
1	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Programmability and Performance Portability
for Heterogeneous Many-Core Systems

Siegfried Benkner

(on behalf of PEPPHER Consortium)

Research Group Scientific Computing

Faculty of Computer Science

University of Vienna, Austria

http://www.par.univie.ac.at/

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

One of nine research groups at the Faculty of Computer Science.

Staff: 20 people (5 Faculty, 12 Research, 3 Admin/Support)

Research Group Scientific Computing

Parallel Computing / HPC

•  Programming Models and Languages

•  Compiler and Runtime Technologies

•  Programming Environments and Tools

 Vienna Fortran, HPF+, Hybrid Programming, Many-Core…

Grid/SOA/Cloud Computing

•  HPC Application Services

•  On-demand supercomputing, QoS

•  Data Virtualization & Integration & Mining

 Grid Miner, Vienna Cloud Environment, …

2	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Selected European Research Projects

¨  EU Project HPF+, 1996-1998

¨  EU Project GEMSS, 2002-2005

¨  EU Project @neurIST, 2005-2010

¨  EU Project ADMIRE, 2008-2011

¨  EU Project PEPPHER, 2010-2012

¨  EU Project VPH-SHARE, 2011-2015

¨  EU Project AutoTune, 2011-2014

Research Group Scientific Computing

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Talk Outline

¨  Heterogeneous Many-Core Systems

¨  The PEPPHER Approach

¨  Basic Coordination Language & Pipeline Patterns

¨  Transformation System & Coordination Layer

¨  Experimental Results

¨  Conclusions & Future Work

3	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Move towards heterogeneous many-core architectures

•  Better performance/power ratio

•  Different types of cores; same cores but different clock frequencies, ...

•  Specialized cores for specific tasks/application domains

à Parallelization & Specialization (mitigate Amdahl’s law)

Examples

•  Cell Processor: PPU + 8 SPUs

•  SARC Research Processor

•  CPU + GPU/Accelerators

•  Tianhe-1A, Roadrunner, TSUBAME

•  Nvidia Tegra, AMD Fusion, IvyBridge, ...

Heterogeneous MC Architectures

Cell BE SARC

... GPU Cluster

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Much harder than for homogeneous systems

•  Need of allocating and managing resources

•  Explicit memory management (DMA transfers, double buffering, local stores …)

•  Partitioning of code for different cores

•  Different memory models, ISAs, compilers, APIs, programming models

Current Solutions – (Mainly) Static Code Offloading

•  Low-Level

 IBM CellSDK, NVIDIA CUDA, ATI Stream SDK, OpenCL, …

•  Higher-Level

 PGI Accelerator, HMPP, Codeplay Offload++; …

Programming Heterogeneous Many-Cores

4	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Increasing architectural complexity/diversity
•  Compilers can’t keep pace with shorter innovation cycles
•  Code-rewrite by hand not feasible
•  Simple, static offloading too inefficient
•  Applications must automatically adapat to new architectures

New programming models ?
•  No „one-fits-all“ model
•  Need to integrate different models

Programmability/Productivity
•  Raise level of abstraction
•  Hide/Automate low-level optimization tasks

(Performance) Portability of Major Concern
•  Consider different aspects not just FLOPs
•  Energy/Power as important as performance

Challenges/Requirements

Compositional
Approach

Adaptation
Auto-Tuning

Resource-Awareness
Performance &
Platform Models

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

EU Project PEPPHER

Performance Portability & Programmability for Heterogeneous

Many-Core Architectures

•  EU ICT Call 4, Computing Systems; 3 years from 1.1.2010

•  9 Partners, Coordinated by University of Vienna

•  http://www.peppher.eu

Goal: Enable portable, productive and efficient programming of
 heterogeneous many-core systems.

•  Focus on single-node systems (e.g. CPU/GPU/APU/MIC)

•  Holistic approach considering all layers of SW stack + HW issues.

