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One of nine research groups at the Faculty of Computer Science. 

Staff: 20 people (5 Faculty, 12 Research, 3 Admin/Support) 

Research Group Scientific Computing 

Parallel Computing / HPC 

•  Programming Models and Languages  

•  Compiler and Runtime Technologies 

•  Programming Environments and Tools 

  Vienna Fortran, HPF+, Hybrid Programming, Many-Core…  

Grid/SOA/Cloud Computing   

•   HPC Application Services 

•   On-demand supercomputing, QoS 

•   Data Virtualization & Integration & Mining 

  Grid Miner, Vienna Cloud Environment, … 
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Selected European Research Projects 

¨  EU Project HPF+, 1996-1998 

¨  EU Project GEMSS, 2002-2005 

¨  EU Project @neurIST, 2005-2010 

¨  EU Project ADMIRE, 2008-2011 

¨  EU Project PEPPHER, 2010-2012 

¨  EU Project VPH-SHARE, 2011-2015 

¨  EU Project AutoTune, 2011-2014 

Research Group Scientific Computing 
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Talk Outline 

¨   Heterogeneous Many-Core Systems 

¨   The PEPPHER Approach 

¨   Basic Coordination Language & Pipeline Patterns 

¨   Transformation System & Coordination Layer 

¨   Experimental Results 

¨   Conclusions & Future Work 
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Move towards heterogeneous many-core architectures 

•  Better performance/power ratio 

•  Different types of cores; same cores but different clock frequencies, ... 

•  Specialized cores for specific tasks/application domains 

à Parallelization & Specialization (mitigate Amdahl’s law) 
 
Examples 
 

•  Cell Processor: PPU + 8 SPUs 

•  SARC Research Processor 

•  CPU + GPU/Accelerators 

•  Tianhe-1A, Roadrunner, TSUBAME 

•  Nvidia Tegra, AMD Fusion, IvyBridge, ... 

Heterogeneous MC Architectures 

Cell BE SARC 

... GPU Cluster 
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Much harder than for homogeneous systems 

•  Need of allocating and managing resources 

•  Explicit memory management (DMA transfers, double buffering, local stores …) 

•  Partitioning of code for different cores 

•  Different memory models, ISAs, compilers, APIs, programming models 

Current Solutions – (Mainly) Static Code Offloading 

•  Low-Level 

   IBM CellSDK, NVIDIA CUDA, ATI Stream SDK, OpenCL, …  

•  Higher-Level 

   PGI Accelerator, HMPP, Codeplay Offload++; … 

Programming Heterogeneous Many-Cores 
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Increasing architectural complexity/diversity 
•  Compilers can’t keep pace with shorter innovation cycles 
•  Code-rewrite by hand not feasible 
•  Simple, static offloading too inefficient 
•  Applications must automatically adapat to new architectures 

New programming models ? 
•   No „one-fits-all“ model  
•   Need to integrate different models 

Programmability/Productivity                            
•   Raise level of abstraction 
•   Hide/Automate low-level optimization tasks 

(Performance) Portability of Major Concern                       
•  Consider different aspects not just FLOPs 
•  Energy/Power as important as performance 

 

Challenges/Requirements 

 

Compositional 
Approach 

 
 

Adaptation 
Auto-Tuning 

 
 

Resource-Awareness 
Performance & 
Platform Models 
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EU Project PEPPHER 

Performance Portability & Programmability for Heterogeneous 

Many-Core Architectures 

•  EU ICT Call 4, Computing Systems; 3 years from 1.1.2010 

•  9 Partners, Coordinated by University of Vienna 

•  http://www.peppher.eu 
 

 

Goal: Enable portable, productive and efficient programming of  
         heterogeneous many-core systems. 

