Hardware-Software Contracts for
Safe and Secure Systems

e®
buyl

Jan Reineke @ ""mu““

UNIVERSITAT
DES
SAARLANDES

Joint work with

NVarco Guarniert, Pepe Vila @ IMDEA Software, Madrid

Soris Kopt @ Microsoft Research, Cambridge, UK

Andreas Abel, Sebastian Hahn, Valentin Touzeau @ Saarland University

Supported by the European Research Council and an
Intel Strategic Research Alliance (ISRA)

The Need for HW/SW Contracts

"Stone-age” Computing

Applications implemented data transformations:
e.g. payroll processing

"Stone-age” Computing

Applications implemented data transformations:
e.g. payroll processing IBM System 360/30

Hardware:
® isolated, on-site
® |imited interaction with environment

Author: ArnoldReinhold License: CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

"Stone-age” Computing

Applications implemented data transformations:
e.g. payroll processing IBM System 360/30

Hardware:
® isolated, on-site
® |imited interaction with environment

Author: ArnoldReinhold License: CC BY-SA 3.0

HW/SW Contract: Instruction Set Architecture

3

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

ISA Abstraction

High-level languages

j Compiler

Instruction set architecture (ISA)

J Implementation

Microarchitecture

ISA Abstraction: Benefits

Can program independently of
microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary optimizations
as long as ISA semantics are obeyed

"Modern" (?) Computing

Applications are:

® Data-driven: e.g. deep neural networks
® Distributed: e.g. locally + in the cloud

® Open: e.g. untrusted code in the browser §@ _
® Real-time: interacting with the physical environment (=

"Modern" (?) Computing

Applications are:

® Data-driven: e.g. deep neural networks
® Distributed: e.g. locally + in the cloud

e Open: e.g. untrusted code in the browser @

® Real-time: interacting with the physical environment ‘

What are the implications for HW/SW contracts?

Inadequacy of the ISA + current pArchitectures:
Real-time Systems

Instruction set architecture (ISA) Abstracts from time

Inadequacy of the ISA + current pArchitectures:
Real-time Systems

Instruction set architecture (ISA) Abstracts from time

Can implement arbitrary unpredictable optimizations
as long as ISA semantics are obeyed

Inadequacy of the ISA + current pArchitectures:
Real-time Systems

Programs do not have a timed semantics
Programs have no control over timing

Instruction set architecture (ISA) Abstracts from time

Can implement arbitrary unpredictable optimizations
as long as ISA semantics are obeyed

State-of-the-art:
Handcrafted Microarchitectural Timing Models

Instruction set architecture (ISA)

J Refinement

Microarchitectural timing model| — models timing behavior

+ still no control over timing

[Manual Modeling

Microarchitecture <-—————————— unpredictable

8

State-of-the-art:
Handcrafted Microarchitectural Timing Models

Models are

Instruction set architecture (I1SA) limited to particular microarchitectures

+ probably incorrect
J Refinement + yield expensive or imprecise analysis

Microarchitectural timing model| — models timing behavior

+ still no control over timing

[Manual Modeling

Microarchitecture <-—————————— unpredictable

8

Wanted: Timed HW/SW Contracts

Timed Instruction Set Architecture

Wanted: Timed HW/SW Contracts

Timed Instruction Set Architecture

Admit wide range of high-performance
microarchitectural implementations

Wanted: Timed HW/SW Contracts

Programs have a timed semantics that is efficiently predictable
Programs have control over timing

Timed Instruction Set Architecture

Admit wide range of high-performance
microarchitectural implementations

Wanted: Timed HW/SW Contracts

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke:

Temporal Isolation on Multiprocessing Architectures
DAC 2011

S. Hahn and J. Reineke:
Design and Analysis of SIC:

A Provably Timing-Predictable Pipelined Processor Core
RTSS 2018

10

Inadequacy of the ISA + current pArchitectures:
Side-channel security

Instruction set architecture (ISA) | No guarantees about side channels

11

Inadequacy of the ISA + current pArchitectures:
Side-channel security

Instruction set architecture (ISA) | No guarantees about side channels

Yy
Can implement arbitrary insecure optimizations ol 2
as long as ISA semantics are obeyed

SPECTRE

11

Inadequacy of the ISA + current pArchitectures:
Side-channel security

Impossible to program securely on top of ISA
cryptographic algorithms?
sandboxing untrusted code?