5	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

EU Project PEPPHER

Holistic Approach

• Higher-Level Support for Parallel Program Development

• Auto-tuned Algorithms & Data Structures

• Compilation Strategies

• Runtime Systems

• Hardware Mechanisms

Crosscutting Application Domains

• Embedded – General Purpose – HPC

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

¨  University of Vienna (Coordinator), Austria
Siegfried Benkner, Sabri Pllana

¨  Vienna University of Technology, Austria
Jesper Larsson Träff

¨  Linköping University, Sweden
Christoph Kessler

¨  Codeplay Software Ltd., UK
Andrew Richards

¨  Karlsruhe Institute of Technology, Germany
Peter Sanders

¨  Chalmers University, Sweden
Philippas Tsigas

¨  INRIA, France
Raymond Namyst

¨  Intel GmbH, Germany
Herbert Cornelius

¨  Movidius Ltd., Ireland
David Moloney

Project Consortium

6	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Performance.Portability.Programmability

Application (C/C++)

Many-core
CPU CPU+GPU PePU

(Movidius)
PEPPHER

Sim
Intel
MIC

Focus: Single-node/chip heterogeneous architectures

Approach
•  Multi-architectural, performance-aware components

multiple implementation variants of functions; each with a performance model

•  Task-based execution model & intelligent runtime system
runtime selection of best task implementation variant for given platform

Methodology & framework for development of performance portable code.

•  Execute same application efficiently on different heterogeneous architectures.

•  Support multiple parallel APIs: OpenMP, OpenCL, CUDA, pThreads, ...

PEPPHER Framework

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Motivating Example

FOR k = 0..TILES-1

 POTRF(A[k][k])

 FOR m = k+1..TILES-1

 TRSM(A[k][k], A[m][k])

 FOR n = k+1..TILES-1

 SYRK(A[n][k], A[n][n])

 FOR m = n+1..TILES-1

 GEMM(A[m][k], A[n][k], A[m][n])

Utilize expert written
components:
BLAS kernels from
MAGMA and PLASMA

Implementation variants:

•  multi-core CPU (PLASMA)

•  GPU (MAGMA)

Cholesky factorization

Make into PEPPHER component:
Interface, implementation variants + meta-data

7	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Approach

Component implementation variants
•  for different architectures/platforms, ...
•  Generic platform model for selection
•  Performance-aware components

Multi-level parallelism
•  Coarse-grained inter-component parallelism
•  Fine(r) grained intra-component parallelism
•  Exploit ALL execution units

POTFR

SYRK

GEMM

TRSM

CPU-GEMM GPU-GEMM

SYRK

TRSM

Task variant selection & scheduling
•  Data/topology-aware: minimize data transfers
•  Performance-aware: minimize make-span, or
 other objective (power, …)

... ...

... ...

... ...

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Approach

C1

C2

:::

...

:::

Component-based
application with

annotations

Mainstream
Programmer

Component impl. variants
for different cores,

algorithms, inputs ...

C1 C1

C1 C1

C2 C2

Expert Programmer
(Compiler/Autotuner)

C1

C1

C2

C1 C2

C1 C2

Target
Platforms

Programmer
•  Identify performance critical parts
•  Transform into performance-aware

components
•  Provide implementation variants for

 different core architectures or

 utilize expert components

Feed-back of
measured

performance

PEPPHER framework
•  Management of components and

implementation variants

•  Compilation/code generation
•  Component variant selection

•  Dynamic, performance-aware task
scheduling (StarPU runtime)

Dynamic selection
of ”best”

implementation variant

Heterogenous
Task Scheduler

Runtime
System

Compiler

Intermediate
task-based

representation

8	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Framework

C/C++ source code with annotated
component calls

Component implementation variants
for different core architectures ...

algorithms, ...

