
Sonderforschungsbereich/Transregio 89
Transregional Collaborative Research Center 89

Invasive Computing
Annual Report 2019

Friedrich-Alexander-Universität Erlangen-Nürnberg
Karlsruher Institut für Technologie
Technische Universität München

TRR 89

Transregional Collaborative Research Centre 89

Invasive Computing

Friedrich-Alexander-Universität Erlangen-Nürnberg
Karlsruher Institut für Technologie
Technische Universität München

Annual Report 2019

Coordinator
Prof. Dr.-Ing. Jürgen Teich
Lehrstuhl für Informatik 12
Friedrich-Alexander-Universität Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen

Managing Director
Dr.-Ing. Jürgen Kleinöder
Lehrstuhl für Informatik 4
Friedrich-Alexander-Universität Erlangen-Nürnberg
Martensstraße 1
91058 Erlangen

Administration, Management, and Public Relations
Dr. Sandra Mattauch
Stefanie Kugler
Lehrstuhl für Informatik 12
Friedrich-Alexander-Universität Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen

Preface

This report summarises the activities and scientific progress of the
Transregional Collaborative Research Centre 89 “Invasive Computing”
(InvasIC) in 2019.

The CRC/Transregio “Invasive Computing” is funded by the Deutsche
Forschungsgemeinschaft in its third funding phase from July 2018 –
June 2022. The research association aggregates about 60 of the best
researchers from three excellent sites in Germany (Friedrich-Alexander-
Universität Erlangen-Nürnberg, Karlsruher Institut für Technologie and
Technische Universität München). This scientific team includes special-
ists in algorithm engineering for parallel algorithm design, hardware
architects for reconfigurable MPSoC development as well as language,
tool and application, and operating-system designers.

A special highlight in 2019 was the DATE conference in Bologna.
Here, on March 26, our CRC/Transregio 89 organised a special session
on “DFG Collaborative Funding Instruments” with Dr. Raabe from DFG
introducing the different DFG funding instruments, followed by individ-
ual presentations of diverse currently funded initiatives in the area of
computer science. These initiatives also presented their work during
the whole week at booths as part of the conference exhibition.

As another highlight, you might want to take seven minutes to watch
our new YouTube video episode “Invasive Computing for Experts”1?

Like in the previous year, we would like to thank all members of
the CRC/Transregio “Invasive Computing” and all our partners from
industry and academia for the fruitful collaborations and inspiring
discussions in the last year! We do hope that you will enjoy reading
about the progress the CRC/Transregio 89 achieved in 2019, as well as
about our research planned for the future.

Jürgen Teich
Coordinator

1https://www.youtube.com/watch?v=p-TPiCES9cc

3

https://www.youtube.com/watch?v=p-TPiCES9cc

Contents

Preface 3

Contents 4

I Invasive Computing 7

1 About InvasIC 8

2 Participating University Groups 11

II Research Program 13

3 Overview of Research Program 14

4 Research Projects 16
A1: Basics of Invasive Computing 16
A4: Characterisation and Analysis of Invasive Algorithmic

Patterns . 24
A5: Scheduling Invasive Multicore Programs Under Uncertainty 33
B1: Adaptive Application-Specific Invasive Micro-Architectures 39
B2: Invasive Tightly-Coupled Processor Arrays 46
B3: Power-Efficient Invasive Loosely-Coupled MPSoCs 53
B4: Generation of Distributed Monitors and Run-Time Verifi-

cation of Invasive Applications 58
B5: Invasive NoCs and Memory Hierarchies for Run-Time

Adaptive MPSoCs . 63
C1: Invasive Run-Time Support System (iRTSS) 70
C3: Compilation and Code Generation for Invasive Programs 77
C5: Security in Invasive Computing Systems 83
D1: Invasive Software–Hardware Architectures for Robotics . 87
D3: Invasive Computing and HPC 93
Z: Central Services . 100
Z2: Validation and Demonstrator 101

5 Working Groups 107
WG1: Run-Time Requirement Monitoring and Enforcement . 107
WG2: Memory Models, Architecture and Management 109

4

WG3: Benchmarking and Evaluation 111
WG4: Power and Thermal Aspects 113

III Events and Activities 115

6 Internal Meetings 117

7 Training Courses 119

8 InvasIC Activities 121

9 Awards 132

10 Industrial and Scientific Board 135

11 Publications 136

5

Invasive Computing

I

1 About InvasIC

The Idea of Invasive Computing

Our CRC/Transregio systematically investigates the novel paradigm
of invasive computing for designing and programming future parallel
computing systems. For systems with 1,000 or more cores on a chip,
resource-aware programming is of utmost importance to obtain high
utilisation as well as computational and energy and power efficiency.
With this goal in mind, invasive computing was introduced to provide
a programmer explicit handles to specify and argue about resource re-
quirements desired or required in different phases of execution: In an
invade phase, an application asks the operating system to allocate a set
of processor, memory and communication resources to be claimed. In a
subsequent infect phase, the parallel workload is spread and executed
on the obtained claim of resources. Finally, if the degree of parallelism
should be lower again, a retreat operation frees the claim again, and
the application resumes a sequential execution. To support this idea of
self-adaptive and resource-aware programming, not only new program-
ming concepts, languages, compilers, and operating systems need to be
developed, but also revolutionary architectural changes in the design
of MPSoCs (multiprocessor systems-on-a-chip) to efficiently support
invasion, infection, and retreat operations.2 This includes new archi-
tectural concepts for a dynamic processors, interconnects, and memory
reconfiguration, to give some examples.

Necessity and First Achievements

As predicted at the start of our journey in 2010, we will see more than
1,000 processor cores integrated on a single chip in 2022.3 Yet, pro-
gramming such large-scale processor systems is a nightmare if resource
awareness is a must and certain execution qualities must be guaranteed.
Using invasive computing, a programmer may specify resource require-
ments and, if available, the application will obtain as many exclusive
resources to deliver a desired quality of execution. This dynamic and
application-driven isolation is unique. Starting off from scratch in terms
of invasive processor hardware, language, compiler, and operating sys-
tem, we have genuinely fostered the fundamentals of invasive computing

2This focus on investigations on invasive MPSoCs has inspired us to give our CRC the
acronym InvasIC, see http://www.invasic.de for more details.

3Some GPU devices already having surpassed this number today!

8

http://www.invasic.de

in the first funding phase: These include the definition of programming
language elements for invasion primitives as well as constraints to argue
about number, types, and state of resources that may be invaded (the
invasive command space, project area A). A first language based on the
programming language X10 by IBM as well as a compiler for transla-
tion of invasive X10 programs (project area C) onto invasive multi-tile
architectures (investigated by project area B) and a run-time system
(iRTSS) for managing their execution is available. Invasive applications
exploiting different types of processor and communication resources of
an invasive network-on-chip (iNoC) have shown considerable gains in
resource utilisation and efficiency in comparison with their non-invasive
counterparts.

Predictability. Or: Sharing is Not Caring!

By the fact that resources are temporally claimed (by default) in an
exclusive manner, interference by other applications due to resource
sharing may be reduced if not avoided completely. This isolation, com-
bined with run-to-completion as the default mode of thread execution
and bandwidth guarantees on communication links, allow us to provide
predictable quality-of-service (QoS) also for communication. In the sec-
ond funding phase, we played out this ace systematically by tackling (a)
predictability of (b) multiple execution qualities of parallel invasive pro-
grams and including their (c) mapping optimisation. Our recent findings
include new language constructs to define so-called requirements on de-
sired, respectively amended qualities of execution. Addressed qualities
include performance (e. g. execution time, throughput, etc.), security
and fault tolerance. Through the analysis of application requirements
from different domains including stream processing and malleable task
applications, not only efficiency but also predictable execution quali-
ties can now be demonstrated for applications stemming from robotics,
imaging, as well as HPC. As another new yet very important facet of
invasive computing, a particular focus of the second funding phase was
devoted to the problem of dark silicon and energy- and power-efficient
computing.

The Missing Link: Beating Run-Time Uncertainties and Run-Time
Requirement Enforcement

The isolation gained by invasive computing is essential to establish
composability. This, in turn, paves the way for an independent and static
analysis of individual program qualities in dependence of only resource

9

claim properties, giving an unprecedented gain in predictability. Yet,
even if this *-predictability4 (boundedness of any of the above non-
functional properties through the invasion of resources) can be shown
to hold, (a) the effective bounds (either lower or upper) as well as (b)
their variability might still be too big or too coarse to be desirable
or affordable in practical application fields such as embedded real-
time control. Also, claiming resources exclusively might keep these
either underutilised (in case of low application workload demands)
or inefficiently used (e. g. when running a claim always at maximal
processor speeds) in order to safely guarantee timing bounds also for
the worst-case input.

Our current third funding phase is therefore dedicated to the missing
link: Beating the uncertainty caused by variation of program input,
machine state and environment at run time. The envisioned solution:
Run-time requirement enforcement. Formally, we want to investigate
hybrid techniques combining (a) static analysis of the robustness of
desired qualities in dependence of input and state fluctuations and (b)
systematic generation of suitable run-time requirement enforcers (RRE)
(additional code that either locally or globally observes and controls
the satisfaction of requirements in respective corridors at run time).
This also includes the generation of necessary program-specific run-
time requirement monitors (RRM). With these techniques, we want to
reach our final goals and vision formulated already at the beginning
of our mission: Invasive computing will be a—if not the—vehicle for
providing resource awareness for a mixture of best-effort and predictable
quality applications. We do believe huge application and business fields in
embedded systems will become accessible for multicore technology through
the foundations of invasive computing.

4J. Teich et al. “Language and Compilation of Parallel Programs for *-Predictable MPSoC
Execution using Invasive Computing”. In: Proceedings of the 10th IEEE International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). Lyon, France,
Sept. 21–23, 2016, pp. 313–320. DOI: 10.1109/MCSoC.2016.30.

