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ISA Abstraction

High-level languages

j Compiler

Instruction set architecture (ISA)

J Implementation

Microarchitecture



ISA Abstraction: Benefits

Can program independently of
microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary optimizations
as long as ISA semantics are obeyed
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What are the implications for HW/SW contracts?
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State-of-the-art:
Handcrafted Microarchitectural Timing Models

Instruction set architecture (ISA)

J Refinement

Microarchitectural timing model| — models timing behavior
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Microarchitecture <-—————————— unpredictable
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State-of-the-art:
Handcrafted Microarchitectural Timing Models

Models are

Instruction set architecture (I1SA) limited to particular microarchitectures

+ probably incorrect
J Refinement + yield expensive or imprecise analysis

Microarchitectural timing model| — models timing behavior

+ still no control over timing

[ Manual Modeling

Microarchitecture <-—————————— unpredictable
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Wanted: Timed HW/SW Contracts

Programs have a timed semantics that is efficiently predictable
Programs have control over timing

Timed Instruction Set Architecture

Admit wide range of high-performance
microarchitectural implementations



Wanted: Timed HW/SW Contracts

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke:

Temporal Isolation on Multiprocessing Architectures
DAC 2011

S. Hahn and J. Reineke:
Design and Analysis of SIC:

A Provably Timing-Predictable Pipelined Processor Core
RTSS 2018
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Inadequacy of the ISA + current pArchitectures:
Side-channel security

Instruction set architecture (ISA) | No guarantees about side channels
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Inadequacy of the ISA + current pArchitectures:
Side-channel security

Impossible to program securely on top of ISA
cryptographic algorithms?
sandboxing untrusted code?

Instruction set architecture (ISA) | No guarantees about side channels

4
Can implement arbitrary insecure optimizations O! 2
as long as ISA semantics are obeyed

SPECTRE
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A Way Forward: HW/SW Security Contracts

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage
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A Way Forward: HW/SW Security Contracts

Can program securely on top contract
independently of microarchitecture

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

Can implement arbitrary inseeure optimizations
as long as contract is obeyed

12



A Concrete Challenge: Spectre




Exploits speculative
execution

o,

SPECTRE

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 14

Almost al/l modern CPUs
are affected




Example: Spectre vl Gadget




Example: Spectre vl Gadget

1. x is out of bounds

l

1f (x < A size)
y = AlX]
z = Bly*>1l2]
end



Example: Spectre vl Gadget

1. x is out of bounds

2. Executed speculatively




Example: Spectre vl Gadget

1. x is out of bounds

l 2. Executed speculatively

3. Leaks A|x]| via data cache




Hardware Countermeasures



Hardware Countermeasures

InvisiSpec: Making Speculative Execution
Invisible 1n the Cache Hierarchy

Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Adam Morrison®, Christopher W. Fletcher, and Josep Torrellas
University of Ilinois at Urbana-Champaign “Tel Aviv University
{myan8, jchoi42, skarlat2 } @illinois.edu, mad@cs.tau.ac.il, {cwiletch, torrella} @illinois.edu
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. 1°f
2 Yy
3 Z

Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

(x < A s1 zfe\/

A
B

X

y*512]

\
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Delay loads until they cannot
be squashed

[Sakalis et al., ISCA’19]



Examples Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

1f (x < A size)~

y = AlX] Delay loads until they cannot
- \
z = Bly*>o12] be squashed
end [Sakalis et al., ISCA’19]

NS

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]
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Examples

1 Y =
2. 1f

3 Z
4 end

Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

Al x| > -

(x < A:sj.ze)\ Delay loads until they cannot
= Bly*o1lZ] be squashed

[Sakalis et al., ISCA'19]}
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Examples Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

y = AlX] o
1

f (x < A_size) Delay loads until they cannot
z = B(y*512] be squashed

end 'Sakalis et al., ISCA'19]

NS

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]
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What security
properties do HW
countermeasures

enforce?

How can we program
securely?




A Proof of Concept

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021
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Hardware-Software Contracts




HW/SW Contracts for Secure Speculation

HW/SW Contracts
for Secure Speculation
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HW/SW Contracts for Secure Speculation

Programming

Constant-time Sandboxing
HW/SW Contracts . simple  mechanism-independent
. Desiderata: .
for Secure Speculation precise
Hardware No speculation
Countermeasures Load Delay Taint Tracking

No countermeasures

22
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Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Microarchitecture
Hardware states: (o, i)

Hardware semantics: (o, i) = (o', ')

Adversary model
pArch traces: {| p || (6) = pop;-. .1,

23
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Contract

A deterministic, labelled semantics = for the ISA



Contracts Observations expose security-relevant uArch events

Contract

A deterministic, labelled semantics|— [for the ISA
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Contracts Observations expose security-relevant uArch events

Contract

e . |7
A deterministic, labelled semantics|— [for the ISA

Contract traces: [ pll(o) = 1775...7,

Contract satisfaction
Hardware { - |} satisfies contract || - || if for all programs p and

arch. states o, 0" if [[pl|(c) = [[pll(c”) then {p |} (c) = { p || (6')

24
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Contracts for Secure Speculation

Contract =
Execution Mode - Observer Mode|

What is visible about the

How are programs executed? .
execution?