Component glue code
Static variant selection (if any)

Component task graph
with explicit data dependecies

Performance-aware, data-aware
dynamic scheduling of „best“
component variants onto free

execution units

Single-node heterogeneous manycore
SIM = PEPPHER simulator

PePU = Peppher proc. unit (Movidius)

Applications
Embedded General Purpose HPC

	

PEPPHER Run-time (StarPU)

Drivers (CUDA, OpenCL, OpenMP)	

CPU	
 GPU	
 SIM	

PEPPHER
Taskgraph

Transformation & Composition	

PePU	

Scheduling Strategy

Scheduling Strategy

Performance
Models

Components
C/C++, OpenMP, CUDA, OpenCL, TBB, Offload

 Autotuned Algorithms

Data Structures

High-Level Coordination/Patterns/Skeletons	
 Asnynchronous calls, Data distribution
Patterns, SkePU Skeletons

MIC	

Autotuned Data Structures & Algorithms

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Embedded, General Purpose, HPC
• Applications

–  KIT: Suffix array construction

–  UNIVIE: Data compression, OpenCV

–  Codeplay: Bullet (games physics sim.)

–  Movidius: Computational photography

–  Intel: GROMACS

• Kernels

–  INRIA: FFT

–  INRIA: MAGMA/PLASMA (QR)

–  INRIA: RODINIA (CFD solver)

–  KIT: STL (sort, find, random_shuffle) Molecular dynamics simulation

Software optics

Applications

9	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Component Model

Main Ideas:

•  Separation of concerns

•  Specification vs. implementation

•  Mainstream vs. expert programmer

•  Hide different implementation variants behind interface

•  Resource- & performance-aware components

•  Rich component meta-data (external, XML)

•  Input/output; Platform/Resource requirements; Performance aspects

•  Component performance models

•  Dynamic, task-based execution model

•  Runtime component variant selection and scheduling

•  Support different levels of parallelism

Implementation Variants
•  Different architectures/platforms

•  Different algorithms/data structures
•  Different input characteristics

•  Different performance goals

•  Written by expert programmer
 (or generated, e.g. auto-tuning)

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Components

Component Interface
•  Declaration of functionality

Implementation Variants
•  Different architectures/platforms

•  Different algorithms/data structures
•  Different input characteristics

•  Different performance goals

•  Written by expert programmer
 (or generated, e.g. auto-tuning)

Component Implementation Variants

…	

«interface»	

C	

f(param-­‐list)	

«variant»	

Cn	

f(param-­‐list){…}	

«variant»	

C1	

f(param-­‐list){…}	

Interface	

meta-­‐data	

Variant	

meta-­‐data	

Variant	

meta-­‐data	

Features
•  Different programming languages

(C/C++, OpenCL, Cuda, OpenMP)

•  Task & Data parallelism

Constraints
•  No Side-effects; Non-preemptive
•  Stateless; Composition on CPU only

10	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Component Meta-Data

Interface Meta-Data (XML)
•  Parameter intent (read/write)
•  Supported performance apsects
 (execution-time, power)

Implementation Variant Meta-Data (XML)
•  Supported target platforms (PDL)
•  Performance Model
•  Input data constraints (if any)
•  Tunable parameters (if any)
•  Required components (if any)

Key issues
•  Make platform specific optimizations/dependencies explicit.
•  Make components performance- and resource-aware.
•  Support runtime variant selection.
•  Support code transformation and auto-tuning.

XML Schema for Variant Meta-Data

XML Schema for Interface Meta-Data

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Goal: Make platform specific information explicit and available
 in a systematic way to tools and users.

XML-based Platform Description Language (PDL)

•  Capture different aspects of heterogeneous platforms
•  Control views: delegation of computational tasks between

 processing units; hierarchical organization of PUs
•  Hardware / Software properties

(e.g., core-count, memory sizes, available libraries)

•  Supports expression of platform usage patterns
 (e.g. Master-Worker)

•  Not a hardware description language!

