) + TMP2(i,j)
```

Referenz: Peter Faber. Code Optimization in the Polyhedron Model – Improving the Efficiency of Parallel Loop Nests. Dissertation, Universität Passau, Iulu.com, 2008.

Erweiterung 6: Nicht-affine Feldindexausdrücke

Ziel: Behandlung von Ausdrücken der Form A(p*i)

[Armin Größlinger]

- "Parameter" p:
 - Hat unbekannten, festen Wert.
 - Typischer Fall: Ausdehnung des Polyeders in einer festen Dimension.
- Anwendung: Wähle Zeile oder Spalte einer Matrix als Vektor
- Herausforderung: Abhängigkeitsanalyse
 - Liegen die Lösungen innerhalb oder außerhalb des Iterationsraums?
 - In welche Richtung weist die Abhängigkeit? Parametrisches Vorzeichen möglich!

Methode:

- Mathematisches Modell: ganzzahlige Quasipolynome (Polynome, deren Koeffizienten periodische Funktionen sind).
- Löse die Konfliktgleichungen; Koeffizienten rational, Funktionswerte garantiert ganzzahlig.
- Es gibt einen Algorithmus für genau einen Parameter.

Referenzen:

Armin Größlinger and Stefan Schuster. On computing solutions of linear diophantine equations with one non-linear parameter. In Proc. 10th Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2008), 69–76. IEEE Computer Society, September 2008.

Armin Größlinger. *The Challenges of Non-linear Parameters and Variables in Automatic Loop Parallelization*. Dissertation, Universität Passau, Iulu.com, 2009.

Erweiterung 7: Nicht-affine Schleifengrenzen

[Armin Größlinger]

- Ziel: Aufzählung von Domänen mit Grenzen, die keine Geraden sind
 - Grenzen müssen mit Polynomen beschreibbar sein.
 - Domänen sind semi-algebraische Mengen (Lösungsmengen von Ungleichungssystemen von Polynomen; Algorithmus löst in \mathbb{R}^n , dann Schnitt mit \mathbb{Z}^n).
- Beispiel: Innere Schleife des Siebs des Eratosthenes

for
$$(j = i*i; j <= n; j += i)$$

- Quadratische Grenze und variable Schrittweite
- Transformation der variablen Schrittweite:
 - Schleifenkopf: for $(j = 0; j \le n; j += i)$ $\rightarrow for (k = 0; k*i \le n; k++)$

Schleifenrumpf: $j \rightarrow k*i$

- Nicht-lineare Schleifentransformationen:
 - Nicht-lineare Schedules können erheblich performanter sein als lineare.
- Herausforderung:
 - Codevereinfachung

Erweiterung 7: Fälle und Methoden

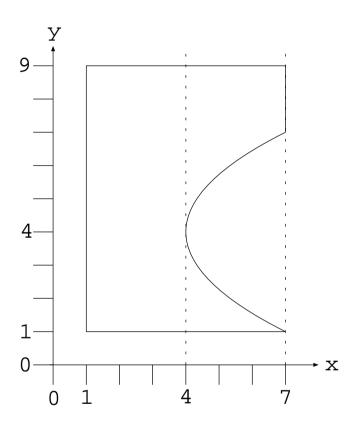
- Nicht-lineare Parameter: z.B. p²*i, p*q*i, p*i
 - LP-Lösungsmethoden wie Fourier-Motzkin und Simplex können auf die Behandlung mehrerer nicht-linearer Parameter erweitert werden.
 - Auswahl nach parametrischem Vorzeichen mit Quantorenelimination (in \mathbb{R}).
 - Anwendung: parametrisches Kacheln und Codegenerierung.
- Auch nicht-lineare Variablen: z.B. p²*i², p*i², i*j
 - Anwendung: Codegenerierung zur Aufzählung beliebiger semi-algebraischer Mengen.
 - Methode: Zylindrische algebraische Dekomposition.

Referenzen:

Armin Größlinger, Martin Griebl, and Christian Lengauer. Quantifier elimination in automatic loop parallelization. *Journal of Symbolic Computation*, 41(11):1206–1221, November 2006.

Armin Größlinger. *The Challenges of Non-linear Parameters and Variables in Automatic Loop Parallelization*. Dissertation, Universität Passau, lulu.com, 2009.

Erweiterung 7: Beispiel



```
for (x=1; x<=4; x++)

for (y=1; y<=9; y++)

T1(x,y);

for (x=5; x<=7; x++) {

for (y=1; y<=[4-\sqrt{3x-12}]; y++)

T1(x,y);

for (y=[4+\sqrt{3x-12}]; y<=9; y++)