 

•  Focus on single-node systems (e.g. CPU/GPU/APU/MIC) 

 

•  Holistic approach considering all layers of SW stack + HW issues. 
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EU Project PEPPHER 

Holistic Approach 

• Higher-Level Support for Parallel Program Development 

• Auto-tuned Algorithms & Data Structures 

• Compilation Strategies 

• Runtime Systems 

• Hardware Mechanisms 

 

Crosscutting Application Domains  

• Embedded – General Purpose – HPC 
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¨  University of Vienna (Coordinator), Austria 
Siegfried Benkner, Sabri Pllana  

¨  Vienna University of Technology, Austria 
Jesper Larsson Träff 

¨  Linköping University, Sweden 
Christoph Kessler 

¨  Codeplay Software Ltd., UK 
Andrew Richards 

¨  Karlsruhe Institute of Technology, Germany 
Peter Sanders 

¨  Chalmers University, Sweden 
Philippas Tsigas 

¨  INRIA, France 
Raymond Namyst 

¨  Intel GmbH, Germany 
Herbert Cornelius 

¨  Movidius Ltd., Ireland 
David Moloney 

Project Consortium 
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Performance.Portability.Programmability 

Application (C/C++) 

Many-core 
CPU CPU+GPU PePU

(Movidius) 
PEPPHER

Sim 
Intel 
MIC 

Focus: Single-node/chip heterogeneous architectures 

Approach 
•  Multi-architectural, performance-aware  components  

multiple implementation variants of functions; each with a performance model 

•  Task-based execution model & intelligent runtime system  
runtime selection of best task implementation variant for given platform 

Methodology & framework for development of performance portable code. 

•  Execute same application efficiently on different heterogeneous architectures. 

•  Support multiple parallel APIs: OpenMP, OpenCL, CUDA,  pThreads, ... 

PEPPHER Framework 
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Motivating Example 

FOR k = 0..TILES-1 

 POTRF(A[k][k]) 

 FOR m = k+1..TILES-1 

  TRSM(A[k][k], A[m][k]) 

 FOR n = k+1..TILES-1 

  SYRK(A[n][k], A[n][n]) 

  FOR m = n+1..TILES-1 

   GEMM(A[m][k], A[n][k], A[m][n]) 

Utilize expert written 
components: 
BLAS kernels from  
MAGMA and PLASMA 

Implementation variants: 

•  multi-core CPU (PLASMA) 

•  GPU (MAGMA) 

Cholesky factorization 

Make into PEPPHER component: 
Interface, implementation variants + meta-data 
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PEPPHER Approach 

Component implementation variants 
•  for different architectures/platforms, ... 
•  Generic platform model for selection 
•  Performance-aware components 

Multi-level parallelism 
•  Coarse-grained inter-component parallelism 
•  Fine(r) grained intra-component parallelism 
•  Exploit ALL execution units 

POTFR 

SYRK 

GEMM 

TRSM 

CPU-GEMM GPU-GEMM 

SYRK 

TRSM 

Task variant selection & scheduling  
•  Data/topology-aware: minimize data transfers 
•  Performance-aware: minimize make-span, or  
  other objective (power, …) 

... ... 

... ... 

... ... 
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PEPPHER Approach 

C1 

C2 

::: 

... 

::: 

Component-based 
application with 

annotations 

Mainstream  
Programmer 

Component impl. variants  
for different cores,  

algorithms, inputs ... 

C1 C1 

C1 C1 

C2 C2 

Expert Programmer 
(Compiler/Autotuner) 

C1 

C1 

C2 

C1 C2 

C1 C2 

Target  
Platforms 

Programmer 
•  Identify performance critical parts 
•  Transform into performance-aware 

components 
•  Provide implementation variants for  

    different core architectures or 

    utilize expert components 

Feed-back of 
measured 

performance 

PEPPHER framework 
•  Management of components and 

implementation variants  

•  Compilation/code generation 
•  Component variant selection 

•  Dynamic, performance-aware task 
scheduling (StarPU runtime) 

Dynamic selection  
of ”best”  

implementation variant 

Heterogenous 
Task Scheduler 

Runtime 
System 

Compiler 

Intermediate 
task-based 

representation 
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PEPPHER Framework 

C/C++ source code with annotated 
component calls 

Component implementation variants 
for different core architectures ... 

algorithms, ... 