 Programmer centric view on available resources (à platform)

Explicit Platform Descriptions

11	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Platform Descriptors

Processing Units (PUs)

•  Master (initiates program execution)

•  Worker (executes delegated tasks)

•  Hybrid (master & worker)

Memory Regions

•  Express key characteristics of memory hierarchy

•  Can be defined for all processing units

Interconnects

•  describe communication facilities between PUs

Properties

•  Hardware and software properties using generic key/value mechanism

Data movement

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PDL Examples

GPGPU System

Cell B.E. System

12	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Performance-Aware Components

Each component is associated with an abstract performance model.

¨  Invocation Context: captures performance-relevant information of input data

 (problem size, data layout, etc.)

¨  Resource Context: specifies main HW/SW characteristics (cores, memory, …)

¨  Performance Descriptor: usually includes (relative) runtime, power estimates

Generic performance prediction function:

Component
Performance

Model

Performance
Descriptor

PerfDsc getPrediction(InvocationContextDsc icd, ResourceContextDsc rcd)

Invocation
Context

Descriptors

Resource
Context

Descritpor

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Component calls

•  asynchronous & synchronous calls

Basic Coordination Language

#pragma pph call
cf1(A, N, B, M); // A:read, B:write (XML meta-data)

#pragma pph call
cf2(B, M);

#pragma pph call sync
cf(A, N); // block until cf() returns

13	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Memory Consistency

•  flush; for ensuring consistency btw. host and workers

Component calls

•  implicit memory consistency across workers

Basic Coordination Language

#pragma pph call
cf1 (A, N);
...
#pragma pph flush(A) // block until A has become available
int first = A[0]; // explicit flush req. since A is accessed

#pragma pph call
cf1 (A, N); // A: read / write
... // implicit memory consistency on workers only
... // no explicit flush is needed here provided A
... // is not accessed within the master process
#pragma pph call
cf2(A, N); // A:read; actual values of A produced by cf1()

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Data Partitioning
•  generate multiple component calls, one for each partition (cf. HPF)

Access to Array Sections
•  specify which array section is accessed in component call (cf. Fortran array sections)

Basic Coordination Language

#pragma pph call partition(A(size:BLOCK(size/2)))
cf1(A, size);

#pragma pph call access(A(size:50:size-1))
cf(A+50, size-50);

14	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Parameter Assertions
•  influence component variant selection

Optimization Goals
•  specify optimization goals to be taken into account by runtime scheduler

Execution Target
•  specify pre-defined target library (e.g., OPENCL) or processing unit group from
 PDL platform descriptor

Basic Coordination Language

#pragma pph call parameter(size < 1000)
cf1(A, size);

#pragma pph call optimize(TIME)
cf1(A, size);
...

#pragma pph call optimize(POWER < 100 && TIME < 10)
cf2(A, size);

#pragma pph call target(OPENCL)
cf(A, size);

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Stream of data processed in sub-sequent stages
•  Linear vs. non-linear pipelines

•  Splitting, merging, replication of stages

Different types of parallelism
•  Pipeline/Task Parallelism (stages process different data packets in parallel)

•  Data Parallelism (within a stage)

Realization of pipelined applications on heterogeneous MC?

•  High-level language support (annotation of while loops)

•  Pipeline stage à component implementation variants (CPU, GPU, ...)
•  Automatic data/buffer management

•  Runtime scheduling of stage instances (tasks) to different core types

Pipeline Pattern

15	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Annotation of while-loops

•  Pipeline stages correspond to component calls

•  Buffer management (size, order-type)

•  Support for stage replication and stage merging

Language Support – Pipeline Pattern

unsigned int N = get_max_execution_units();
...
#pragma pph pipeline with buffer(PRIORITY,N*2)
while(image.number < 32) {
 readImage(file,image);
 #pragma pph stage replicate(N) {
 resizeAndColorConvert(image);
 detectFace(image,outImage);
 }
 writeFaceDetectedImage(file,outImage);
}