10

https://doi.org/10.1109/MCSoC.2016.30

2 Participating University Groups

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Hardware-Software-Co-Design
– Prof. Dr.-Ing. Jürgen Teich

– PD Dr.-Ing. Frank Hannig

– Dr.-Ing. Stefan Wildermann

Lehrstuhl für IT-Sicherheitsinfrastrukturen
– Prof. Dr.-Ing. Felix Freiling

Lehrstuhl für Verteilte Systeme und Betriebssysteme
– Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

– Dr.-Ing. Timo Hönig

Karlsruher Institut für Technologie

Institut für Anthropomatik und Robotik
– Prof. Dr.-Ing. Tamim Asfour

Institut für Programmstrukturen und Datenorganisation
– Prof. Dr.-Ing. Gregor Snelting

Institut für Technik der Informationsverarbeitung
– Prof. Dr.-Ing. Jürgen Becker

Institut für Technische Informatik
– Prof. Dr.-Ing. Jörg Henkel

– Dr.-Ing. Lars Bauer

Technische Universität München

Lehrstuhl für Entwurfsautomatisierung
– Prof. Dr.-Ing. Ulf Schlichtmann

– Prof. Dr.-Ing. Daniel Müller-Gritschneder

Lehrstuhl für Integrierte Systeme
– Prof. Dr. sc. techn. Andreas Herkersdorf

– Prof. Dr.-Ing. Walter Stechele

– Dr.-Ing. Thomas Wild

11

Lehrstuhl für Rechnerarchitektur & Parallele Systeme
– Prof. Dr. Michael Gerndt

Lehrstuhl für Wissenschaftliches Rechnen
– Prof. Dr. Hans-Joachim Bungartz

– Prof. Dr. Michael Bader

Universität Bremen

Arbeitsgruppe für kombinatorische Optimierung und Logistik
– Prof. Dr. Nicole Megow

12

Research Program

II

3 Overview of Research Program

To investigate the main aspects of invasive computing, the CRC/Tran-
sregio is organised in five project areas:

Area A: Fundamentals, Language and Algorithm Research
Research in project area A focuses on the basic concepts of invasion and
resource-aware programming as well as on language issues, algorithmic
theory of invasion and on analysis and optimisation techniques for
application characterisation and hybrid (mixed static/dynamic) core
allocation.

Area B: Architectural Research
Project area B investigates micro- and macroarchitectural requirements,
techniques and hardware concepts to enable invasive computing in
future MPSoCs.

Area C: Compiler, Simulation, and Run-Time Support
The focus of project area C is on software support for invasive computing
including compiler, simulation and operating-system functionality as
well as on design space exploration with a special focus on run-time
management.

Area D: Applications
Applications serve as demonstrators for the diverse and efficient de-
ployment of invasive computing. The applications have been chosen
carefully from the domains of robotics and scientific computing in order
to demonstrate distinct and complementary features of invasive comput-
ing, for example its capability to provide quality-predictable execution
of parallel programs.

Z2: Validation and Demonstrator
A hardware demonstrator will serve again as the key concept for vali-
dation of invasive computing principles. It will allow for co-validation
and demonstration of invasive computing through tight integration of
hardware and software research results and to decide on the further
roadmap of specific hardware for invasive computing.

Four working groups Run-Time Requirement Monitoring and En-
forcement, Memory Models, Architecture and Management, Bench-
marking and Evaluation and Power and Thermal Aspects defined on
top of these project areas support the interdisciplinary research.

14

Research Area Project

A: Fundamentals,
Language and
Algorithm Research

Basics of Invasive Computing A1
Prof. Dr.-Ing. G. Snelting, Prof. Dr.-Ing. J. Teich

Characterisation and Analysis of Invasive Algorithmic Patterns A4
Prof. Dr. M. Bader, Dr.-Ing. S. Wildermann

Scheduling Invasive Multicore Programs Under Uncertainty A5
Prof. Dr. N. Megow

B: Architectural
Research

Adaptive Application-Specific Invasive Micro-Architectures B1
Dr.-Ing. L. Bauer, Prof. Dr.-Ing. J. Becker,
Prof. Dr.-Ing. J. Henkel

Invasive Tightly-Coupled Processor Arrays B2
Prof. Dr.-Ing. J. Teich

Power-Efficient Invasive Loosely-Coupled MPSoCs B3
Prof. Dr.-Ing. J. Henkel, Prof. Dr. sc. techn. A. Herkersdorf

Generation of Distributed Monitors and Run-Time Verification of
Invasive Applications B4
Prof. Dr.-Ing. D. Müller-Gritschneder,
Prof. Dr.-Ing. U. Schlichtmann

Invasive NoCs and Memory Hierarchies for Run-Time
Adaptive MPSoCs B5
Prof. Dr.-Ing. J. Becker, Prof. Dr. sc. techn. A. Herkersdorf

C: Compiler, Simulation,
and Run-Time Support

Invasive Run-Time Support System (iRTSS) C1
Dr.-Ing. L. Bauer, Prof. Dr.-Ing. J. Henkel, Dr.-Ing. T. Hönig,
Prof. Dr.-Ing. W. Schröder-Preikschat

Compilation and Code Generation for Invasive Programs C3
Prof. Dr.-Ing. G. Snelting, Prof. Dr.-Ing. J. Teich

Security in Invasive Computing Systems C5
Prof. Dr.-Ing. F. Freiling, Prof. Dr.-Ing. W. Schröder-Preikschat,
Prof. Dr.-Ing. G. Snelting

D: Applications

Invasive Software-Hardware Architectures for Robotics D1
Prof. Dr.-Ing. T. Asfour, Prof. Dr.-Ing. W. Stechele

Invasive Computing and HPC D3
Prof. Dr. M. Bader, Prof. Dr. H.-J. Bungartz, Prof. Dr. M. Gerndt

Z: Administration
Validation and Demonstrator Z2
Prof. Dr.-Ing. J. Becker, PD Dr.-Ing. F. Hannig, Dr.-Ing. T. Wild

Central Services Z
Prof. Dr.-Ing. J. Teich

WG: Working Groups

Run-Time Requirement Monitoring and Enforcement WG1
Prof. Dr.-Ing. F. Freiling, Dr.-Ing. T. Hönig,
Prof. Dr.-Ing. D. Müller-Gritschneder

Memory Models, Architecture and Management WG2
Prof. Dr. sc. techn. A. Herkersdorf,
Prof. Dr.-Ing. W. Schröder-Preikschat, Prof. Dr.-Ing. G. Snelting

Benchmarking and Evaluation WG3
Prof. Dr. M. Gerndt, Prof. Dr.-Ing. W. Stechele

Power and Thermal Aspects WG4
Prof. Dr.-Ing. J. Henkel, Prof. Dr. N. Megow,
Dr.-Ing. S. Wildermann

15

A1

4 Research Projects

A1: Basics of Invasive Computing

Gregor Snelting, Jürgen Teich

Joachim Falk, Frank Hannig, Pouya Mahmoody, Behnaz Pourmohseni,
Tobias Schwarzer, Maximilian Wagner, Stefan Wildermann

The goal of Project A1 is to develop the theoretical foundations for
Run-Time Requirement Enforcement (RRE) of invasive programs and to
investigate the formal tractability of invasive X10 programs. The re-
search in Project A1 focuses on (a) establishing the theory and semantics
of RRE, (b) development of central and distributed RRE techniques,
(c) development of strict and loose RRE techniques in support of hard
and soft non-functional requirements, respectively, and (d) applying
theorem provers to formalise the semantics of invasive X10 programs.

In 2019, Project A1 has particularly focused on developing the theory
of RRE and investigating the practice of different classes of RRE tech-
niques, namely, centralised vs. distributed and strict vs. loose. Together
with Project A4, we have developed an isolation-aware application char-
acterisation and timing analysis approach that enables a predictable
execution of invasive application programs on tiled manycore architec-
tures under arbitrary combinations of inter-application temporal/spatial
isolation schemes [Pou+19b]. Moreover, in collaboration with Proj-
ect A4 and Project B3, we have developed a thermally composable
Hybrid Application Mapping (HAM) approach that enables a thermally
safe execution and, thereby, an uninterrupted enforcement of timing
requirements for real-time applications [Pou+19a]. Finally, in coopera-
tion with Project A5, we studied the complexity and suitable algorithms
for run-time mapping and scheduling of task graphs (DAGs) on multi-
core architectures [Sim+20]. The following presents a selection of the
results of our research in 2019.

16

A1ISo

image
source

GS

grayscale
conversion

ED

edge
detection

HC

Harris cor-
ner detection

SO

SIFT
orientation

SD

SIFT
description

SM

SIFT
matching

RS

RAN-
SAC

ISi

image
sink

Figure 4.1: Actor graph of an object detection algorithm chain with often strongly input-dependent
workload. Without RRE techniques, the end-to-end latency of execution might vary
enormously from frame to frame.

Run-Time Requirement Enforcement (RRE)

For the study of different classes of RRE techniques, we considered
the enforcement of soft- and hard timing requirements for streaming,
e. g. image processing, applications. In the following, we present an
illustrative case study of an object detection application, composed of
nine actors which process a stream of input images in a pipelined fashion,
see Figure 4.1. Let the timing requirements be given as an upper bound
UBL on the end-to-end latency of each execution of the application
program. In order to avoid any overreservation or underutilisation
of claimed resources in reaction to unknown input workload to be
processed by each actor for each frame, we investigated application-level
enforcement support where one (centralised) or more (distributed) RRE
actors with special system privileges are introduced into the actor graph
to enforce the given timing requirement by adjusting a set of so-called
enforcement control knobs. In the above image-processing case study, the
RRE actors are privileged to adjust the number of active cores n ∈ [1, 4]
claimed for each enforced actor and the dynamic voltage and frequency
scaling (DVFS) mode m ∈ [1, 20] of these cores on a per-input basis.

The first step towards achieving an enforced execution of invasive
programs is to develop an enforcement strategy, in principle the func-
tionality of the RRE actor(s). The enforced execution of each actor is
then achieved by transforming the actor graph to also comprise the RRE
actor(s). At run time, these actors establish an enforced execution of the
program by adjusting the enforcement control knobs per input before
the enforced actor(s) begin to process it.

Enforcement Strategy Development

The enforcement strategy of an RRE actor describes how it adjusts the
value of its control knobs in the event of input variation to enforce a
given set of requirements. As shown in Figure 4.2, our approach for
developing enforcement strategies involves two main steps: (a) profiling

17

A1
profiling and

characterisation

application
input space

strategy
synthesis

control knobs control knobs
enforcement

strategy

analytic model

Figure 4.2: The flow of developing an enforcement strategy. First, in a profiling and characteri-
sation step, an analytic model is derived which formally describes the non-functional
properties of each or a set of enforced actors as a function of its input and RRE control
knobs. Based on that, in the strategy synthesis step, (Pareto-)optimal control knob
settings for different input scenarios are derived which constitute the enforcement
strategy.

and characterisation of the non-functional properties of interest followed
by (b) an RRE strategy synthesis step.

In the first step, we identify how the input uncertainty affects the
property (here, timing) to be enforced. This can be achieved, e. g. by
means of input sampling and application profiling [RHT19]. Table 4.1
summarises the result of such a profiling for our case study where the
execution time of each actor, running on a single core at maximum
frequency, is recorded for a test sequence of 9,149 images. The results
denote that, as opposed to other actors, the execution times of the SD
and SM actors contribute significantly to the latency of the application
(see their overall latency contributions) and strongly depend on the
content of each input image (see the standard deviation of their latency),
making them promising candidates for enforcement.