Component glue code 
Static variant selection  (if any) 

Component task graph 
with explicit data dependecies 

Performance-aware, data-aware 
dynamic scheduling of „best“ 
component variants onto free 

execution units 

Single-node heterogeneous manycore 
SIM = PEPPHER simulator 

PePU = Peppher proc. unit (Movidius) 

Applications 
Embedded         General Purpose              HPC 

	
  

PEPPHER Run-time (StarPU) 

 
Drivers (CUDA, OpenCL, OpenMP)	
  

CPU	
   GPU	
   SIM	
  

PEPPHER 
Taskgraph 

Transformation & Composition	
  

PePU	
  

Scheduling Strategy 

 

Scheduling Strategy 

 

Performance 
Models 

Components 
C/C++, OpenMP, CUDA, OpenCL, TBB, Offload 

 Autotuned Algorithms 

 

Data Structures 

 

High-Level Coordination/Patterns/Skeletons	
   Asnynchronous calls, Data distribution 
Patterns, SkePU Skeletons 

MIC	
  

Autotuned Data Structures & Algorithms 
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Embedded, General Purpose, HPC 
• Applications 

–  KIT: Suffix array construction 

–  UNIVIE: Data compression, OpenCV 

–  Codeplay: Bullet (games physics sim.) 

–  Movidius: Computational photography 

–  Intel: GROMACS 

• Kernels 

–  INRIA: FFT 

–  INRIA: MAGMA/PLASMA (QR) 

–  INRIA: RODINIA (CFD solver) 

–  KIT: STL (sort, find, random_shuffle) Molecular dynamics simulation  

Software optics  

Applications 
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PEPPHER Component Model 

Main Ideas: 

•  Separation of concerns 

•  Specification vs. implementation 

•  Mainstream vs. expert programmer 

•  Hide different implementation variants behind interface 

•  Resource- & performance-aware components  

•  Rich component meta-data (external, XML) 

•  Input/output; Platform/Resource requirements; Performance aspects 

•  Component performance models 

•  Dynamic, task-based execution model 

•  Runtime component variant selection and scheduling 

•  Support different levels of parallelism 
 
 
 
 
 
 

 
Implementation Variants 
•  Different architectures/platforms 

•  Different algorithms/data structures 
•  Different input characteristics 

•  Different performance goals 

•  Written by expert programmer  
   (or generated, e.g. auto-tuning) 
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PEPPHER Components 

Component Interface 
•  Declaration of functionality 

 
 
 
 
 
 

 
Implementation Variants 
•  Different architectures/platforms 

•  Different algorithms/data structures 
•  Different input characteristics 

•  Different performance goals 

•  Written by expert programmer  
   (or generated, e.g. auto-tuning) 

Component Implementation Variants 

…	
  

«interface»	
  
C	
  

f(param-­‐list)	
  

«variant»	
  
Cn	
  

f(param-­‐list){…}	
  

«variant»	
  
C1	
  

f(param-­‐list){…}	
  

Interface	
  
meta-­‐data	
  

Variant	
  
meta-­‐data	
  

Variant	
  
meta-­‐data	
  

Features  
•  Different programming languages 

(C/C++, OpenCL, Cuda, OpenMP) 

•  Task & Data parallelism 

Constraints 
•  No Side-effects; Non-preemptive 
•  Stateless; Composition on CPU only 



10	
  

S. Benkner, University of Vienna  InvasIC Seminar, Erlangen, June 22, 2012 

Component Meta-Data 

Interface Meta-Data (XML) 
•  Parameter intent (read/write) 
•  Supported performance apsects  
    (execution-time, power) 

Implementation Variant Meta-Data (XML) 
•  Supported target platforms (PDL) 
•  Performance Model 
•  Input data constraints (if any) 
•  Tunable parameters (if any)  
•  Required components (if any) 
 
Key issues 
•  Make platform specific optimizations/dependencies explicit. 
•  Make components performance- and resource-aware. 
•  Support runtime variant selection. 
•  Support code transformation and auto-tuning. 

XML Schema for Variant Meta-Data 

XML Schema for Interface Meta-Data 

S. Benkner, University of Vienna  InvasIC Seminar, Erlangen, June 22, 2012 

Goal: Make platform specific information explicit and available  
          in a systematic way to tools and users. 
 
XML-based Platform Description Language (PDL) 
 

•  Capture different aspects of heterogeneous platforms 
•  Control views: delegation of computational tasks between 

   processing units; hierarchical organization of PUs 
•  Hardware / Software properties  

(e.g., core-count, memory sizes, available libraries) 
 

•  Supports expression of platform usage patterns  
  (e.g. Master-Worker) 

 

•  Not a hardware description language! 