Instruction set architecture (ISA) | No guarantees about side channels

4
Can implement arbitrary insecure optimizations O! 2
as long as ISA semantics are obeyed

SPECTRE

11

A Way Forward: HW/SW Security Contracts

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

12

A Way Forward: HW/SW Security Contracts

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

Can implement arbitrary inseeure optimizations
as long as contract is obeyed

12

A Way Forward: HW/SW Security Contracts

Can program securely on top contract
independently of microarchitecture

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

Can implement arbitrary inseeure optimizations
as long as contract is obeyed

12

A Concrete Challenge: Spectre

Exploits speculative
execution

o,

SPECTRE

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 14

Almost al/l modern CPUs
are affected

Example: Spectre vl Gadget

Example: Spectre vl Gadget

1. x is out of bounds

l

1f (x < A size)
y = AlX]
z = Bly*>1l2]
end

Example: Spectre vl Gadget

1. x is out of bounds

2. Executed speculatively

Example: Spectre vl Gadget

1. x is out of bounds

l 2. Executed speculatively

3. Leaks A|x]| via data cache

Hardware Countermeasures

Hardware Countermeasures

InvisiSpec: Making Speculative Execution
Invisible 1n the Cache Hierarchy

Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Adam Morrison®, Christopher W. Fletcher, and Josep Torrellas
University of Ilinois at Urbana-Champaign “Tel Aviv University
{myan8, jchoi42, skarlat2 } @illinois.edu, mad@cs.tau.ac.il, {cwiletch, torrella} @illinois.edu

16

Hardware Countermeasures

InvisiSpec: Making Speculative Execution
Invisible 1n the Cache Hierarchy

Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Adam Morrison*, Christopher W. Fletcher, and Josep Torrellas
University of Illinois at Urbana-Champaign “Tel Aviv University
{myan8, jchoi42, skarlat2 } @illinois.edu, mad@cs.tau.ac.il, {cwiletch, torrella} @illinois.edu

r Ul’(' ; U
Gy Sury raj E’CSQ 2 chy, n do »
18iq 1, 7> @y, ar
In,wtu,e 0‘;’ ech edy, ppl'o ac h
I C/")()]O" tO Saf
e
Pec
ouu’dd n g UIati On
G‘or:, : II)O’.’) @y, tory CUleg h
tuge . lfh edy 1
Cr L

Hardware Countermeasures

n
InvisiSpec: Making Speculative Execution ‘\\(o\‘%
Invisible in the Cache Hierarchy c\;{\o“. N &
C '\C" e.(\O \\z\\“c
Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Adam Morrison*, Christopher W. Fletcher, and Josep Torrellas g e?:l‘ ‘36 P‘\o RS ot A
University of Illinois at Urbana-Champaign “Tel Aviv University a"\q c ,(\’\ﬂe‘ c:\‘&%\ RS
{myan8, jchoi42, skarlat2 } @illinois.edu, mad@cs.tav.ac.il, {cwiletch, torrella} @illinois.edu C\)\ qa\\‘ O ‘\\\\)‘ﬂ&\ec"
' S0% 00 o
o \e s .\“3‘5
\\ -\s\b Oe\a\l ai\os\ubfef’\w 3t e o
. ' PPN 0\ Gt o
. c\€ C 0% A7 @ A\
Cy c\ \¢ O 7 @ A0
e a 66\ se \3??‘ \ca*\i N\ \3\\\\ 0\0% q\x’g\ﬂ A
n u NG \ AP e c\\“ &0‘ X “\).\
pSp e \ - “D\C’&a“ $0{\N C% (‘ 6\‘\6\“\‘ ée'(@“
. ﬁ\ §0“ A
G 1 n - S AL A
o Tirgj o Uhd » (oNO% e R o
C(‘ S llrllra o dj I (&N h O CX\{ \Z\\)“ ’ eée g oL x\((\ s\\\i o
Ogia [S @Peage ., Var Ppy g @™ o0 e s
Chn Olo to S N5 O C"’“Q
) e sp i
. €c O
Olnuddi ulatio \e*
G Mo, n
()I‘oia 7 ”)@g(?(e ul'eswh
n "Iu Cch e U]