After the candidate actors for enforcement are identified, an ana-
lytic model is established which formally describes the non-functional
behaviour of each selected actor as a function of some feature(s) of
its input and the setting of the enforcement control knobs that can
be adjusted by the RRE actor. In the image-processing case study, the
number i of corners in an input image (which is extracted by the HC
actor) provides a suitable index of the workload introduced by that
image for each enforced actor. Therefore, our analytic model derives
the execution latency of each actor, SD and SM, as a function L(i, n,m)
of the number i of corners in an input image, the number n of active
cores decided by the RRE and the selected DVFS mode m for them.

Table 4.1: Summary of the recorded execution times of different actors (each running on a single
core at maximum frequency) when processing a test sequence of 9,149 input images.

actor GS ED HC SO SD SM RS

average latency [ms] 0.21 0.18 1.50 1.79 146.86 21.02 0.01
latency std. deviation [ms] 0.09 0.08 0.64 0.80 106.15 15.04 0.03
overall latency contribution 0.1% 0.1% 0.9% 1.0% 85.6% 12.3% 0.0%

18

A1

Once the enforcement analytic model has been derived, the second
step of developing the enforcement strategy is performed, namely, the
RRE strategy synthesis, see Figure 4.2. Here, provided the enforcement
analytic model and the enforcement control knobs (decision space of
the RRE actors), Design Space Exploration (DSE) [Sch+19b] can be
performed to identify the (Pareto-)optimal control knob settings for
different input scenarios [Spi+19; SWT19]. In our case study, the
space of possible values of i (number of corners) in the input images
is subdivided into intervals, each denoting one input scenario and
corresponding to one (Pareto-)optimal control knob setting. These
intervals and their respective (n,m) setting constitute the enforcement
strategy which can be stored as a look-up table to be used by the
RRE actor at run time although more complex and state-dependent
enforcement strategies can be thought of.

In [Tei+20a], we have discussed details of the analyses and tech-
niques used in the two steps of enforcement strategy development.
There, we have also introduced the concept of requirement strictness
which denotes the minimum rate s ∈ (0, 1] of requirement satisfac-
tion that must be achieved through enforcement, specified by the user.
In [Tei+20a], we also demonstrated how the requirement strictness can
be incorporated into the profiling and characterisation step surveyed
above to systematically construct enforcement strategies that deliver
the demanded requirement satisfaction rate while using the provided
relaxation of loose requirements (compared to the strict case with s = 1)
to optimise secondary objectives e. g. energy efficiency. In [Tei+20b],
we have shown how apart from latency requirements, also power and
reliability requirements can be enforced systematically.

Enforcement Implementation

Enforcement can be realised in a distributed or a centralised fashion. In
centralised enforcement, a single RRE actor is generated for the whole
program to establish an enforced execution based on its global knowl-
edge on the current state of the program and its claimed resources.
In distributed enforcement, multiple RRE actors are generated, each
enforcing a sub-region in the requirement interval for one part of the
program, e. g. an actor or a tile, based on local knowledge on the re-
spective program part and invaded hardware region (claim). In the
following, we present the implementation of distributed and centralised
enforcement schemes, exemplified for our case study. To that end, the
timing requirement is assumed to impose a latency upper bound of
UBL = 115 ms from which we dedicate 20 ms to the non-enforced actors

19

A1

tile #1 tile #2

tile #1 tile #2

. . . SO SD SM RS . . .

introducing centralised enforcement

. . . SO RRM SD RRM SM RS . . .

RRE

i i

power
manager

(n1,m1)

power
manager

(n2,m2)

i [0, 8] . . . [189, 192] . . . [786, 790]

n1 1 . . . 4 . . . 4
m1 1 . . . 5 . . . 20
n2 1 . . . 3 . . . 4
m2 1 . . . 6 . . . 20

SD&SM enforcement strategy

Figure 4.3: Implementation of centralised enforcement using a statically computed energy-optimal
enforcement strategy for SD and SM actors with a hard latency upper bound of
UBL = 95ms for both actors collectively.

in the object detection chain, resulting in a latency budget of 95 ms for
the two enforced actors.

In case of a centralised enforcement scheme, a single instance of an
RRE actor enforces the overall latency upper bound of UBL = 95 ms for
both SD and SM actors collectively. The implementation of a centralised
enforcement scheme is depicted in Figure 4.3. The statically computed
enforcement strategy for the two enforced actors is provided as a look-
up table to the RRE actor. At run time, once an image is ready to
be processed, the number i of corners in it becomes known. Prior
to processing that image, the RRE actor retrieves the (n,m) settings
corresponding to i corners from the enforcement strategy table for each
enforced actor and instructs the power manager to use these settings
on each respective tile. For guaranteeing the latency upper bounds, we
assume that the (n,m) setting of each tile is held constant while an
image is being processed by the actor running on that tile.

For a distributed enforcement scheme, the latency budget of 95 ms is
further subdivided to obtain a latency budget per enforced actor. Taking
into account the recorded profiles in Table 4.1, we dedicate a latency
budget of 80 ms to the SD actor and 15 ms to SM. Figure 4.4 shows
the implementation of a distributed enforcement scheme for the two
enforced actors. The statically computed enforcement strategy for each
actor is provided as a look-up table to the local RRE actor in charge of
enforcing the assigned latency bound for the respective enforced actor.

As a merit of profit, the potential energy savings of each enforce-
ment scheme has been investigated in addition to the verification of
its capability in enforcing the latency requirement. For a variety of
requirement strictness levels, Table 4.2 presents the average dynamic

20

A1

tile #1 tile #2

tile #1 tile #2

. . . SO SD SM RS . . .

introducing distributed enforcement

. . . SO RRM RRE SD RRM RRE SM RS . . .i i

power manager

(n1,m1)

power manager

(n2,m2)

i [0, 9] [10, 19] . . . [153, 171] . . . [721, 760]

n1 1 1 . . . 3 . . . 4
m1 1 2 . . . 6 . . . 20

SD enforcement strategy

i [0, 12] [13, 25] . . . [129, 153] . . . [985, 1036]

n2 1 1 . . . 3 . . . 4
m2 1 2 . . . 4 . . . 20

SM enforcement strategy

Figure 4.4: Implementation of distributed enforcement using statically computed energy-optimal
enforcement strategies for SD and SM actors with hard latency upper bounds of
UBL=80ms and UBL=15ms, respectively.

energy savings of the SD and SM actors compared to the non-enforced
scenario (where n= 4 and m= 20 per actor) for the two schemes of
distributed and centralised enforcement. Compared to distributed en-
forcement, the centralised scheme is able to save slightly more dynamic
energy. Moreover, according to the enforcement strategies in Figure 4.3
and Figure 4.4, a centralised RRE can enforce the given requirement
for input images with up to i = 790 corners, while the enforceable
workload in case of distributed enforcement is restricted to i = 760.
Whereas in the above case study, only a single latency requirement
has been investigated, [Tei+20b] describes principles for the simulta-
neous enforcement of multiple requirements such as latency, power,
and reliability. Rather than simple lookup tables, it is shown that this
typically involves the generation of not only input-, but state-dependent
enforcement strategies.

Table 4.2: Average dynamic energy savings for the SD and SM actors using distributed and
centralised enforcement schemes in dependence of requirement strictness. The energy
consumption without enforcement (n=4, m=20) serves as a baseline.

requirement
strictness

distributed enforcement centralised enforcement

SD SM SD+SM overall SD SM SD+SM overall

50% 41.2% 38.9% 40.8% 36.8% 41.8% 43.6% 42.1% 37.9%
84% 40.4% 38.7% 40.1% 36.1% 41.2% 42.9% 41.5% 37.3%

97.7% 39.5% 38.3% 39.3% 35.4% 39.4% 40.9% 39.7% 35.7%
100% 37.6% 37.2% 37.6% 33.8% 38.5% 40.2% 38.8% 35.0%

21

A1

Further Results

Isolation-Aware Application Characterisation Enforcement of hard tim-
ing requirements necessitates a timing analysis to derive safe bounds
on the worst-case timing behaviour of applications, taking into account
the temporal/spatial isolation scheme among concurrent applications
on different resources. Together with Project A4, we have developed an
isolation-aware DSE and timing analysis for heterogeneous tiled many-
core architectures. Our analysis enables deriving safe yet tight upper
bounds on the worst-case timing behaviour of invasive programs by
excluding pessimistic interference scenarios which cannot occur under
the given isolation scheme among applications. The proposed approach
and analysis is presented in [Pou+19b].

Thermal Composability Modifications in the DVFS setting of cores
changes their power consumption. This, in turn, affects the chip tem-
perature and may create thermal hot spots which are then counteracted
by the chip power manager, e. g. using power gating. Obviously, RRE
techniques must be able to either cope and react to such events or,
alternatively, try to avoid any thermal violation by construction, e. g. by
restricting the range of allowable DVFS settings. In collaboration with
Project A4 and Project B3, we have developed a thermally composable
Hybrid Application Mapping (HAM) approach which enables providing
the RRE actors with a range of DVFS settings that are guaranteed not to
induce thermal violations. The proposed approach and its experimental
evaluation are detailed in [Pou+19a]. Based on this approach, the
enforcement strategy can be developed for a restricted range of control
knob settings to guarantee thermal safety and exclude power manager
interferences without jeopardising the thermal integrity of the chip.

Publications

[Pou+19a] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich,
and J. Henkel. “Thermally Composable Hybrid Application Map-
ping for Real-Time Applications in Heterogeneous Many-Core
Systems”. In: 40th IEEE Real-Time Systems Symposium (RTSS).
2019.

[Pou+19b] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. “Isola-
tion-Aware Timing Analysis and Design Space Exploration for
Predictable and Composable Many-Core Systems”. In: 31th Eu-
romicro Conference on Real-Time Systems (ECRTS). Stuttgart, Ger-
many, 2019, 12:1–12:24. DOI: 10.4230/LIPIcs.ECRTS.2019.12.

22

https://doi.org/10.4230/LIPIcs.ECRTS.2019.12

[Pou+20] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. “Real-
Time Task Migration for Dynamic Resource Management in
Many-Core Systems”. In: Workshop on Next Generation Real-Time
Embedded Systems (NG-RES). 2020.

[RHT19] S. Roloff, F. Hannig, and J. Teich. Modeling and Simulation
of Invasive Applications and Architectures. Springer, May 2019.
168 pp. DOI: 10.1007/978-981-13-8387-8.