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Source-to-Source Compiler

•  based on ROSE
•  variant pre-selection

if possible
•  generates C++ with calls

to coordination layer

Coordination Layer

•  Pattern-specific optimizations
on top of runtime layer

Heterogeneous Runtime System

•  Based on INRIA’s StarPU runtime system

•  Selection of stage implementation variants based on available hardware resources

•  Data-aware & performance-aware task scheduling onto heterogeneous PUs

Transformation System

Hybrid Hardware
GPU MIC

PEPPHER Component Framework

Task-based
Heterogeneous Runtime

Application
with Annotations

Transformation Tool

Coordination Layer

SMP

PEPPHER
Component
Repository

PDL
Platform

Descriptors

16	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Pipeline Coordination

Worker NWorker 1

Main
Runtime

scheduleStage(read)

scheduleStage(read)

scheduleStage(compress)

createWorkers()

Execute Stage
Computation

read

compress

write

initRuntime()

postStage(read)

callback()

postStage(compress)

execute() postStage(read)

create()

create()

create()

execute()

execute()
execute()

PEPPHER Heterogeneous RuntimeCoordination LayerApplication

execute()

Local Coordination Strategy

•  execute() and callback() methods of stages
•  execute(): stage is posted to runtime system if input buffer is ready

•  callback(): initiated by runtime after stage has finished execution
•  calls execute() of neighbor stage(s)

•  calls execute() on itself to initiate next stage instance

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Tasks
•  Explicit dependencies with other tasks
•  Multiple implementations (GPU, CPU)

Automatic data transfer
•  Virtual Shared Memory (VSM) layer
•  Minimize data transfers btw. PUs

Flexible scheduling strategies
•  Performance-aware
•  Scheduling algorithm = plug-in

Performance Feed-back

PEPPHER Runtime System

PEPPHER
Components	

Applications
	

PEPPHER Run-time (StarPU)	

Drivers (CUDA, OpenCL, OpenMP)	

CPU	

PEPPHER
Libraries	

GPU	
 MIC	

Heterogeneous Runtime System (based on INRIA’s StarPU)
•  Selection of component variants based on available hardware resources

•  Data-aware & performance-aware task scheduling onto heterogeneous PUs

PEPPHER
Tasks

PePU	

17	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Runtime System (StarPU)

Schedule dynamic DAG of tasks onto

pool of heterogeneous processing units.

Tasks
•  Multiple implementations

(e.g.; CPU, CUDA, OpenCL, OMP)
•  Data input & output
•  Dependencies with other tasks
•  Scheduling hints

High-level data management layer

•  Automate data transfers btw. PUs

•  Support for data partitioning

•  Avoid unnecessary data transfers (VSM)

M. GPU

M. GPU B CPU

M. A

CPU CPU

CPU

(ARW, BR) f
cpu
gpu
apu

PEPPHER
DAG

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Runtime System (StarPU)

Task completion time estimation

•  History-based

•  Component performance model

Data transfer time estimation

•  Sampling based on

 off-line calibration

Used to improve scheduling

•  e.g. Heterogeneous Earliest Finish Time (HEFT)

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

18	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Tiled QR Decomposition & StarPU runtime
§  Platform: 4 quad-core Opteron 8358 SE + 4 NVIDIA GPUs (C1060)

Performance increase
when we add to 4 GPUs
12 CPU cores ~200 GFLOPS

Single-Precision Performance
12 CPU cores ~150 GFLOPS

More performance
than expected!

Resolution:
Run-time schedules
best variant on best device

~200
GFLOPS

1GPU

2GPUs

3GPUs

4GPUs

12 CPU cores + 4GPUs

Experimental Results

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Affinity-based scheduling

•  Select variants with highest expected performance
•  Utilize both CPUs and GPUs

•  SSSMQR: 90% of tasks mapped to GPUs
•  SGEQRT: 20% of tasks mapped to GPUs

BLAS	
 kernel	
 CPU	
 Gflops	
 GPU	
 GFlops	
 Speed-­‐up	
 ra8o	

SGEQRT	
 9	
 30	
 3	

STSQRT	
 12	
 37	
 3	

SORMQR	
 8.5	
 227	
 27	

SSSMQR	
 10	
 285	
 28	

Experimental Results

Tiled QR Decomposition ctd.