   Programmer centric view on available resources (à platform) 

Explicit Platform Descriptions 
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Platform Descriptors 

Processing Units (PUs) 

•  Master (initiates program execution) 

•  Worker (executes delegated tasks) 

•  Hybrid (master & worker) 
 

Memory Regions 

•  Express key characteristics of memory hierarchy 

•  Can be defined for all processing units 

Interconnects  

•  describe communication facilities between PUs 

Properties 

•  Hardware and software properties using generic key/value mechanism 

Data movement 
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PDL Examples 

GPGPU System 

Cell B.E. System 
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Performance-Aware Components 

Each component is associated with an abstract performance model.  

 

 

 

 

 

 

¨  Invocation Context: captures performance-relevant information of input data 

                                     (problem size, data layout, etc.) 

¨  Resource Context: specifies main HW/SW characteristics (cores, memory, …) 

¨  Performance Descriptor: usually includes (relative) runtime, power estimates 
 

Generic performance prediction function: 

 

Component 
Performance 

Model 

Performance 
Descriptor 

PerfDsc getPrediction(InvocationContextDsc icd, ResourceContextDsc rcd) 

Invocation 
Context 

Descriptors 

Resource 
Context 

Descritpor 
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Component calls 

•  asynchronous & synchronous calls 

 

 

Basic Coordination Language 

#pragma pph call 
cf1(A, N, B, M); // A:read, B:write (XML meta-data) 
 
#pragma pph call 
cf2(B, M); 

#pragma pph call sync 
cf(A, N); // block until cf() returns 
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Memory Consistency 

•  flush; for ensuring consistency btw. host and workers 

 

Component calls 

•  implicit memory consistency across workers 

 

Basic Coordination Language 

#pragma pph call 
cf1 (A, N); 
... 
#pragma pph flush(A) // block until A has become available 
int first = A[0]; // explicit flush req. since A is accessed 

#pragma pph call 
cf1 (A, N); // A: read / write 
... // implicit memory consistency on workers only 
... // no explicit flush is needed here provided A 
... // is not accessed within the master process 
#pragma pph call 
cf2(A, N); // A:read; actual values of A produced by cf1() 
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Data Partitioning 
•  generate multiple component calls, one for each partition (cf. HPF) 

 

Access to Array Sections 
•  specify which array section is accessed in component call (cf. Fortran array sections) 

 

Basic Coordination Language 

#pragma pph call partition(A(size:BLOCK(size/2))) 
cf1(A, size); 

#pragma pph call access(A(size:50:size-1)) 
cf(A+50, size-50); 
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Parameter Assertions 
•  influence component variant selection 

Optimization Goals 
•  specify optimization goals to be taken into account by runtime scheduler 

Execution Target  
•  specify pre-defined target library (e.g., OPENCL) or processing unit group from    
 PDL platform descriptor 

 

Basic Coordination Language 

#pragma pph call parameter(size < 1000) 
cf1(A, size); 

#pragma pph call optimize(TIME) 
cf1(A, size); 
... 

#pragma pph call optimize(POWER < 100 && TIME < 10) 
cf2(A, size); 

#pragma pph call target(OPENCL) 
cf(A, size); 
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Stream of data processed in sub-sequent stages 
•  Linear vs. non-linear pipelines 

•  Splitting, merging, replication of stages 

Different types of parallelism 
•  Pipeline/Task Parallelism (stages process different data packets in parallel)  

•  Data Parallelism (within a stage) 

 
Realization of pipelined applications on heterogeneous MC? 

•  High-level language support (annotation of while loops) 

•  Pipeline stage à component implementation variants (CPU, GPU, ...)  
•  Automatic data/buffer management 

•  Runtime scheduling of stage instances (tasks) to different core types 

Pipeline Pattern 
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Annotation of while-loops 

•  Pipeline stages correspond to component calls  

•  Buffer management (size, order-type) 

•  Support for stage replication and stage merging 

Language Support – Pipeline Pattern  

unsigned int N = get_max_execution_units(); 
... 
#pragma pph pipeline with buffer(PRIORITY,N*2) 
while(image.number < 32) { 
  readImage(file,image); 
  #pragma pph stage replicate(N) { 
   resizeAndColorConvert(image); 
   detectFace(image,outImage); 
  } 
  writeFaceDetectedImage(file,outImage); 
} 
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Source-to-Source Compiler 