[Sch+19b] T. Schwarzer et al. “Compilation of Dataflow Applications for
Multi-Cores Using Adaptive Multi-Objective Optimization”. In:
ACM Transactions on Design Automation of Electronic Systems
24.3 (Mar. 2019), 29:1–29:23. DOI: 10.1145/3310249.

[Sim+20] B. Simon, J. Falk, N. Megow, and J. Teich. “Energy Minimiza-
tion in DAG Scheduling on MPSoCs at Run-Time: Theory and
Practice”. In: Workshop on Next Generation Real-Time Embedded
Systems. 2020.

[Spi+19] J. Spieck, S. Wildermann, T. Schwarzer, J. Teich, and M. Glaß.
“Data-Driven Scenario-based Application Mapping for Heteroge-
neous Many-Core Systems”. In: Multicore/Many-core Systems-on-
Chip (MCSoC) (Singapore). Oct. 1–4, 2019.

[SWT19] J. Spieck, S. Wildermann, and J. Teich. “Run-Time Scenario-
Based MPSoC Mapping Reconfiguration Using Machine Learning
Models”. In: 1st ACM/IEEE Workshop on Machine Learning for
CAD (MLCAD). 2019.

[Tei+20a] J. Teich, P. Mahmoody, B. Pourmohseni, S. Roloff, W. Schröder-
Preikschat, and S. Wildermann. “Run-Time Enforcement of Non-
functional Program Properties on MPSoCs”. In: A Journey of
Embedded and Cyber-Physical Systems. Ed. by J.-J. Chen. Springer,
2020.

[Tei+20b] J. Teich, B. Pourmohseni, O. Keszocze, J. Spieck, and S. Wilder-
mann. “Run-Time Enforcement of Non-Functional Application
Requirements in Heterogeneous Many-Core Systems”. In: Asia
and South Pacific Design Automation Conference (ASP-DAC). Jan.
2020, pp. 629–636.

23

https://doi.org/10.1007/978-981-13-8387-8
https://doi.org/10.1145/3310249

A4

A4: Characterisation and Analysis
of Invasive Algorithmic Patterns

Michael Bader, Stefan Wildermann

Jan Spieck, Tobias Schwarzer, Behnaz Pourmohseni, Alexander Pöppl,
Joachim Falk

Project A4’s mission is to explore and establish application character-
isation in the invasive computing paradigm and to investigate and
evaluate how algorithms and applications may exploit and profit from
the resulting predictability features.

A major challenge is that our study of invasive proxy applications in
Phase II and the experiences gained reveal that application execution is
getting increasingly dynamic:

• Workload scenarios and execution phases of an application vary
strongly, such that a static worst- or average-case characterisation
for a single scenario becomes inadequate.

• Performance is becoming highly uncertain, as external influences,
differences in manufacturing and measures to enforce power limits
or energy budgets affect quality numbers in an unforeseeable way.

• Hardware faults are expected to occur more often thus making
resources temporally or, due to manufacturing variability and
ageing, even permanently unavailable.

The enforcement of non-functional requirements, as investigated in
Project A1, concentrates on controlling the claimed resources, and thus
always happens within a corridor defined by one respective operating
point, see, e. g. [Tei+20a; Tei+20b]. Project A4 expands this approach
beyond the boundaries of a single operating point by considering al-
gorithmic adaptations of the application as well as modifications of
the resource claim. Our goal is to provide optimised and robust ap-
plication execution in the context of above aspects by characterising
and enforcing adaptation of the application behaviour (e. g. algorithmic
variants), the application structure (i. e. the actor model), and the set of
allocated resources by means of re-invasion and run-time requirement

24

A4

enforcement (RRE) to such variances and fault scenarios. In Phase III,
we focus on programming and characterising applications with varying
execution phases and changing workload. In the following, we report
on results achieved in 2019.

SWE-X10 – Multi-Level Actor Graphs

AL
00,1

AL
01,0

AL
01,1

AL
10,1

AL
11,0

AL
11,1

AL
20,1

AL
21,0

AL
21,1

AL
00,0

AL
10,0

AL
20,0

Figure 4.5: Multi-level actor graph with 2× 2 ac-
tors per level. Each actor on each
level is connected to its neighbour-
ing level counterparts, and its neigh-
bours in the two spacial dimensions
in the same and neighbouring levels.

After extending SWE-X10 with
a block-adaptive multi-rate local
time stepping scheme (LTS), we
started to work on making its spa-
cial resolution adaptive as well.
Instead of a uniform resolution
for the entire grid as before, we
want to enable different parts of
the simulation domain to be simu-
lated at different resolutions. Our
solution concept for this is a multi-
level actor graph (see Fig. 4.5).
During construction of the actor
graph, we create actors for all res-
olution levels we would like to
support. At the beginning of the
actor graph execution, each actor
exchanges information about its
resolution with all its connected
neighbours (on the same level, as
well as the resolution level above
and below). This enables the ac-
tors to listen to, receive and interpret updates from its respective active
neighbours. Resolution updates may be triggered by an actor on integral
timestep multiples. This allows receiving actors to have a clear cut-off
where they stop listening to the old actor and start listening to the
replacement with the updated resolution. After sending a resolution
update notification to its neighbours, the actor starts refining (or coars-
ening) its bathymetry and cell quantities as necessary, and then sends
it, along with all its accumulated boundary information, to the actor
on the new grid level. Upon receiving the refinement data, that actor
configures its data structures and domain boundaries and sets its finite
state machine (FSM) to the appropriate state.

25

A4

Using the actor computational model for HPC applications

UPC++ actor library In the previous year, we implemented a prototype
for an actor library utilising a more widely used HPC language and
environment. We chose C++-14 as a language and UPC++ as the
communication library. First tests showed a significantly better perfor-
mance compared to the prior solution in actorX105. In this year, we
expanded on the work performed at LBNL to develop and evaluate dif-
ferent execution strategies for the UPC++ actor library [PBB19]. In all
cases, they implement the execution semantics as specified for actorX10.
This requires functionality that watches for changes in the channels and
activates the corresponding actor when such a change happens, until
the actor eventually signals its termination. For all execution strategies,
this necessitates one or more event loops per rank. In the loop, the
application needs to make tokens from other ranks available, and then
invoke the local actors’ FSM.

For the rank-based execution strategy, the event loop for each
UPC++ rank is realised in the actor graph. Initially, the run time
executes any UPC++ communication for inter-actor communication.
Thereafter, the FSM of actors with changes to their connected channels
is triggered. This strategy is best suited for a small number of actors per
UPC++ rank, as all actors within a rank are processed sequentially. Par-
allelism is achieved instead using multiple UPC++ ranks per physical
node.

The thread-based execution strategy uses multiple C++ threads
per UPC++ rank to parallelise actor execution. Each actor is mapped
onto its own operating system thread, and the actor graph is mapped
to the main thread of the rank. The individual actors and the actor
graph each have their own event loop. The actor graph queries the
UPC++ run time for incoming tokens and notifies affected actors ac-
cordingly. An actor’s event loop contains a call to the UPC++ run time
for rank-internal updates, followed by an FSM invocation if the actor has
been triggered. This method closely resembles the execution strategy
implemented in actorX10.

Finally, the task-based execution strategy parallelises the actor exe-
cution using OpenMP tasks. As with the rank-based execution strategy,
there is only a single event loop per rank, in the actor graph instance.
Similarly to the other parallelisation models, the run time is queried for
progress to process incoming communication. Then, we iterate through

5S. Roloff et al. “ActorX10: An Actor Library for X10”. In: Proceedings of the 6th ACM
SIGPLAN X10 Workshop (X10) (Santa Barbara, CA, USA). ACM, June 14, 2016, pp. 24–
29. DOI: 10.1145/2931028.2931033.

26

https://doi.org/10.1145/2931028.2931033

A4

1 2 4 8 16 32 64 128

1011

1012

1013

1014

Number of Nodes

Fl
op

/s
Pond Rank

Pond Thread

Pond Task

SWE-X10

SWE-MPI

(a) Weak Scaling Test

1 2 4 8 16 32 64 128

1012

1013

1014

Number of Nodes

Pond Rank

Pond Thread

Pond Task

SWE-X10

SWE-MPI

(b) Strong Scaling Test

Figure 4.6: Scaling tests on the NERSC Cori KNL partition. The setup for the weak scaling test
specified 4, 096× 4, 096 cells per node, and the strong scaling test was performed
using an overall size of 16, 384× 16, 384 for the simulation domain.

all local actors, and for those that have a positive trigger count, we
schedule an OpenMP task that queries for progress and invokes the
actor’s FSM. The tasks are then executed asynchronously on worker
threads by the OpenMP run time. The advantage of this approach
compared to the thread-based execution strategy is the possibility to
match the number of threads employed by a node to its computational
resources. Instead of a one-to-one mapping of actors to operating sys-
tem threads, work is distributed onto a number of threads specified at
run time. When an actor is not triggered, it will not create tasks to be
scheduled, and it therefore does not use up any CPU resources.

Evaluation We compared Pond, our proxy application for the UPC++
actor library, to SWE-X10, and the BSP-based SWE. In all tests, we used
a radial dam break scenario, which is easily scaled to any size.

The weak scaling test was performed with a per-node workload of
4, 096 × 4, 096 grid cells per node. We performed tests starting on a
single node up to 128 nodes. The base workload per core was set at
256× 256 grid cells per logical thread. Results are shown in Fig. 4.6a.
Two out of the three execution models of Pond outperform SWE-X10
significantly. Pond Thread performs worst, at a similar level as SWE-X10.
Pond Rank performs on a level competitive with SWE-MPI, managing to
yield a roughly 20% performance benefit over SWE-MPI for the largest
run with 128 nodes. Pond Task outperforms the other implementations

27

A4

in this test and is on average 38% faster than SWE-MPI, with over 50%
higher performance for the run with 128 nodes.

We also performed a strong scaling test to explore the scalability limits
of the actor library (results in Fig. 4.6b). For the test, we set the size of
the simulation domain to 16, 384× 16, 384 grid cells. For a single-node
configuration, this led to a patch size of 512× 512 grid cells, down to
a patch size of 64 × 64 grid cells with 128 nodes. The performance
of SWE-MPI degenerates gradually as the size of each core’s working
set shrinks. For the actor-based solutions, the more constrained patch
size leads to a more sudden drop in performance, as smaller patch
sizes – necessary to evenly distribute the grid – lead to more actors
and therefore more coordination overhead. As before, Pond manages
to retain its performance lead, and again manages to outperform the
traditional BSP-based SWE.

MPI actor library Furthermore, we implemented6 the actor compu-
tational model using MPI and OpenMP, the prevalent APIs for HPC
applications today. Here, we compare inter-actor communication using
two-sided communication primitives to communication using one-sided
communication. In a comparison with the UPC++ actor library on
the CoolMUC cluster, performance is comparable to the UPC++ actor
library. A large benefit of the MPI implementation is the possibility to
run actor-based applications on any modern supercomputer.