19	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Face detection application
•  Based on OpenCV library
•  Two different implementation variants for detection stage (CPU vs. GPU)
•  Comparison to hand-coded Intel TBB version

Experimental Results

unsigned int N = get_max_execution_units();

#pragma pph pipeline with buffer(PRIORITY,N*2)
while(image.number < 32) {
 readImage(file,image);
 #pragma pph stage replicate(N)
 {
 resizeAndColorConvert(image);
 detectFace(image,outImage);
 }
 writeFaceDetectedImage(file,outImage);
}

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Experimental Results

Architecture A
•  2 Intel Xeon X7560 (8 cores)
•  RHEL 5.0

à speedup > 13

Architecture B
•  2 Intel Xeon X5550 (4 cores)

•  1 GeForce GTX 480

•  1 GeForce GTX 285
•  CUDA 4.0, RHEL 5.6

à speedup: 7-13

Results achieved with PEPPHER Transformation System

20	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

Related Work

Task Offloading
•  HMPP (CAPS, France)
•  OmpSs (UPC, Barcelona)
•  OpenACC

Algorithmic Choice
•  Elastic Computing (U. Florida)
•  PetaBricks (MIT)
•  ...

Current European Projects
•  ADVANCE (www.project-advance.eu)
•  AUTOTUNE (www.autotune-project.eu)
•  CARP (www.carpproject.eu)
•  ENCORE (www.encore-project.eu)
•  PARAPHRASE (www.paraphrase-ict.eu)

•  Offload (Codeplay, UK)
•  PGI Accelerate

Streaming/Pipelining Languages
•  StreamIt (MIT)
•  Elk (Stanford, ELM Architecture)
•  ...

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

•  Extend language support for data partitioning/management

•  Extend framework with other patterns (e.g. MapReduce)

•  Component Performance Models

•  Auto-tuning support for patterns

•  New Architectures: NVIDIA Kepler, Intel MIC, Movidius Myriad Platform

•  Optimization for energy-efficiency

AutoTune Project: Automatic Online Tuning

•  TU Munich (M. Gerndt, coordinator)

•  Uni Wien (S. Benkner)

•  CAPS (F. Bodin)

à  http://www.autotune-project.eu/

Future Work

•  LRZ Munich (M. Brehm)

•  UA Barcelona (A. Sikora)

•  ICHEC Ireland (I. Girotto)

21	

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

PEPPHER Project

Programmability and Performance Portability for Heterogeneous

Manycore Systems

•  Multi-architectural, resource-/performance-aware components

•  High-Level coordination primitives and Patterns

•  Source-to-source transformation system

•  Heterogeneous runtime system for selecting and scheduling
component implementation variants to different execution units

•  SkePU Skeletons and Composition Tool (not covered in this talk)

•  Compilation to OpenCL - Codeplay OffloadCL (not covered)

•  Autotuned Algorithms and Lock-free Data Structures (not covered)

•  Hardware mechanisms for performance portability (not covered)

Conclusion

S. Benkner, University of Vienna InvasIC Seminar, Erlangen, June 22, 2012

•  European Commission (ec.europa.eu)

•  PEPPHER Consortium (www.peppher.eu)

Some of the consortium members (from left): D. Moloney, E. Marth, S. Pllana, V. Osipov, M. Wimmer, B. Bachmayer, P. Tsigas, J.L. Träff, C. Kessler, J. Singler,
 S. Benkner, D. Cederman, U. Dastgeer, H. Cornelius, S. Thibault, A. Richards, M. Sandrieser, U. Dolinsky, R. Namyst, C. Augonnet, H.C. Hoppe

Acknowledgments