•  based on ROSE 
•  variant pre-selection  

if possible 
•  generates C++ with calls  

to coordination layer 

Coordination Layer 

•  Pattern-specific optimizations 
on top of runtime layer 

Heterogeneous Runtime System 

•  Based on INRIA’s StarPU runtime system 

•  Selection of stage implementation variants based on available hardware resources 

•  Data-aware & performance-aware task scheduling onto heterogeneous PUs 

Transformation System 

Hybrid Hardware 
GPU MIC 

PEPPHER Component Framework 

Task-based 
Heterogeneous Runtime 

Application  
with Annotations 

Transformation Tool 

Coordination Layer 

SMP 

PEPPHER 
Component 
Repository 

PDL 
Platform 

Descriptors 
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Pipeline Coordination 

Worker NWorker 1

Main
Runtime

scheduleStage(read)

scheduleStage(read)

scheduleStage(compress)

createWorkers()

Execute Stage 
Computation

read

compress

write

initRuntime()

postStage(read)

callback()

postStage(compress)

execute() postStage(read)

create()

create()

create()

execute()

execute()
execute()

PEPPHER Heterogeneous RuntimeCoordination LayerApplication

execute()

Local Coordination Strategy 

•  execute() and callback() methods of stages 
•  execute(): stage is posted to runtime system if input buffer is ready 

•  callback(): initiated by runtime after stage has finished execution 
•  calls execute() of neighbor stage(s) 

•  calls execute() on itself to initiate next stage instance  
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Tasks  
•  Explicit dependencies with other tasks 
•  Multiple implementations (GPU, CPU)  
 
Automatic data transfer 
•  Virtual Shared Memory (VSM) layer  
•  Minimize data transfers btw. PUs 
 
Flexible scheduling strategies 
•  Performance-aware 
•  Scheduling algorithm = plug-in 

Performance Feed-back 

PEPPHER Runtime System 

PEPPHER  
Components	
  

Applications 
	
  

PEPPHER Run-time (StarPU)	
  

Drivers (CUDA, OpenCL, OpenMP)	
  

CPU	
  

PEPPHER 
Libraries	
  

GPU	
   MIC	
  

Heterogeneous Runtime System (based on INRIA’s StarPU)  
•  Selection of component variants based on available hardware resources 

•  Data-aware & performance-aware task scheduling onto heterogeneous PUs 

PEPPHER 
Tasks 

PePU	
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PEPPHER Runtime System (StarPU) 

Schedule dynamic DAG of tasks onto  

pool of heterogeneous processing units. 

 
Tasks 
•  Multiple implementations  

(e.g.; CPU, CUDA, OpenCL, OMP) 
•  Data input & output 
•  Dependencies with other tasks 
•  Scheduling hints 

 

High-level data management layer  

•  Automate data transfers btw. PUs 

•  Support for data partitioning 

•  Avoid unnecessary data transfers (VSM) 
 

 

 

M. GPU 

M. GPU B CPU 

M. A 

CPU CPU 

CPU 

(ARW, BR) f 
cpu 
gpu 
apu 

PEPPHER 
DAG 
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PEPPHER Runtime System (StarPU) 

Task completion time estimation 

•  History-based 

•  Component performance model 

Data transfer time estimation 

•  Sampling based on  

    off-line calibration 

Used to improve scheduling 

•  e.g. Heterogeneous Earliest Finish Time (HEFT) 

 
 

 

time 

cpu #3 

gpu #1 

cpu #2 

cpu #1 

gpu #2 
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Tiled QR Decomposition & StarPU runtime 
§  Platform: 4 quad-core Opteron 8358 SE  + 4 NVIDIA GPUs (C1060) 

Performance increase 
when we add to 4 GPUs 
12 CPU cores ~200 GFLOPS 

Single-Precision Performance  
12 CPU cores ~150 GFLOPS 

More performance  
than expected! 
 