T1(x,y);

}
```

Die Zukunft des Polyedermodells

Gegenwärtiger Stand und Ausblick

- Prototypen, die das Polyedermodell bereitstellen:
 - GRAPHITE (gcc), Polly
- Prototypen, die das Polyedermodell implementieren:
 - LooPo (Passau), PLUTO (Ohio-State)
- Software zur Abhängigkeitsanalyse:
 - Parametric Integer Programming (PIP), Omega
- Bibliotheken für Polyederoperationen:
 - Polylib, Parma Polyhedral Library, Barvinok Library, Integer Set Library (ISL)
- Software zur Codegenerierung:
 - Chunky Loop Generator (CLooG)
- Gegenwärtig engagieren wir uns in der Verfolgung zweier Ziele:
 - Polly: Akzeptanz von weit mehr Kontrollstrukturen im Quellcode
 - PolyJIT: Umgang mit Nicht-Affinität durch Nutzung von Laufzeitinformation

Polly

LLVM: [Tobias Grosser]

- Ein Open-Source Compiler-Framework
- Zielsprache: LLVM IR (intermediate representation)
- LLVM IR ist unabhängig von der Quellsprache und der Zielplattform
- LLVM-Compiler für viele Quellsprachen: FORTRAN, C, C++, Java, Haskell

• Idee:

- Static Control Part (SCoP): Polyeder-gerechte Kontrollstruktur
- Extrahiere SCoPs in LLVM IR Code, nicht in Quellcode

Zusätzlich behandelbar:

- Programme, die sich wie eine reguläre for-Schleife verhalten
- Ausdrücke, die sich affin-linear verhalten
- Funktionen mit bekannten, behandelbaren Nebenwirkungen

Beispiele

```
#define N 64
int A[1024];
int i = 0;
                                       #define N 64
int b, c;
                                       int A[1024];
do {
                                       for (int i = 0; i < N; i += 2)
  int b = 2*i;
                                         A[11*i] = i;
  int c = b*3 + 5*i;
  A[c] = i; i += 2;
} while (i < N);</pre>
int A[1024];
int *B = A;
                                       int A[1024];
while (B < \&A[1024]) {
                                       for (int i = 0; i < 1024; i++)
  *B = 1; ++B;
                                         A[i] = 1;
```

PolyJIT

[Armin Größlinger, Andreas Simbürger]

Idee:

- Nutzung freier Kerne zur polyedrischen Analyse und Optimierung
- Nutzung von Laufzeitinformation zur Behandlung statisch nicht oder schwer behandelbarer Situationen (JIT)

Ziele:

- Nutzung der Laufzeitwerte der Strukturparameter:
 - Macht ein parametrisches zu einem nicht-parametrischen Problem
 - Multiversionierung für dominierende Strukturwerte
 - Maschinelles Lernen zur "Interpolation" zwischen Strukturwerten
- Nachtarieren einer statischen Lösungswahl durch maschinelles Lernen
- Einsatz von Spekulation? Ein sehr schwieriges Thema...
 - Collards WHILE-Ansatz
 - Intel Itanium
 - Transaktionsspeicher

Ist das praktikabel...?

Das Potenzial von PolyJIT

[Andreas Simbürger]

LLVM Test-Suite (Top 12 von über 500)

Test	SCoPs	non-affine	side-effect
loop_unroll	324	722	256
loop_invariant	168	303	168
constant_folding	168	283	168
timberwolfmc	152	2601	162
simulator	78	198	8
hexxagon	67	149	2
football	32	334	14
bc	25	681	33
unix-tbl	20	362	36
stepanov_abstraction	18	163	17
bullet	18	2019	32
assembler	16	207	2

Abschluss

- Zwei konkurrierende Ansätze: statisch und dynamisch
- Statisch:
 - Das Ziel: alles mit Analyse zu verstehen
 - Die Probleme:
 - alle Einflüsse zu berücksichtigen
 - die rechnerische Komplexität
- Dynamisch:
 - Das Ziel: alle Einflüsse in der Findung des Optimums zu berücksichtigen
 - Das Problem: aus dem Einzelergebnis ein allgemeineres Verständnis zu gewinnen
- Unser Ansatz: im Polyedermodell
 - statische Analyse, wo sie praktikabel ist
 - dynamische Entscheidungen, wo sie nicht praktikabel ist
- Fazit:
 - Das Polyedermodell ist ein Element der Softwaretechnologie im Manycore-Zeitalter.
 - Viele andere Elemente sind notwendig.
 - Wir brauchen eine breitflächige Entwicklung neuer Softwaretechnologie.