M
engji
iayY

an’
O C
ho‘f
\"Cr\w OS S
sity of Ski
of lllin:.lzl(os A
s > ,‘ (‘|.~
! (\Q,S‘)e
\3((\\26(,4\\3

\36\\u1' ;
c\)\a’t\

{m
. jchoi
hoid?2. sk
- S -
arl:
‘“7 }
v (r’

N\ N o
oW W A
o g ol N‘\c\i\tgA\\
Qe
<0 ga®
. b\e

Hardware Countermeasures (5%

&" A0
S ¢ 0“%\.\\:\\‘?:’“
aca \\/ . w\c “
s = : % F F“ *CN\ BX o o%
InvisiSpec: Making Speculative o e O
. s . S c\“ b o &\\
Invisible in the Cache ' e i RSP 4
\ A 2, g™ el “c\ O \C
. . 0‘ Ne Ane : s\g AT \ el N\
Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Ad- e(‘,o\ \'5.‘\ e W gz\‘\ o o\w‘\. i e?:ﬁ Q‘eé Ps\o XY o a
University of Illinois »* - S? ,Qeﬁ‘w \B“\\EC‘S\ ; a“\q c S “\q 4 c\«a.%\‘ o
{myan8, jchoi42, skarlat2} @’ “{\(\% o C\)\ qa\\‘ \\\\}OG‘CV
e o° L
(6\'6 (s SQ W\ o
N. ? .~°\$':’c - 2% ¢ \Ne‘\,,\\‘\q}‘\ S b\e aﬂ (g @L\'{‘bﬁ"
ﬁo O‘{\‘ Q‘l; N\'\C\\\ 2 (‘\\0 ‘.«bﬁ o N\ \“ q \s\ oe\ bS\O$$- @ ‘é\\“i ‘\66«(" 'a“é
SOl o . \: ™ ae® o\ L eP
0“\\ e \} W\ i . e “‘ c‘\q e 6\’6 Qs &at}a \ﬂe’i & \)\\. C 06 S\.‘a’\'\i 0& SL\
&/ eq e«\C\ %e'\e \W\W\ﬁa > i ‘M%g“\q c‘iO\og g
" “PS a0 B e (WO o
p Ce. \3S e\ $0(‘Nc 6\\3\“ ée'(@’
Gur, ‘A a2 “U 6O s A “of;, G
Ura: <5 e PR\ T
G(‘() g lln]ra;(:‘,OSa I.Ie S h w hdo »
roy. (@, !
512 In.s‘mu,eg"{t‘ch,edfr ppl'o ach, Speculative Taint Tracking (STT): A Comprehensive Protection
of Techne, lo Saf. for Speculatively Accessed Data
&) e
x pec U I " x\'lcngji?l:an r/\lrfts‘cm lIfhyzha
n : ~ Iniversity of lllinois at Tel Aviv University
n ‘.lddln k atl On Urbana-Champaign artkhyzha@mail tau.ac.il
GG(),.OI. ,Oll) ab Ao h urﬁ‘?[; . myan8@illinois.edu
S gy, SCCh M1
Uty Of ., t:(’{u Josep Torrellas Christopher W. Fletcher

Examples

Examples

Examples

Examples

. 1°f
2 Yy
3 Z

Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

(x < A s1 zfe\/

A
B

X

y*512]

