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University of Queensland

Research intensive University, 

in top 4 (out of 40) for research in Australia,

THES list of world top 50, 

Shanghai Jiao Tong University World Rankings:

Top 9-17 in Asia-Pacific, 101-152 in World
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FPGA
Programmable Hardware

Largest around 10M programmable gates

Gate functions & interconnection customised 

by downloading bit stream to RAM cells:

LUT

0/1
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Reconfigurable System-on-Chip

System of chips on a board

System of modules 

hardwired on a chip

System of modules 

reprogrammed on an FPGA
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System-on-Chip ASIC

• IP Blocks from third parties

• Soft IP (VHDL) or Hard IP (Mask Layout)

• Designer selects and places

• Also designs some glue logic

• Maybe designs some custom peripherals

• Hard to verify and test
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Reconfigurable System-on-Chip

• Some built-in vendor functions –

processor, memory, multipliers

• Soft (VHDL) IP blocks, can be edited, 

some “open-source”

• Hard (fixed layout) IP blocks, not designed 

to be edited

• Design adds custom blocks

• Easier to test & verify, can be debugged.
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HW/SW Task Migration

• RSOC allows tasks to run in HW or in SW

• Can we move running tasks between HW 

and SW, as application and environmental 

demands change?
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Computational Model

• Dataflow model

• Tasks have data streams as input and 

output

• Streams can be divided into packets, 

which could vary from words to video 

frames

• Computation consists of tasks and logical 

connections between tasks.
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Tasks

• Can be hardware or software

• Self-contained – all communications 

happens over I/O streams, no global data.

• Can be implemented in HW or SW

• For software, Linux-based tasks, using 

“pipes” for I/O

• For hardware, custom logic blocks, using 

Xilinx FSL for I/O
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Network on Chip
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SW Task 1

SW Task 2

SW Task 3

HW Task 4

HW Task 5

SW Router

HW Router

I/O

I/O
To Other Chips



Task Migration

• Stop sending inputs to OLD

• Execute until migration point

• Output completed results

• Transfer any state to NEW

• Redirect inputs to NEW
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Progress

• Network on chip under construction

• Migration protocols being developed
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Problem

• The same software can run on many 

different platforms, perhaps with a 

recompilation and with new libraries.

• How can we use the same software with 

and without FPGA-based accelerators?
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Open Crypto Framework

• Crypto accelerator chips are complex to 

use, but this can be helped by device 

drivers.

• OCF was designed to allow UNIX 

applications to use crypto accelerator 

chips if available, use software when they 

are not, also load balance.

• Originally in FrreBSD, now in Linux.
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OCF

• OCF is not restricted to crypto 

applications, could be used for any 

hardware accelerators.

• This project investigates OCF to interface 

to FPGA-based hardware accelerators

• The project uses FPGA-based crypto 

accelerators, but could be extended to 

other function.
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Logical Architecture
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Physical Architecture

Slot-Based
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MICROBLAZE / LINUX   

State (eg key, IV)

FSL



Advantages

• Accelerators for slots can be changed as 

data mix changes (eg more AES, less 

3des)

• Load Balancing for multiple accelerators

• Works with no hardware accelerators (eg 

during reconfiguration)
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Progress

• Architecture completed, and being 

debugged

• About to start trials with different data 

mixes
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Motivation

• In multitasking embedded systems, task 

scheduling and context switching are 

software overheads.

• Hardware support could assist but:

– How many tasks?

– What scheduling algorithm?

• Would only be viable for large volumes

• FPGAs allows application specific support
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Context Switching

• The context for a task typically consists of 

a snapshot of registers (including Program 

Counter, Stack Pointer, ...)

• Normally need to copy out registers from 

old task into task control block, and copy 

in registers from new task.
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FPGA Context Switching

• For small number of tasks (8 or so), we 

can have multiple copies of all registers, 

context switch is just a change to a 

pointer.

• For larger numbers of tasks, we can have 

two register copies.  Predictively copy next 

task ahead of context switch, save old task 

after context switch from separate 

memory.
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Scheduling

• Static scheduling – assigns static priorities 

to decide which task should next be run.  

Not very flexible

• Dynamic scheduling (EDF- Earliest 

Deadline First; LSF – Least Slack First) 

can provide better real-time performance, 

but requires more complex scheduling to 

be run more often.
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FPGA Task Scheduling

• Use hardware scheduler to continually 

decide which is the next task to run, and to 

decide when that task should run.

• Can also link to interrupt handler to 

change task states (suspended to 

runnable) without needed ISR in software.

• Can use complex dynamic schedules
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Progress

• Hardware Context Switch and Hardware 

Scheduler designs complete

• Still need to interface to software operating 

system (eCOS)

• Then run performance tests 

• No clear metrics to compare operating 

system performance – throughput, latency, 

predictability,  utilisation, ...
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Conclusions

• FPGAs and RSOC have significant 

potential advantages over ASIC, 

especially in terms of design flow.

• Still much harder to design than 

microprocessor-based systems, but 

multicores are helping bridge the gap.

• Need both tools and designers


