
Full-Stack Optimizations for

Next-Generation Deep-Learning Accelerators

Sophia Shao
ysshao@berkeley.edu

Electrical Engineering and Computer Sciences



Growing 

Demand in 

Computing

OpenAI
2



Slowing Supply in Computing
AMD, HotChips, 2019

3



4

Slowing 

Supply in 

Computing

Growing 

Demand in 

Computing



5

Slowing 

Supply in 

Computing

Growing 

Demand in 

Computing



6

Slowing 

Supply in 

Computing

Growing 

Demand in 

Computing

Domain-Specific 

Accelerators



Domain-Specific Accelerators

7

• Customized hardware 

designed for a domain of 

applications. 

Apple M1 Chip

2020

CPU

CPU

GPU

* AnandTech

Neural 

Engine

Domain-Specific

Accelerators



Full-Stack Optimization for DL Accelerators

• MAGNet [ICCAD’2019]
• Simba [MICRO’2019, VLSI’2019]

Design of 

Accelerators

• Chipyard [IEEE Micro’2020]
• Gemmini [DAC’2021]

Integration of 

Accelerators

• CoSA [ISCA’2021]Scheduling of 

Accelerators

8



Full-Stack 

Optimization 

for DL 

Accelerators

Design of Accelerators

Integration of Accelerators

Scheduling of Accelerators

9



Scalable Inference Accelerators

10

• Need for fast and efficient inference accelerators from mobile to datacenter. 

Motivation

• High design cost of building unique hardware for each design target.

Challenge

• Deep learning inference is intrinsically scalable with abundant parallelism.

• Recent advances in package-level integration for multi-chip-module-based designs. 

Opportunities



The Multi-Chip-Module Approach

11

• Advantages:
• Build systems larger than reticle limit

• Smaller chips are cheaper to design

• Smaller chips have higher yield

• Faster time-to-market

• Challenges:
• Area, energy, and latency for chip-to-

chip communication

Ref: Zimmer et al., VLSI 2019



Simba: Scaling Inference with MCM-based Architecture

12

Simba Testchip:

Simba Characterization:

Simba NoP-Aware Tiling:

• Package and chiplet architecture

• Processing element design

• Baseline uniform tiling across chiplets and PEs

• Comparison with GPUs

• NoP bandwidth sensitivity

• NoP latency sensitivity

• Non-uniform work partitioning

• Communication-aware data placement

• Cross-layer pipelining

Best Paper Award at MICRO’2019, CACM Research Highlights



Simba: Scalable MCM-Based Architecture

13

Core area 111.6 mm2

Voltage 0.52-1.1 V

Frequency 0.48-1.8 GHz

SRAM
624KB/chip

23MB/package

Package and chiplet spec

6mm^2 chiplet in TSMC 16nm

36 chiplets/package

Chip-to-chip interconnect

Ground-Referenced Signaling

Efficient compute tiles

128 TOPS
0.11 pJ/Op

8-bit integer datapath
Ref: Zimmer et al., VLSI 2019



Simba Characterization

• Comparison with GPUs running ResNet-50

14



Simba Characterization

15

• Layer Sensitivity

• Running three ResNet-50 layers 
across different number of chiplets.

• Increasing the number of active 
chiplets does not always translate to 
performance gains.

• The cost of communication hinders the 

ability to exploit parallelism.



Design of Accelerators

Integration of Accelerators

Scheduling of Accelerators

16

Full-Stack 

Optimization 

for DL 

Accelerators



Accelerators don’t exist in isolation. 

17

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-

analysis/

Maltiel consulting 
estimates

Shao et al. IEEE 
Micro 2015

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/


Mobile SoC Usecase

• Mainstream architecture has long 
focused on general-purpose CPUs 
and GPUs. 

• In an SoC, multiple IP blocks are 
active at the same time and 
communicate frequently with each 
other.

• Example:
• Recording a 4K video

• Camera -> ISP
• “Preview stream” for display
• “Video stream” for storage

• DRAM for data sharing

18

Two Billion Devices and Counting: An Industry Perspective on 
the State of Mobile Computer Architecture, IEEE Micro’2018



SoC Framework

19

https://github.com/ucb-bar/chipyard

[IEEE Micro’2020]

• Integrated design, simulation and implementation

environment for specialized SoCs. 

https://github.com/ucb-bar/chipyard


Gemmini: Full-System Co-Design of Hardware Accelerators

• Full-stack

• Includes OS

• End-to-end workloads

• “Multi-level” API

• Full-SoC

• Host CPUs

• Shared memory hierarchies

• Virtual address translation

20

https://github.com/ucb-bar/gemmini

[DAC’2021]

https://github.com/ucb-bar/gemmini


Gemmini Case Study: Allocating on-chip SRAM

•Where to allocated SRAM?

• Private within each IP

• Shared

21

https://github.com/ucb-bar/gemmini

[DAC’2021]

SHARED

IP0

IP1

IP2

https://github.com/ucb-bar/gemmini


Gemmini Case Study: Allocating on-chip SRAM

•Where to allocated SRAM?

• Private within each IP

• Shared

22

https://github.com/ucb-bar/gemmini

[DAC’2021]

• Application dependent.

Single-Core SoC 

• SoC configuration dependent.

Dual-Core SoC 

SHARED

IP0

IP1

IP2

https://github.com/ucb-bar/gemmini


Design of Accelerators

Integration of Accelerators

Scheduling of Accelerators

23

Full-Stack 

Optimization 

for DL 

Accelerators



Large Space of Mapping Algorithms to ML Hardware

24

Scheduling

Algorithm Hardware

[ISCA’2021]



CoSA: Constrained-Optimization for Spatial Architecture

25 [ISCA’2021]



CoSA: Constrained-Optimization for Spatial Architecture

26

2.5x speedup 

compared to SoTA

with 90x faster 

time-to-solution.

[ISCA’2021]



Acknowledgement

• Thanks collaborators from UC Berkeley and NVIDIA!

27

Seah KimJenny HuangHasan Genc



Design of Accelerators

Integration of Accelerators

Scheduling of Accelerators

28

Full-Stack 

Optimization 

for DL 

Accelerators