\

17

Delay loads until they cannot
be squashed

[Sakalis et al., ISCA’19]

Examples Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

1f (x < A size)~

y = AlX] Delay loads until they cannot
- \
z = Bly*>o12] be squashed
end [Sakalis et al., ISCA’19]

NS

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]

17

Examples

Examples

1 Y =
2. 1f

3 Z
4 end

Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

Al x| > -

(x < A:sj.ze)\ Delay loads until they cannot
= Bly*o1lZ] be squashed

[Sakalis et al., ISCA'19]}

18

Examples Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

y = AlX] o
1

f (x < A_size) Delay loads until they cannot
z = B(y*512] be squashed

end 'Sakalis et al., ISCA'19]

NS

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]

18

What security
properties do HW
countermeasures

enforce?

How can we program
securely?

A Proof of Concept

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

20

Hardware-Software Contracts

HW/SW Contracts for Secure Speculation

HW/SW Contracts
for Secure Speculation

22

HW/SW Contracts for Secure Speculation

HW/SW Contracts
for Secure Speculation

Hardware No speculation
Load Delay

Countermeasures Taint Tracking

No countermeasures

22

HW/SW Contracts for Secure Speculation

Programming

Constant-time Sandboxing

HW/SW Contracts
for Secure Speculation

Hardware No speculation
Load Delay

Countermeasures Taint Tracking

No countermeasures

22

HW/SW Contracts for Secure Speculation

Programming

Constant-time Sandboxing
HW/SW Contracts . simple mechanism-independent
. Desiderata: .
for Secure Speculation precise
Hardware No speculation
Countermeasures Load Delay Taint Tracking

No countermeasures

22

Ingredients of a Formalization

Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Microarchitecture
Hardware states: (o, i)

Hardware semantics: (o, i) = (o', ')

23

Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Microarchitecture
Hardware states: (o, i)

Hardware semantics: (o, i) = (o', ')

Adversary model
pArch traces: {| p || (6) = pop;-. .1,

23

Contracts

Contracts

Contract

A deterministic, labelled semantics = for the ISA

Contracts Observations expose security-relevant uArch events

Contract

A deterministic, labelled semantics|— [for the ISA

24

Contracts Observations expose security-relevant uArch events

Contract

A deterministic, labelled semantics|— [for the ISA

Contract traces: [pll(o) = 1775...7,

24

Contracts Observations expose security-relevant uArch events

Contract

e . |7
A deterministic, labelled semantics|— [for the ISA

Contract traces: [pll(o) = 1775...7,

Contract satisfaction
Hardware { - |} satisfies contract || - || if for all programs p and

arch. states o, 0" if [[pl|(c) = [[pll(c”) then {p |} (c) = { p || (6')

24

Contracts for Secure Speculation

Contracts for Secure Speculation

Contract =
Execution Mode - Observer Mode

Contracts for Secure Speculation

Contract =
Executi onNIode -

Observer Mode

;l

How are programs executed?

Contracts for Secure Speculation

Contract =
Execution Mode - Observer Mode|

What is visible about the

How are programs executed? .
execution?

Contracts for Secure Speculation

Contract =
Execution Mode|-

))

l

Observer Mode

Contracts for Secure Speculation

Contract =
Execution Mode|-

))

l

Observer Mode

seq — sequential execution

spec — mispredict branch instructions

Contracts for Secure Speculation

Contract =
Fxecution Mode - Observer

Contracts for Secure Speculation

Contract =
Execution Mode - Observer

nc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values

A Lattice of Contracts

seqg-arch

seq-Ct =——p |
/ T

seq-ct+spec-pc

T
spec-ct
| —— spec-arch /

A Lattice of Contracts

seq-Ct =——p |
/ T

seq-ct+spec-pc

T
spec-ct
| —— spec-arch /

seqg-arch

Leaks “everything”