Scenario-based Application Mapping for Heterogeneous Manycore
Systems

The mapping of application tasks to suitable resources on heterogeneous
manycore architectures is an important factor in meeting the special
requirements needed in the design of embedded systems [Sch+19b].
However, a single mapping of application tasks may be neither effi-
cient nor feasible to enforce a set of requirements in case of an input-
dependent workload. In particular, applications that process a stream
of input data require a dynamic mapping approach which also involves
mapping reconfiguration at run time, which we have investigated for
soft-real time [GSW19] and hard-real time applications [Pou+19c].

Since searching for optimal mappings at run time could introduce an
intolerable computation overhead and furthermore is in need of, fre-
quently unavailable, run-time information, hybrid application mappings

6Master’s Thesis of Bruno Miguel: A Distributed Actor Library for HPC Applications (Nov
2019)

28

A4
Input
space
D

Dtest

Mappings M

Mappings M ′

Dtrain Scenarios S

Exit?

⊆
DSE Distillation

Identification
⊆

Initialisation

Figure 4.7: Structure of the proposed iterative scenario optimisation loop.

(HAM) [Pou+19b] have prevailed in recent years. HAM techniques
compute Pareto-optimal mappings at design time by design space ex-
ploration and then select a suitable mapping for the current input data
at run time. However, determining optimised mappings for each input
data is typically not feasible due to the size of possible input data. As a
remedy, we propose to group data with similar execution characteristics
into so-called workload scenarios for which specialised mappings are
computed. Finding these scenarios and scenario-optimised mappings
forms an optimisation problem that is elucidated in the next paragraph.

Design-Time Data-Driven Scenario and Mapping Optimisation

[Spi+19] proposes a data-driven optimisation technique for detecting
scenarios and finding optimised mappings, which is solely based on
measuring non-functional execution properties (like latency) for a given
set of input data. Here, scenario selection and mapping optimisation
form two interdependent problems that are solved by an iterative design
flow displayed in Fig. 4.7.

In the first step, a representative set of training data Dtrain ∈ D and
test data Dtest ∈ D is selected from the set D of all possible input data.
Then, an initial set of scenarios is chosen, e. g. a random distribution of
the training data d ∈ Dtrain into an arbitrary number of scenarios. This
is necessary to initiate the optimisation loop. Based on this scenario dis-
tribution, Pareto-optimal mappings for each scenario are determined by
a multi-objective optimisation DSE run using evolutionary algorithms.
The resulting set of mappings M ′ is distilled to a reduced set M by
clustering similar mappings and selecting sample representatives. This
reduced number of mappings improves and accelerates the process of
the subsequent scenario identification. Scenarios are identified by clus-
tering the vectors v(d) =

(
p(d,m1) ... p(d,m`)

)T
,m1, ...,m` ∈M of

each data d ∈ Dtrain with v(d) consisting of the performance numbers

29

A4

p(d,m) of data d under each mapping m ∈ M . Here, the data tuples
corresponding to the vectors in one cluster form a scenario. For these
revised scenarios, tailored mappings can be found by a further optimisa-
tion cycle that also refines the scenario distribution. This optimisation
loop is stopped once a termination criterion applies, e. g. the quality
of the scenarios converges. The evaluation of the proposed scenario-
based mapping optimisation shows that we can easily obtain average
performance improvements of up to 10% compared to state-of-the-art
mapping optimisation under a highly variable workload for a ray-tracing
and stitching application.

Scenario-Based Run-Time Application Mapping Reconfiguration

We propose a run-time manager (RTM) that uses the optimised sce-
narios and scenario-optimised mappings from design time to select
mappings for a stream of unknown input data at run time in [SWT19].
The integration of the RTM into the application flow is displayed in
Fig. 4.8. First, we have to identify the scenario of incoming data so that
we can select suitable mappings. For black-box applications, however,
the scenario of input data cannot generally be determined before the
data is executed. Instead, we conclude the scenarios based on the non-
functional execution properties e(d,m) of the current data d ∈ D under
the active mapping m. Thus, scenario identification forms a classifica-
tion problem that is solved by neural networks, which are trained with
execution data e(d,m) labelled with the best-suited scenario. Based on
the identified scenarios of the current and preceding data, we select
a mapping for subsequent input data. Therefore, we need knowledge
about the expected scenario sequence of the input stream at run time.
For this reason, we use training sequences similar to the run-time stream
to teach an RTM model strategy for mapping selection. Experiments
show that genetic-programming-based models offer a low training time,
low run-time overhead, and highly accurate solutions. Here, the recon-
figuration overhead when switching between two mappings and the
error susceptibility of the scenario identification model are taken into
consideration.

Evaluations for a ray-tracing and stitching application show that
the proposed run-time manager selects scenario-based mappings that
provide a significant speedup of up to 13% compared to a fixed, single
mapping. Furthermore, the RTM achieves high scenario identification
rates of over 90% and low run-time overhead smaller than 0.001%.

30

A4

. . . d(t+1)

Input Stream

o(t−1) . . .

Output Stream
Black-Box

Application

Run-Time

Manager
Scenario

Identification

Mapping

Selection

d(t)

Execution Data

e(d(t),m(t))

Mapping

m(t+1)

Scenario

σ(t)

o(t)

Figure 4.8: Integration of a run-time manager into the application flow. Based on the
execution data e of the current input d(t) under the current mapping m(t), a
mapping for the next input d(t+1) is selected.

Thermal Composability

The ongoing process technology downsizing has given rise to an in-
creased on-chip temperature, so that the thermal integrity of the plat-
form must be monitored and enforced at run time by means of Dynamic
Thermal Management (DTM) techniques which use countermeasures,
e. g. DVFS and power gating. This, however, can lead to situations where
the execution of one application influences the execution of other appli-
cations: Due to heat transfer among neighbouring cores, the mapping
used for launching an application may affect the temperature profile
of the neighbouring cores that are used by other applications, leading
them to a thermal violation and, thus, exposing those applications to
DTM countermeasures, even though they did not induce the thermal
violation in the first place.

In cooperation with Projects B3 and A1, we developed for the first time
a thermally composable HAM methodology that enforces thermal safety
proactively at the launch time of applications and, thereby, prevents
DTM interferences that react to thermal violations in [Pou+19a].

Publications

[GSW19] D. Gabriel, W. Stechele, and S. Wildermann. “Resource-Aware
Parameter Tuning for Real-Time Applications”. In: Architecture
of Computing Systems – ARCS 2019. Ed. by M. Schoeberl, C.
Hochberger, S. Uhrig, J. Brehm, and T. Pionteck. Springer In-
ternational Publishing, 2019, pp. 45–55. DOI: 10.1007/978-3-
030-18656-2_4.

[PBB19] A. Pöppl, S. Baden, and M. Bader. “A UPC++ Actor Library
and Its Evaluation on a Shallow Water Proxy Application”. In:

31

https://doi.org/10.1007/978-3-030-18656-2_4
https://doi.org/10.1007/978-3-030-18656-2_4

Parallel Applications Workshop, Alternatives To MPI+X. IEEE.
Denver, Colorado, United States of America: IEEE, Nov. 2019.

[Pou+19a] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich,
and J. Henkel. “Thermally Composable Hybrid Application Map-
ping for Real-Time Applications in Heterogeneous Many-Core
Systems”. In: 40th IEEE Real-Time Systems Symposium (RTSS).
2019.

[Pou+19b] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. “Isola-
tion-Aware Timing Analysis and Design Space Exploration for
Predictable and Composable Many-Core Systems”. In: 31th Eu-
romicro Conference on Real-Time Systems (ECRTS). Stuttgart, Ger-
many, 2019, 12:1–12:24. DOI: 10.4230/LIPIcs.ECRTS.2019.12.

[Pou+19c] B. Pourmohseni, S. Wildermann, M. Glaß, and J. Teich. “Hard
Real-Time Application Mapping Reconfiguration for NoC-Based
Many-Core Systems”. In: Real-Time Systems (2019), pp. 1–37.
DOI: 10.1007/s11241-019-09326-y.

[Sch+19b] T. Schwarzer et al. “Compilation of Dataflow Applications for
Multi-Cores Using Adaptive Multi-Objective Optimization”. In:
ACM Transactions on Design Automation of Electronic Systems
24.3 (Mar. 2019), 29:1–29:23. DOI: 10.1145/3310249.

[Spi+19] J. Spieck, S. Wildermann, T. Schwarzer, J. Teich, and M. Glaß.
“Data-Driven Scenario-based Application Mapping for Heteroge-
neous Many-Core Systems”. In: Multicore/Many-core Systems-on-
Chip (MCSoC) (Singapore). Oct. 1–4, 2019.

[SWT19] J. Spieck, S. Wildermann, and J. Teich. “Run-Time Scenario-
Based MPSoC Mapping Reconfiguration Using Machine Learning
Models”. In: 1st ACM/IEEE Workshop on Machine Learning for
CAD (MLCAD). 2019.

[Tei+20a] J. Teich, P. Mahmoody, B. Pourmohseni, S. Roloff, W. Schröder-
Preikschat, and S. Wildermann. “Run-Time Enforcement of Non-
functional Program Properties on MPSoCs”. In: A Journey of
Embedded and Cyber-Physical Systems. Ed. by J.-J. Chen. Springer,
2020.

[Tei+20b] J. Teich, B. Pourmohseni, O. Keszocze, J. Spieck, and S. Wilder-
mann. “Run-Time Enforcement of Non-Functional Application
Requirements in Heterogeneous Many-Core Systems”. In: Asia
and South Pacific Design Automation Conference (ASP-DAC). Jan.
2020, pp. 629–636.

32

https://doi.org/10.4230/LIPIcs.ECRTS.2019.12
https://doi.org/10.1007/s11241-019-09326-y
https://doi.org/10.1145/3310249

A5

A5: Scheduling Invasive Multicore Programs
Under Uncertainty

Nicole Megow

Bertrand Simon

The goal of Project A5 is to develop algorithms that can handle un-
certain input data. We design and mathematically analyse algorithms
for scheduling and resource management using the invasive computing
paradigm. Our methods shall give performance guarantees concerning
the predictability and also quantify how hardware and software require-
ments affect the performance and predictability. This may reveal also
optimisation potential in the systems architecture or algorithms.

