
1 of 52

Reconfigurable

Computing at UQ

Prof. Neil Bergmann

School of ITEE, University of Queensland

2 of 52

Contents

• FPGAs and RSOC
– Motivating our technology choice

• HW/SW Task Migration
– Managing Computing & Communications

• OCF and RC
– Using hardware accelerators transparently

• OS support on RSOC
– For high speed real time systems

3 of 52

University of Queensland

Research intensive University,

in top 4 (out of 40) for research in Australia,

THES list of world top 50,

Shanghai Jiao Tong University World Rankings:

Top 9-17 in Asia-Pacific, 101-152 in World

4 of 52

Contents

• FPGAs and RSOC
– Motivating our technology choice

• HW/SW Task Migration
– Managing Computing & Communications

• OCF and RC
– Using hardware accelerators transparently

• OS support on RSOC
– For high speed real time systems

5 of 52

FPGA
Programmable Hardware

Largest around 10M programmable gates

Gate functions & interconnection customised

by downloading bit stream to RAM cells:

LUT

0/1

6 of 52

Reconfigurable System-on-Chip

System of chips on a board

System of modules

hardwired on a chip

System of modules

reprogrammed on an FPGA

7 of 52

System-on-Chip ASIC

• IP Blocks from third parties

• Soft IP (VHDL) or Hard IP (Mask Layout)

• Designer selects and places

• Also designs some glue logic

• Maybe designs some custom peripherals

• Hard to verify and test

8 of 52

Reconfigurable System-on-Chip

• Some built-in vendor functions –

processor, memory, multipliers

• Soft (VHDL) IP blocks, can be edited,

some “open-source”

• Hard (fixed layout) IP blocks, not designed

to be edited

• Design adds custom blocks

• Easier to test & verify, can be debugged.

9 of 52

Contents

• FPGAs and RSOC
– Motivating our technology choice

• HW/SW Task Migration
– PhD Project of Mr Ian Clough

• OCF and RC
– Using hardware accelerators transparently

• OS support on RSOC
– For high speed real time systems

HW/SW Task Migration

• RSOC allows tasks to run in HW or in SW

• Can we move running tasks between HW

and SW, as application and environmental

demands change?

10 of 52

Computational Model

• Dataflow model

• Tasks have data streams as input and

output

• Streams can be divided into packets,

which could vary from words to video

frames

• Computation consists of tasks and logical

connections between tasks.

11 of 52

Tasks

• Can be hardware or software

• Self-contained – all communications

happens over I/O streams, no global data.

• Can be implemented in HW or SW

• For software, Linux-based tasks, using

“pipes” for I/O

• For hardware, custom logic blocks, using

Xilinx FSL for I/O

12 of 52

Network on Chip

13 of 52

SW Task 1

SW Task 2

SW Task 3

HW Task 4

HW Task 5

SW Router

HW Router

I/O

I/O
To Other Chips

Task Migration

• Stop sending inputs to OLD

• Execute until migration point

• Output completed results

• Transfer any state to NEW

• Redirect inputs to NEW

14 of 52

Progress

• Network on chip under construction

• Migration protocols being developed

15 of 52

16 of 52

Contents

• FPGAs and RSOC
– Motivating our technology choice

• HW/SW Task Migration
– Managing Computing & Communications

• OCF and RC
– PhD Project of Mr Adel Alyousef

• OS support on RSOC
– For high speed real time systems

Problem

• The same software can run on many

different platforms, perhaps with a

recompilation and with new libraries.

• How can we use the same software with

and without FPGA-based accelerators?

17 of 52

Open Crypto Framework

• Crypto accelerator chips are complex to

use, but this can be helped by device

drivers.

• OCF was designed to allow UNIX

applications to use crypto accelerator

chips if available, use software when they

are not, also load balance.

• Originally in FrreBSD, now in Linux.

18 of 52

OCF

• OCF is not restricted to crypto

applications, could be used for any

hardware accelerators.

• This project investigates OCF to interface

to FPGA-based hardware accelerators

• The project uses FPGA-based crypto

accelerators, but could be extended to

other function.

19 of 52

Logical Architecture

20 of 52

Application

OCF

Device Driver

Software

3DES

Device Driver

Hardware

3DES

Device Driver

Hardware

3DES

Device Driver

Software

AES

Device Driver

Hardware

AES

Device Driver

Software

RC6

Physical Architecture

Slot-Based

21 of 52

MICROBLAZE / LINUX

State (eg key, IV)

FSL

Advantages

• Accelerators for slots can be changed as

data mix changes (eg more AES, less

3des)

• Load Balancing for multiple accelerators

• Works with no hardware accelerators (eg

during reconfiguration)

22 of 52

Progress

• Architecture completed, and being

debugged

• About to start trials with different data

mixes

23 of 52

24 of 52

Contents

• FPGAs and RSOC
– Motivating our technology choice

• HW/SW Task Migration
– Managing Computing & Communications

• OCF and RC
– Using hardware accelerators transparently

• OS support on RSOC
– PhD Project of Mr Yi Tang

Motivation

• In multitasking embedded systems, task

scheduling and context switching are

software overheads.

• Hardware support could assist but:

– How many tasks?

– What scheduling algorithm?

• Would only be viable for large volumes

• FPGAs allows application specific support

25 of 52

Context Switching

• The context for a task typically consists of

a snapshot of registers (including Program

Counter, Stack Pointer, ...)

• Normally need to copy out registers from

old task into task control block, and copy

in registers from new task.

26 of 52

FPGA Context Switching

• For small number of tasks (8 or so), we

can have multiple copies of all registers,

context switch is just a change to a

pointer.

• For larger numbers of tasks, we can have

two register copies. Predictively copy next

task ahead of context switch, save old task

after context switch from separate

memory.

27 of 52

Scheduling

• Static scheduling – assigns static priorities

to decide which task should next be run.

Not very flexible

• Dynamic scheduling (EDF- Earliest

Deadline First; LSF – Least Slack First)

can provide better real-time performance,

but requires more complex scheduling to

be run more often.

28 of 52

FPGA Task Scheduling

• Use hardware scheduler to continually

decide which is the next task to run, and to

decide when that task should run.

• Can also link to interrupt handler to

change task states (suspended to

runnable) without needed ISR in software.

• Can use complex dynamic schedules

29 of 52

Progress

• Hardware Context Switch and Hardware

Scheduler designs complete

• Still need to interface to software operating

system (eCOS)

• Then run performance tests

• No clear metrics to compare operating

system performance – throughput, latency,

predictability, utilisation, ...

30 of 52

31 of 52

Conclusions

• FPGAs and RSOC have significant

potential advantages over ASIC,

especially in terms of design flow.

• Still much harder to design than

microprocessor-based systems, but

multicores are helping bridge the gap.

• Need both tools and designers