Contracts for Secure Speculation

Contract =
Execution Mode|-
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l

Observer Mode




Contracts for Secure Speculation

Contract =
Execution Mode|-

))

l

Observer Mode

seq — sequential execution

spec — mispredict branch instructions



Contracts for Secure Speculation

Contract =
Fxecution Mode - Observer




Contracts for Secure Speculation

Contract =
Execution Mode - Observer

nc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values
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A Lattice of Contracts Leaks “nothing

seqg-arch

seq-Ct —p |
/ T

seq-ct+spec-pc

Leaks addresses

T of non-spec.
spec-ct loads/stores/
J_ —— spec-arch / Instruction
fetches

Leaks “everything”



A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct —p |
accessed non- / T
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S€Q-Ct+SPeC-pPC | 1< addresses

T of non-spec.
spec-ct loads/stores/
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A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct —p |
accessed non- / T

speculatively seq-arch

S€Q-Ct+SPeC-pPC | 1< addresses

T of non-spec.
spec-ct loads/stores/
J_ —— spec-arch / Instruction
fetches

Leaks addresses of all loads/stores/
Leaks “everything” instruction fetches
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A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

Parametric in branch predictor and
memory hierarchy

Different schedulers for different
countermeasures

30
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Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*

' 4

S

- e - e
“# No speculative leaks ‘“&+

Satisfies seq-ct
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Eager Load Delay /Sakalis et al., ISCA’19]

Delaying loads until all sources of
speculation are resolved




Eager Load Delay [Sakalis et al., ISCA’19]

Security guarantees?
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Eager Load Delay [Sakalis et al., ISCA’19]

P

1f (z==0) is not delayed

1 f (x < A size)
i (z==0) Program speculatively

skip leaks A|x|

Observation: Can only leak data Satisfies seq-arch
accessed non-speculatively *

Satisfies seq-ct+spec-pc
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Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

- e - Taint speculatively loaded data

Security guarantees?

Delay tainted operations
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Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

ﬁ

(x < A size)
X

Blz

z
Y

A

A [ x] tainted as unsafe
B[ z] delayed until

A [ x] is safe



Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [ x] tainted as unsafe
B[ z] delayed until
1if (x < A size) A [x] is safe

e |
= No speculative leaks ‘&»
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Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [ x]tagged as safe

z = A[X] B[ z] not delayed
1
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Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [ x]tagged as safe

z = Alx] B[ z] notdelayed
1

Program speculatively

* Also satisfies seqg-arch leaks Alx| &
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No Countermeasures [ The World until 2018]

Leaks addressed of speculative
and non-speculative accesses

ﬁ

1f (x < A size)
Zz = A|lx
y = Blz

» Satisfies spec-ct



Security Guarantees

seq-ct
/ T
seq-ct+spec-pc

T
spec-ct
spec-arch /

seqg-arch
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seq-ct L -
/ T
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T
spec-ct
spec-arch /

SEq_arCh
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Security Guarantees .

~ speculation

/ Seq-Ct

-~ Load
- Delay

seq-arch
seq-ct+spec-pc

Taint
e Trackin g

spec-ct

spec-arch

e n o
countermeasure
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Program p is non-interferent wrt contract || - || and policy

f for all arch. states o, 6" if 6 =, ¢'then [[pll(c) = [[pll(c”)
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Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Theorem

f p is non-interferent wrt contract || - || and policy
and hardware { - |} satisfies || -], then
p is non-interferent wrt hardware { - |} and policy 7
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Constant-time Programming

Traditional CT wrt policy & = non-interference wrt seq-ct and



Constant-time Programming

~ Control-flow and memory accesses
do not depend on secrets

Traditional CT wrt policy JZ'E non-interference wrt seq-ct and
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Sandboxing

Traditional SB wrt policy & = non-interference wrt seq-arch and z
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Sandboxing

_ Programs never access high memory
locations (out-of-sandbox)

Traditional SB wrt policy JZ'E non-interference wrt seq-arch and 7

General SB wrt wand ||« || =
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