This project is of foundational character and aims for theoretical guar-
antees by building on methods from algorithms theory and mathematical
optimisation. Our main focus lies on provable worst-case guarantees and
coping with uncertainty. When predictability is crucial, e. g. in safety-
critical applications, most multicore systems still rely on single-core
usage. The reason is that the current state-of-the-art approaches in real-
time scheduling do not capture the difficulties in scheduling parallel
workloads in a predictable way. In this project, we develop algorithms
with guarantees on predictability and resource utilisation as is required
to exploit the full power of parallel computing and particularly the bene-
fits of invasive computing also for safety-critical applications. We expect
to develop algorithms that are not only efficient from a theoretical
standpoint but can be efficiently implemented in practice.

Speed-scaling for Power Management

Speed-scaling (or frequency/voltage scaling) is the main technique for
power management, in both academic research and practice. It involves
dynamically changing the speed of a processor which is allowed by
current microprocessors. Major research questions ask for dynamic
algorithms that determine a schedule for a given set of tasks and also
decide at which speed s ≥ 0 the processor(s) shall run at any time.
Running a processor at a certain speed requires a certain amount of

33

A5

power. Power is typically modelled as a monomial (convex) function of
speed, P (s) = sα with a small constant α > 1. Given a fixed deadline,
we compute the optimal power distribution and schedule that minimises
energy consumption.

We focused in collaboration with Project A1 on the problem of schedul-
ing a set of tasks with precedence constraints on multiple processing
units, i. e. on a multicore chip. Several variants of this problem are
relevant and studied in the literature. First, regarding the allowed set
of speeds, it can be either continuous in a given interval, or be part of
a prescribed set specific to the chip. Second, the tasks may already be
mapped to cores, in which case the problem is solely to compute the
appropriate speeds; otherwise, the algorithm should also compute the
schedule of tasks to cores.

We surveyed the known results in related domains and reformulate
them in this setting as well as providing new algorithms which all
have strong performance guarantees compared to an optimal solution.
These algorithms are built on various techniques such as Integer Linear
Programming, fractional relaxations, Convex Programming, or combina-
torial algorithms. One of the most important conclusions of this work
concerns the problem in which tasks are already mapped for a special
class of graphs named series-parallel, which includes many actual ap-
plications. This problem is solvable in polynomial time for continuous
speeds and all graphs, but admits a fast linear-time algorithm, which
can handle thousands of tasks in a few milliseconds on a standard com-
puter. This continuous solution can also be rounded to a prescribed set
of speeds while staying within a few percents of the optimal solution
in our experiments. These results have been accepted for publication
in [Sim+20].

Scheduling Self-Suspending Tasks

In computing systems, a job may suspend itself (before it finishes its
execution) when it has to wait for certain results from other (usually ex-
ternal) activities. For real-time systems, such self-suspension behaviour
has been shown to induce performance degradation. Hence, the re-
searchers in the real-time systems community have devoted themselves
to the design and analysis of scheduling algorithms that can alleviate
the performance penalty due to self-suspension behaviour. As self-
suspension and delegation of parts of a job to non-bottleneck resources
is pretty natural in many applications, researchers in the operations
research (OR) community have also explored scheduling algorithms for

34

A5

if c1 then
if c2 then

basic
block b1;

else
basic
block b2;

end if
else

basic block
b3;

end if

c11
c21

b2 b3

c22
c12

b4 b5

c31

b6

c32

b4

b7

s

t

basic block b4;
if c3 then

basic block
b5;

else
basic block
b6;

end if
basic block b7;

Figure 4.9: Two example source code excerpts and their representation as conditional DAGs.
Each bi represents a sequence of statements and each ci represents some Boolean
expression. The dummy source s and sink t show how the parallel execution of two
source code excerpts can be represented with a single task.

systems with such suspension behaviour, called the master-slave problem
in the OR community.

In our paper [Che+19], we first review the results for the master-
slave problem in the OR literature and explain their impact on several
long-standing problems for scheduling self-suspending real-time tasks.
Then, we provide a systematic study of different approximation met-
rics with respect to resource augmentation factors (speedup) of several
heuristic algorithms that can be applied for different self-suspension
models. These models represent different degrees of uncertainty about
the suspension pattern and suspension duration for tasks. We obtain
small constant factors for both uniprocessor and multiprocessor sys-
tems, and demonstrate that different approximation metrics can create
different levels of difficulty for the approximation. Our experimental re-
sults show that such more carefully designed schedules can significantly
outperform the state-of-the-art.

Conditional DAG Scheduling

As parallel processing became ubiquitous in modern computing sys-
tems, parallel task models have been proposed to describe the structure
of parallel applications. The workflow scheduling problem has been
studied extensively over past years, focusing on multiprocessor sys-
tems and distributed environments (e. g. grids, clusters). In workflow
scheduling, applications are modelled as directed acyclic graphs (DAGs).
DAGs have also been introduced in the real-time scheduling commu-
nity to model the execution of multi-threaded programs on a multicore
architecture. The DAG model usually assumes a fixed DAG structure cap-
turing only straight-line code. We studied the more general conditional

35

A5

DAG model which allows uncertainty in the DAG structure by allow-
ing the presence of conditional control-flow (if-then-else) constructs;
see Fig. 4.9. In particular, we considered the problem of computing
the worst-case makespan for conditional DAGs, that is, the maximum
amount of time a multicore system might need to execute the con-
ditional DAG. Due to the presence of control-flow instructions, it is
uncertain which parts of the conditional DAG, respectively, the modelled
application, are actually going to be executed and, therefore, computing
the worst-case makespan is non-trivial even for fixed-priority schedul-
ing algorithms. This problem is crucial when scheduling time-critical
applications on multicore systems.

We perform a thorough analysis on the worst-case makespan of a con-
ditional DAG task under list scheduling (a.k.a. fixed-priority scheduling).
The problem is solvable in polynomial time for well-nested conditional
DAGs on single-core systems. For general conditional DAG tasks, the
problem is intractable even on a single processor. We show several hard-
ness results concerning the complexity of the optimisation problem on
multiple processors for conditional DAGs with a well-nested structure.
Complementing these negative results, we designed an exact pseudo-
polynomial time algorithm and a polynomial time approximation with
a strong performance guarantee, both for certain practice-relevant con-
ditional DAG structures on multicore systems. These results have been
accepted for publication in [Mar+20].

Further Research

Thermal-aware Mapping In collaboration with Project B3, we studied
a problem named thermal-aware mapping. Executing a job on a chip
component increases its temperature and the one of nearby components.
This effect depends on multiple factors such as the power consumed by
a core, the local thermal conductivity or the ambient temperature. If the
temperature of a component exceeds a certain threshold, dynamic ther-
mal management techniques are triggered in order to avoid overheating.
Triggering these techniques results in performance losses and must
then be avoided. We considered the theoretical aspects of the problem
consisting of mapping tasks to components and deciding a maximum
power that each component is allowed to consume while ensuring that
no component exceeds the threshold temperature. Project B3 already
noticed that, on actual data, a greedy algorithm computes a solution
which is not far from the optimal. Hence, the question was to decide
whether it is conceivable to compute efficiently the optimal solution. We
have been able to answer negatively this question for instances which

36

A5

require too many irregularities to be realistic. The complexity of solving
this problem for noisy but realistic instances remains open.

Time Cost Trade-off Problem We also explored the relation between
the speed-scaling problem previously described and the time-cost trade-
off problem with convex cost functions. The framework of this problem
is the following: we are given a graph with weights on the edges, and
we are allowed to invest some cost for each edge in order to decrease its
weight. The goal is to obtain a graph with a bounded critical path while
investing the minimum possible cost. A low-complexity algorithm for
this problem was recently proposed by Dorit Hochbaum7. The previous
algorithms were more expensive and often relied on solving large convex
programs. This new approach used only minimum cut algorithms and
obtain a much better complexity. We however noticed an issue in this
approach, and, after exchanging with the author, contributed to the
correction of this algorithm. The connection between this problem
and the speed-scaling setting was not noticed so far to the best of our
knowledge. We believe that we can gain new insights for each problem
using their connection and the techniques currently used to solve the
other problem.

Learning-augmented Algorithms One of the most common ways to
deal with uncertainty in the theoretical scheduling literature is to con-
sider online problems: no information on the future instance is known,
and therefore any pathological scenario has to be handled by the al-
gorithms. This model is by essence pessimistic and algorithms usually
perform better in practice than what can be guaranteed in theory. This
downside has been reduced in refined models, which for instance con-
sider the knowledge of probability distributions on the future inputs,
but this might not be realistic. A new line of research assumes the
knowledge of predictions, which typically come from machine learning.
The novelty of this approach is that no assumption is made on the
quality of the prediction. Indeed, if an instance is not well-covered by
the training set, the prediction can be arbitrarily bad. Hence, a guar-
anteed algorithm cannot fully trust such predictions. The quality of an
algorithm is then described by two quantities. The robustness describes
its worst-case performance, which should not be much worse than the
one of an online algorithm. The consistency describes its performance

7D. S. Hochbaum. “A polynomial time repeated cuts algorithm for the time cost tradeoff
problem: The linear and convex crashing cost deadline problem”. In: Computers &
Industrial Engineering 95 (2016), pp. 64–71.

37

when the prediction is accurate, and so depends on the error made
by the prediction. The objective is then to obtain an algorithm which
makes use of good predictions to improve its performance, but still has
a worst-case guarantee in case these predictions were irrelevant. We
currently explore such algorithms in the context of invasive computing.

Publications

[Che+19] J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der
Brüggen. “Scheduling Self-Suspending Tasks: New and Old
Results”. In: 31st Euromicro Conference on Real-Time Systems
(ECRTS). 2019.

[Mar+20] A. Marchetti-Spaccamela, N. Megow, J. Schlöter, M. Skutella,
and L. Stougie. “On the Complexity of Conditional DAG Schedul-
ing in Multiprocessor Systems”. In: IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2020.

[Sim+20] B. Simon, J. Falk, N. Megow, and J. Teich. “Energy Minimiza-
tion in DAG Scheduling on MPSoCs at Run-Time: Theory and
Practice”. In: Workshop on Next Generation Real-Time Embedded
Systems. 2020.

38

B1

B1: Adaptive Application-Specific
Invasive Micro-Architectures

Lars Bauer, Jürgen Becker, Jörg Henkel

Marvin Damschen, Tanja Harbaum, Fabian Lesniak

Project B1 investigates mechanisms that provide run-time adaptivity: in
the micro-architecture (µArch) and by using a run-time–reconfigurable
fabric. In the first two funding phases, the concepts of state-of-the-art
reconfigurable processors have been advanced towards invasion, and
their benefits have been exploited in the invasive computing project.
In the current phase, the focus of Project B1 shifts towards run-time
requirement enforcement and different multi-objective optimisations.
Run-time requirement enforcement includes analysing and enforcing
WCETs and security requirements, with respect to running real-time and
best-effort applications on the i-Core at the same time. Furthermore,
Project B1 is working on improving the performance and flexibility of
the µArch by optimising the intra-tile memory hierarchy and introducing
approximate accelerators, which allows to adjust the desired calculation
accuracy during run time to fulfil different run-time requirements.