Resolution: 
Run-time schedules 
best variant on best device 
 

~200 
GFLOPS 

1GPU 

2GPUs 

3GPUs 

4GPUs 

12 CPU cores + 4GPUs 

Experimental Results 
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Affinity-based scheduling  

•  Select variants with highest expected performance 
•  Utilize both CPUs and GPUs 
 

•  SSSMQR: 90% of tasks mapped to GPUs 
•  SGEQRT: 20% of tasks mapped to GPUs 

 

BLAS	
  kernel	
   CPU	
  Gflops	
   GPU	
  GFlops	
   Speed-­‐up	
  ra8o	
  
SGEQRT	
   9	
   30	
   3	
  
STSQRT	
   12	
   37	
   3	
  
SORMQR	
   8.5	
   227	
   27	
  
SSSMQR	
   10	
   285	
   28	
  

Experimental Results 

Tiled QR Decomposition ctd. 
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Face detection application 
•  Based on OpenCV library 
•  Two different implementation variants for detection stage (CPU vs. GPU) 
•  Comparison to hand-coded Intel TBB version 

Experimental Results 

unsigned int N = get_max_execution_units(); 
 
#pragma pph pipeline with buffer(PRIORITY,N*2) 
while(image.number < 32) { 
     readImage(file,image); 
     #pragma pph stage replicate(N)  
     { 
           resizeAndColorConvert(image); 
           detectFace(image,outImage); 
     } 
     writeFaceDetectedImage(file,outImage); 
} 
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Experimental Results 

Architecture A 
•  2 Intel Xeon X7560 (8 cores) 
•  RHEL 5.0 

à speedup > 13 

 
 
 
Architecture B 
•  2 Intel Xeon X5550 (4 cores) 

•  1 GeForce GTX 480 

•  1 GeForce GTX 285 
•  CUDA 4.0, RHEL 5.6 

à speedup: 7-13 
 

Results achieved with PEPPHER Transformation System 
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Related Work 

Task Offloading 
•  HMPP (CAPS, France) 
•  OmpSs (UPC, Barcelona)  
•  OpenACC 

Algorithmic Choice 
•  Elastic Computing (U. Florida) 
•  PetaBricks (MIT) 
•   ... 

Current European Projects 
•  ADVANCE (www.project-advance.eu)  
•  AUTOTUNE (www.autotune-project.eu)  
•  CARP (www.carpproject.eu)  
•  ENCORE (www.encore-project.eu)  
•  PARAPHRASE (www.paraphrase-ict.eu) 

•  Offload (Codeplay, UK)  
•  PGI Accelerate 

Streaming/Pipelining Languages 
•  StreamIt (MIT) 
•  Elk (Stanford, ELM Architecture) 
•  ... 
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•  Extend language support for data partitioning/management 

•  Extend framework with other patterns (e.g. MapReduce) 

•  Component Performance Models 

•  Auto-tuning support for patterns 

•  New Architectures: NVIDIA Kepler, Intel MIC, Movidius Myriad Platform 

•  Optimization for energy-efficiency 

AutoTune Project: Automatic Online Tuning 

•  TU Munich (M. Gerndt, coordinator) 

•   Uni Wien (S. Benkner) 

•   CAPS (F. Bodin) 

à  http://www.autotune-project.eu/ 

Future Work 

•  LRZ Munich (M. Brehm) 

•  UA Barcelona (A. Sikora) 

•  ICHEC Ireland (I. Girotto) 
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PEPPHER Project 

Programmability and Performance Portability for Heterogeneous  

Manycore Systems 

•  Multi-architectural, resource-/performance-aware components 

•  High-Level coordination primitives and Patterns 

•  Source-to-source transformation system 

•  Heterogeneous runtime system for selecting and scheduling 
component implementation variants to different execution units 

•  SkePU Skeletons and Composition Tool (not covered in this talk) 

•  Compilation to OpenCL  - Codeplay OffloadCL (not covered) 

•  Autotuned Algorithms and Lock-free Data Structures (not covered) 

•  Hardware mechanisms for performance portability (not covered) 

Conclusion 
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•  European Commission (ec.europa.eu) 

•  PEPPHER Consortium (www.peppher.eu) 

Some of the consortium members (from left): D. Moloney, E. Marth, S. Pllana, V. Osipov, M. Wimmer, B. Bachmayer, P. Tsigas, J.L. Träff, C. Kessler, J. Singler, 
 S. Benkner, D. Cederman, U. Dastgeer, H. Cornelius, S. Thibault, A. Richards, M. Sandrieser, U. Dolinsky, R. Namyst, C. Augonnet, H.C. Hoppe 
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