A Lattice of Contracts Leaks “nothing

seq-ct ———p |
/ T

seq-ct+spec-pc

T
spec-ct
|l — spec-arch /

seqg-arch

Leaks “everything”

A Lattice of Contracts Leaks “nothing

seqg-arch

seq-Ct —p |
/ T

seq-ct+spec-pc

Leaks addresses

T of non-spec.
spec-ct loads/stores/
J_ —— spec-arch / Instruction
fetches

Leaks “everything”

A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct —p |
accessed non- / T

speculatively seq-arch

S€Q-Ct+SPeC-pPC | 1< addresses

T of non-spec.
spec-ct loads/stores/
J_ —— spec-arch / Instruction
fetches

Leaks “everything”

A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct —p |
accessed non- / T

speculatively seq-arch

S€Q-Ct+SPeC-pPC | 1< addresses

T of non-spec.
spec-ct loads/stores/
J_ —— spec-arch / Instruction
fetches

Leaks addresses of all loads/stores/
Leaks “everything” instruction fetches

Hardware Countermeasures

A Simple Processor

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

30

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

30

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

Parametric in branch predictor and
memory hierarchy

30

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

Parametric in branch predictor and
memory hierarchy

Different schedulers for different
countermeasures

30

Disabling Speculative Execution

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*

4

S

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*

' 4

S

| e o
“#* No speculative leaks ‘“&+

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*

' 4

S

- e - e
“# No speculative leaks ‘“&+

Satisfies seq-ct

Eager Load Delay /Sakalis et al., ISCA’19]

Eager Load Delay /Sakalis et al., ISCA’19]

Delaying loads until all sources of
speculation are resolved

Eager Load Delay [Sakalis et al., ISCA’19]

Security guarantees?

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

(x < A size)
X

Blz

z
Y

A

A[x]and B[z] delayed until

X<A sizeis resolved

Eager Load Delay [Sakalis et al., ISCA’19]

A[x]and B[z] delayed until

X<A sizeis resolved

o | A
= No speculative leaks _&»

Eager Load Delay [Sakalis et al., ISCA’19]

B[z] delayed until

X<A sizeis resolved

o | A
= No speculative leaks _&»

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

F

1f (z==0) is not delayed

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1f (z==0) is not delayed

if (z==0) Program speculatively

Skip leaks A|x| =

Eager Load Delay [Sakalis et al., ISCA’19]

P

1f (z==0) is not delayed

1 f (x < A size)
i (z==0) Program speculatively

skip leaks A|x|

Observation: Can only leak data
accessed non-speculatively

Eager Load Delay [Sakalis et al., ISCA’19]

P

1f (z==0) is not delayed

1 f (x < A size)
i (z==0) Program speculatively

skip leaks A|x|

Observation: Can only leak data Satisfies seq-arch
accessed non-speculatively *

Satisfies seq-ct+spec-pc

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint speculatively loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint speculatively loaded data

Propagate taint through computation

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint speculatively loaded data

Propagate taint through computation

Delay tainted operations

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

- e - Taint speculatively loaded data

Security guarantees?

Delay tainted operations

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

ﬁ

(x < A size)
X

Blz

z
Y

A

A [x] tainted as unsafe
B[z] delayed until

A [x] is safe

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x] tainted as unsafe
B[z] delayed until
1if (x < A size) A [x] is safe

e |
= No speculative leaks ‘&»

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = A[X] B[z] not delayed
1

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = A[X] B[z] notdelayed
1

Program speculatively

leaks A|x|

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = Alx] B[z] notdelayed
1

Program speculatively

* Also satisfies seqg-arch leaks Alx| &

No Countermeasures [The World until 2018]

No Countermeasures [The World until 2018]

ﬁ

1L

(x < A size)
X

Bz

4
Y

A

Leaks addressed of speculative
and non-speculative accesses

No Countermeasures [The World until 2018]

Leaks addressed of speculative
and non-speculative accesses

ﬁ

1f (x < A size)
Zz = A|lx
y = Blz

» Satisfies spec-ct

Security Guarantees

seq-ct
/ T
seq-ct+spec-pc

T
spec-ct
spec-arch /

seqg-arch

Security Guarantees 0

T Specu| ation

seq-ct L -
/ T

seq-ct+spec-pc

T
spec-ct
spec-arch /

SEq_arCh

Security Guarantees 0

~ speculation

/ Seq Ct
T e LOad

seq-ct+spec-pc “ __ Delay

seq- arch

spec-ct
spec-arch /

40

Security Guarantees .