Information Leakage Protection

In Phase II, Project B1 introduced a Dynamic Intra-tile Cache Archi-
tecture (DICAR). It provides reallocatable cache tiles which can be
remapped on demand, according to the individual cache requirements
of the applications on each processor. Originally, the cache architecture
was designed with functional goals in mind, while not considering secu-
rity concepts in the first place. Therefore, we have investigated possible
information leakage between individual cache tiles. Information leakage
can happen on both the hardware and software level. Since the DICAR
is purely implemented in hardware, we focus on methods to detect and
prohibit information leakage on the hardware level.

The DICAR offers isolation between cache tiles of individual proces-
sors, thus guaranteeing that no information stored to the cache will be
visible on another processor without sharing it explicitly or through the

39

B1

main memory. However, vulnerability to information leakage can not
be ruled out at design time with a one-hundred per cent guarantee. Pos-
sible weaknesses include untested or unexpected hardware behaviour,
which may result from incorrect implementation or even degradation
of the integrated circuit. To detect leakage, we propose measuring the
bitrate of data written or read by each CPU to each of its cache tiles.
The observed bitrate at each cache tile is being compared to a previously
determined reference.

Figure 4.10: Cache bitrate reference compared to the leakage case.

Figure 4.10 shows a comparison between the reference bitrate and
the deviating measurement in case of information leakage. In this
case, information is leaked by a secondary processor which has unex-
pected read access to cached values of the primary CPU. However, this
mechanism is only feasible for data flow centric, repetitive tasks due
to the dependency on a reference bitrate measurement. Tasks with
non-uniform memory access patterns can deviate from the reference
even without leakage.

To further improve the applicability of the information leakage protec-
tion, Project B1 will work on improving the correlation algorithms and
investigate on how to detect leakage for less deterministic applications.

WCET Enforcement for Opportunistic Run-Time Reconfiguration

In Phase II, we have developed methods and tools that allow us to de-
termine a safe and tight upper bound for the worst-case execution time
(WCET) of the i-Core, even when using Special Instructions (SIs) and

40

B1

reconfiguring them during run time. In the last year, we presented an
offline method that decides which SIs shall be implemented in hardware
and which shall be emulated in software in order to minimise the guaran-
teeable WCET. However, this so-called WCET configuration (WCET-Cfg)
has a noticeably reduced average-case execution time (ACET) compared
to a configuration that optimises for the average case (ACET-Cfg, which
–on the other side– has a significantly higher WCET). And in this year,
we succeeded to combine the best of both, i. e. we provide the improved
performance of the ACET-Cfg, while still being able to guarantee the
minimised WCET of the WCET-Cfg.

The main idea is to utilise the slack, i. e. whenever an application
executes, then it will often execute faster than the guaranteed WCET.
The reason is that the guaranteed WCET is normally an upper bound
of the generally unknown actual WCET. We decompose the guaranteed
WCET of a job (e. g. encoding a video frame) into the WCET for one
iteration of its outer-most loop, e. g. encoding a single Macro-Block
(MB) of the frame. After each iteration of the kernel (i. e. the outer-most
loop), we determine how much slack we accumulated so far by using a
performance counter. We start executing with the WCET-Cfg, but after
some time we have accumulated enough slack to reconfigure to the
ACET-Cfg. During reconfiguration, the accumulated slack will reduce
drastically, but afterwards the ACET-Cfg will most likely increase the
slack faster than the WCET-Cfg did. However, it can happen, that the
ACET-Cfg executes slower than the WCET-Cfg, as it had a larger WCET.
Eventually, it could happen that we violate the WCET that we initially
guaranteed for encoding the video frame. To ensure that this never
happens, we enforce the WCET, by reconfiguring back to the WCET-
Cfg early enough to guarantee that the WCET can never be violated.
Therefore, we need to determine the amount of slack that we need to
accumulate before safely switching to the ACET-Cfg.

First, it takes at most WCETACET-Cfg
reconf cycles to configure the ACET-Cfg.

Then, a kernel iteration (encoding one MB) lasts at most WCETACET-Cfg
iter

cycles, which means that the accumulated slack can reduce by at most
(WCETACET-Cfg

iter −WCETWCET-Cfg
iter) cycles per iteration. Finally, switching

back to the WCET-Cfg takes at most WCETWCET-Cfg
reconf cycles. In summary,

the minimum accumulated slack to be able to switch to the ACET-Cfg
and remain within the WCET guarantee even in the worst case is:

WCETACET-Cfg
reconf +

(
WCETACET-Cfg

iter −WCETWCET-Cfg
iter

)
+ WCETWCET-Cfg

reconf (4.1)

41

B1

To safely switch back from the ACET- to the WCET-Cfg, the reconfigura-
tion needs to be triggered when the slack is less than:(

WCETACET-Cfg
iter −WCETWCET-Cfg

iter

)
+ WCETWCET-Cfg

reconf (4.2)

For any value larger than that, there is enough accumulated slack
available to safely execute one more iteration of the kernel (even in the
worst case) and switch back to WCET-Cfg afterwards. Practically, it is
unlikely that we will have to switch back (and we never observed that
case in our experiments). But it is important to note, that the system
is prepared to do so if needed and that it will do so timely enough to
enforce the initially guaranteed WCET to encode one frame. Normally,
the ACET-Cfg executes faster and the accumulated slack is then available
to execute other i-lets or to use power-saving modes etc.

To evaluate our approach, we benchmarked the main kernel of an
H.264 video encoder (the EncodeMacroBlock kernel). It executes SIs to
encode MBs with inter-frame prediction (I-MBs) or intra-frame predic-
tion (P-MBs). The SIs used to accelerate I-MBs and P-MBs differ partially
and thus the WCET- and ACET-Cfg differ as well. The ACET-Cfg focuses
more on those SIs for I-MBs, as they dominate the performance for most
videos (based on profiling), whereas the WCET-Cfg must not use any
profiling information but has to consider the worst case.

WCET Bound of WCET-Cfg WCET-Cfg ACET Optim.

O
b

se
rv

ed
 K

er
n

el
 E

xe
cu

ti
o

n
T

im
e

[c
yc

le
s

· 1
0

6
]

Different appl. Profiles [% of intra-coded macro blocks (I-MBs)]

On avg. 10.2%

improvement

for typical

scenarios at

negligible

overhead

Figure 4.11: Optimised execution time of EncodeMacroBlock for different execution profiles.

Figure 4.11 shows execution time results of the EncodeMacroBlock
kernel when our approach is applied for different I-MB/P-MB ratios.
A kernel iteration that encodes a P-MB takes up to 3744 cycles longer
when using the ACET-Cfg compared to the WCET-Cfg, as the ACET-Cfg is
optimised for I-MBs (WCETACET-Cfg

iter = 16374 vs. WCETWCET-Cfg
iter = 12630).

The reconfiguration bandwidth was 800 MB/s (as supported by Xilinx

42

B1

UltraScale+ FPGAs) and switching between WCET- and ACET-Cfg takes
45658 cycles. Our approach is beneficial for frames that contain at least
50% I-MBs (i. e. at least moderate motion in the video). The maximum
execution time reduction is 23.0%. For frames that contain less than
50% I-MBs, the execution time can be slowed down (as expected) by
up to 11%. The reason is that such scenarios were rare and thus the
ACET-Cfg did not optimise for them. But even if they happened, the
statically guaranteed WCET bounds were never violated and actually
it was never required to reconfiguring back to the WCET-Cfg. When
considering the typical execution profiles with at least 40% I-MBs, then
the average execution time reduction is 10.2% compared to continuously
executing the WCET-Cfg. Note that these execution time reductions
were achieved on top of an already highly optimised system. Just using
the i-Core accelerators already reduces the guaranteeable WCET by
more than 10× compared to executing software only. On top of that,
our WCET-optimised configuration reduces the WCET by more than
29%. And on top of that, our opportunistic run-time reconfiguration
reduces the average-case execution time by 10.2% while still ensuring
the guaranteed optimised WCET (by enforcement) and by negligible
overheads (adding slack monitoring using a single performance counter).
More details about this work are available in [DBH19a].

Preemption of the Partial Reconfiguration Process to Enable Real-Time
Computing with FPGAs

In a collaboration with the University of Pisa, we developed a high-
performance reconfiguration controller [Ros+18] for the i-Core. It
allows to preempt and resume a reconfiguration, which ensures that
reconfiguration requests from a high-priority task can no longer be
delayed be reconfigurations from low-priority tasks, while at the same
time ensuring progress for the low-priority reconfigurations (instead of
aborting and restarting them).

Near Memory i-Core Operation

As part of the Intra-Tile Memory Hierarchy Reorganisation, we are
trying to improve the accessibility of the i-Core Tile-Local Memory
(TLM). Previously, Project B1 enabled all generic processors in a tile
to be able to use the i-Core SIs remotely. To go one step further, we
are working on making the i-Core available as a generic near-memory
accelerator for its TLM. This allows processors to write data to the i-Core

43

B1

TLM in a fire-and-forget fashion, which is then picked up by an i-Core
accelerator for further processing.

Compared to Remote-SIs, operations on data are not explicitly exe-
cuted with an instruction, but rather run implicitly by memory access.
Thereby, the i-Core can run asynchronously with respect to the issuing
generic processor, allowing both to run in parallel. Additionally, the
i-Core has advantages of near-memory computing: Having a dedicated
connection to the TLM, the i-Core features high memory bandwidth.
While not using the main AHB bus, i-Core operations are not slowing
down the generic cores in the tile.

Work on this topic is still ongoing. Once the overall design and
concept is finished, this feature will be implemented and evaluated on
the proFPGA prototyping system.

Publications

[Bau+19] L. Bauer et al. “Analyses and Architectures for Mixed-Critical
Systems: Industry Trends and Research Perspective”. In: Inter-
national Conference on Embedded Software (EMSOFT). Invited
Special Session Extended Abstract. New York City, NY, USA, Oct.
2019, 13:1–13:2.

[Dam19] M. Damschen. “Worst-Case Execution Time Guarantees for Run-
time-Reconfigurable Architectures”. Dissertation. Chair of Em-
bedded Systems (CES), Department of Informatics, Karlsruhe
Institute of Technology, Germany, 2019.

[DBH19a] M. Damschen, L. Bauer, and J. Henkel. “WCET Guarantees for
Opportunistic Runtime Reconfiguration”. In: IEEE/ACM 38th In-
ternational Conference on Computer-Aided Design (ICCAD). West-
minster, CO, USA, Nov. 2019.