~ speculation

/ Seq'Ct

- Load
- Delay

seq-arch
seq-ct+spec-pc

Taint
. Tracking

spec-ct

spec-arch

40

Security Guarantees .

~ speculation

/ Seq-Ct

-~ Load
- Delay

seq-arch
seq-ct+spec-pc

Taint
e Trackin g

spec-ct

spec-arch

e n o
countermeasure

40

Secure Programming

Secure Programming: Foundations

Secure Programming: Foundations

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract ||+ || and policy &

ffor all arch. states 0, 6" f 6 =, 6’ then [[pll(0) = Ipll(c”)

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy

f for all arch. states o, 6" if 6 =, ¢'then [[pll(c) = [[pll(c”)

|
e —— =

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Theorem

f p is non-interferent wrt contract || - || and policy
and hardware { - |} satisfies || -], then
p is non-interferent wrt hardware { - |} and policy 7

Two Flavors of Secure Programming

Constant-time Sandboxing

Two Flavors of Secure Programming

!
I
!

- Constant-time

Sandboxing

Two Flavors of Secure Programming

|

Constant-time

Sandboxing

Constant-time Programming

Constant-time Programming

Traditional CT wrt policy & = non-interference wrt seq-ct and

Constant-time Programming

~ Control-flow and memory accesses
do not depend on secrets

Traditional CT wrt policy JZ'E non-interference wrt seq-ct and

—

44

Constant-time Programming

~ Control-flow and memory accesses
do not depend on secrets

Tradltlonal CT Wit pohcy JZ'E non-interference wrt seq-ct and x

General CT wrt w and || - || = non-interference wrt || - || and &

Sandboxing

Sandboxing

Traditional SB wrt policy & = non-interference wrt seq-arch and z

Sandboxing

_ Programs never access high memory
locations (out-of-sandbox)

Traditional SB wrt policy

7Z'E non-interference wrt seq-arch and

45

Sandboxing

_ Programs never access high memory
locations (out-of-sandbox)

Traditional SB wrt policy JZ'E non-interference wrt seq-arch and 7

General SB wrt wand ||« || =
Traditional SB wrt & + non-interference wrt - and || - ||

45

Checking Secure Programming

Constant-time

lraditional constant-time

seq-ct ,
: (= non-interference wrt seq-ct)
seq-arch Non-interference wrt seq-arch
spec-ct .. + Spec. non-interference

[Spectector, S&P 20

Checking Secure Programming

Constant-time

lraditional constant-time

seq-ct ,
: (= non-interference wrt seq-ct)
seqg-arch Non-interference wrt seq-arch ﬁ
spec-ct .. + Spec. non-interference

[Spectector, S&P 20

Checking Secure Programming

Sandboxing

[raditional sandoboxing

seq-ct |
“ (= non-interference wrt seq-arch)

seqg-arch Traditional sandboxing

spec-ct .. + weak SN

Checking Secure Programming

Sandboxing

[raditional sandoboxing
(= non-interference wrt seq-arch)

seq-ct

spec-ct .. + weak SN

Conclusions

Need to rethink hardware-software contracts
with security and safety in mind!

Need to rethink hardware-software contracts
with security and safety in mind!
Should strive for simple and
mechanism-independent contracts.

Need to rethink hardware-software contracts
with security and safety in mind!
Should strive for simple and
mechanism-independent contracts.

Find out more in our paper:

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