[DBH19b] M. Damschen, L. Bauer, and J. Henkel. “Worst-Case Execution
Time Guarantees for Runtime-Reconfigurable Architectures”.
Ph.D. Forum at IEEE/ACM 22nd Design, Automation and Test in
Europe Conference (DATE). Florence, Italy, Mar. 2019.

[Dam+19] M. Damschen, M. Rapp, L. Bauer, and J. Henkel. “i-Core: A
runtime-reconfigurable processor platform for cyber-physical
systems”. In: Embedded, Cyber-Physical, and IoT Systems. Ed. by
S. S. Bhattacharyya, M. Potkonjak, and S. Velipasalar. Springer
International Publishing, 2019.

44

[Har19] T. Harbaum. “Dynamisch adaptive Mikroarchitekturen mit opti-
mierten Speicherstrukturen und variablen Befehlssätzen”. Disser-
tation. Institut für Technik der Informationsverarbeitung (ITIV),
Fakultät für Elektrotechnik und Informationstechnik, Karlsruher
Institut für Technologie (KIT), June 25, 2019.

[Ros+18] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel.
“Preemption of the Partial Reconfiguration Process to Enable
Real-Time Computing with FPGAs”. In: ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 11.2 (Nov. 2018),
10:1–10:24. DOI: 10.1145/3182183.

45

https://doi.org/10.1145/3182183

B2

B2: Invasive Tightly-Coupled Processor Arrays

Jürgen Teich

Andreas Becher, Marcel Brand, Frank Hannig, Dominik Walter

Project B2 investigates invasive computing on Tightly-Coupled Processor
Arrays (TCPAs) (see Fig. 4.12). These have been shown to provide
a highly energy-efficient and, at the same time, timing-predictable
acceleration for many computationally intensive loop applications from
diverse areas such as scientific computing, digital signal and image
processing. In terms of latency and throughput, TCPAs are timing-
predictable in the number of cycles when executing a loop application
in parallel.

Figure 4.12: TCPA with 5x5 Processing Elements (PE), and four Global Controllers (GC), Invasion
Managers (IM), I/O Buffers, and Address Generators (AG).

In the current funding phase, the problem of run-time enforcement
of non-functional execution qualities also for parallel loop programs
executed on TCPAs is in the focus of this project. In order to enforce a
given set of non-functional requirements of a loop nest when executed
in parallel on an invasive TCPA, an overprovisioning of resources (the

46

B2

invaded region of TCPA processors) shall be greatly avoided. To do so,
completely novel techniques need to be developed summarised as (a)
self-invasion of claim sizes of latency-bound programs, (b) self-power
adjustment, and (c) self-selection of redundancy scheme. Further inves-
tigations include (d) the exploitation of approximate loop computing on
TCPAs in order to stay within execution time bounds or to save energy,
(e) invasive floating-point TCPAs with invadable precision that will open
a new dimension of applications, and (f) tile-level timing analysis and
scheduling of communications (data transfers) between tiles. In the
following, we report on investigations performed and results achieved
in 2019 with a focus on topics (e) and (f).

FloaTCPAs - Floating-Point Functional Units

Initially, TCPAs only supported single-cycle fixed point instructions8. In
order to open their applicability to a myriad of scientific computing
problems where typically floating-point calculations are the default, we
extended the most recent PE architecture based on orthogonal instruc-
tion processing9 by floating-point function units (FPUs). The support
of floating-point operations other than just additions/subtractions and
multiplications such as divisions and square root instructions, to name
a few, does not allow to support a single-cycle instruction execution but
required the design of a completely pipelined PE architecture. In this
realm, we have investigated area, execution latency, and power trade-
offs. Moreover, as often, accuracy may be traded off for any of the other
objectives, we investigated whether emerging concepts of approximate
computing may also be beneficially applicable in this context to realise
speed/energy trade-offs.

Approximate Array Computing

With the goal to save time and energy when executing loop programs
in parallel on 100 or more PEs of a TCPA, we are currently exploiting

8V. Lari, S. Muddasani, S. Boppu, F. Hannig, and J. Teich. “Design of Low Power
On-Chip Processor Arrays”. In: Proceedings of the 23rd IEEE International Con-
ference on Application-specific Systems, Architectures, and Processors (ASAP) (Delft,
The Netherlands). IEEE Computer Society, July 9–11, 2012, pp. 165–168. DOI:
10.1109/ASAP.2012.10.

9M. Brand, F. Hannig, A. Tanase, and J. Teich. “Orthogonal Instruction Processing:
An Alternative to Lightweight VLIW Processors”. In: Proceedings of the IEEE 11th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)
(Seoul, Republic of Korea). IEEE Computer Society, Sept. 18–20, 2017, pp. 5–12. DOI:
10.1109/MCSoC.2017.17.

47

https://doi.org/10.1109/ASAP.2012.10
https://doi.org/10.1109/MCSoC.2017.17

B2

concepts of the research area of approximate computing. A major driver
for not wanting to compute a loop nest accurately is in line with the ma-
jor goal of our CRC/Transregio indeed to enforce performance and/or
energy requirements also on massively parallel processor arrays such as
TCPAs for a wide range of loop bounds. In [Bra+19a], we proposed the
revolutionary idea and concept of anytime instructions. An anytime in-
struction denotes a floating-point instruction that encodes the number a
of mantissa bits of a floating-point operation to be accurately computed
during instruction execution in the instruction itself. As the computation
of the mantissa is typically on the critical path of any floating-point oper-
ation, anytime instructions do allow for a tight control of the execution
latency of an instruction with the penalty of errors in the least significant
mantissa bits. In 2019, we developed functional units with this type
of programmable accuracy, so-called anytime functional units (AFU).
In the following, we illustrate the concept of anytime instructions for
floating-point divisions, see [Bra+19a] for details.

Anytime Division Based on the idea above of anytime instructions, we
present the instruction format, architecture, and implementation of a
concrete functional unit for anytime division instructions called Anytime
Division Functional Unit (ADFU) for normalised floating-point numbers,
see [Bra+19a].
An anytime division instruction on three registers is specified as follows:

DIV_a target dividend divisor

Here, a denotes the number of most-significant mantissa bits of the divi-
sion dividend/divisor that shall be accurately computed and stored
in the register target. Note that the exponent and sign of the quotient
shall always be computed accurately.

First, we analysed the error of an anytime division based on the num-
ber a of calculated most-significant bits of the mantissa of the quotient.
Let a normalised floating-point number F = seE−1 . . . e0mM−1 . . .m0

consist of 1 sign bit s, E exponent bits and M mantissa bits. The re-
sult of an anytime division div(F1, F2, a) of a floating-point number F1

by a floating-point number F2, when computing a, 1 ≤ a ≤ M + 1,
most-significant mantissa bits accurately, is obtained by:

div(F1, F2, a) = −1s1−s2 · 2ΣE−1
k=0 (2k·(e1,k−e2,k)) · Σa−1

k=0

(
2−k · qM ′−k

)
,

where

qM+1 . . . q0 =
1m1,M . . .m1,0

1m2,M . . .m2,0
.

48

B2

0 10 20 30 40 50

100

10−4

10−8

10−12

Accuracy a

e m
ax

(a
)

[%
]

single precision
double precision

Figure 4.13: Maximum relative error emax (a) for an anytime division with accuracy a on the x-axis.

Figure 4.13 shows the maximum relative error emax produced by an
anytime division in dependence of a. It can be seen that for single-
precision, it suffices to calculate 12 bits to produce a result with a
relative error of below 0.1%, which would effectively reduce the latency
of the division by half. Also interestingly, if we want to reduce the latency
of a double-precision floating-point division by half, the relative error
would never exceed a maximum relative error of 0.00001%. The design
of a functional unit that implements the anytime division is depicted
in Fig. 4.14. The instruction decoder splits an incoming instruction
word into the address fields of the dividend dividend, divisor divisor,
and result target. Depending on the decoded accuracy field in the
instruction indicating the desired accuracy a, the controller terminates
the division prematurely, loads the calculated exponent and sign, and
sets the appropriate target address and the write enable bit. Initially,
both operands are read from the register file and split into the sign,
exponent, and mantissa. The calculations for the result’s sign bit and
exponent are computed in one cycle and stored until the mantissa
division, being on the critical path, finishes. The complete division of
the mantissa is performed using p pipeline stages. After the controller
infers the end of the mantissa calculation the floating-point number is
normalised before being written back to the target register.

Anytime Divider FU

Instruction Decoder

Sign calculation Exponent calculation

Mantissa
DIVISION

FP Split FP Splitinstruction

Normalization

Controller

dividend address

dividend
divisor

S E M S E M

Shift Reg.

target
address

p pipeline
stages

1 pipeline
stage

operation

clk

Shift Reg. Shift Reg.

data width data width

E EM M

E

M

data width

data width

E

addr. width

addr. widthaddr. width

addr. width

opcode width

opcode
width

Register
File

clk

divisor address

target address quotient
valid

Figure 4.14: Anytime Division Functional Unit.

49

B2

The latency LADFU of an anytime instruction, given the number of
bits to be calculated a, the length of the mantissa M , the number of
pipeline stages p, the latency of the register file ∆regf, and the latency of
the normalisation step (= 1) in clock cycles is:

LADFU (a) =

 a⌈
M ′+1
p

⌉
+ ∆regf + 1.

As a case study, we implemented an iterative square root computation,
the Babylonian method, using the ADFU:

√
S = lim

n→∞
xn; x0 ≈

√
S ≈ S

2
; xn+1 =

1

2
·
(
xn +

S

xn

)
.

The results of the case study are shown in Fig. 4.15. As can be seen,
the mean error amounts to less than 0.13% for DIV_10 instructions after
only 10 iterations. By mixing the accuracy of the different iterations
(later iterations executed with higher accuracy), the latency of the
overall algorithm can even be reduced by up to 54.77% without reducing
the accuracy of the end result.

Currently, we are also investigating the analysis and propagation
of errors in loop programs when executed using anytime instructions,
see [Kön19; Kes+20].

10

20

20
40

60
80

100

0

50

100

ac
cu

rac
y a

iterations

m
ea

n
er

ro
r

[%
]

a)

10
20

50

100
0

5,000

accuracy a ite
rat

ion
s

la
te

nc
y

b)

Figure 4.15: a) Mean error of an iterative square-root program using an anytime division compared
to a reference square-root program specified in C++ with float data types – compiled
to an X86 target by the GNU C++ compiler in version 8.1 – where accuracy a
describes the number of calculated most-significant mantissa bits and iterations how
many iterations in the square-root calculation are performed. b) The latency of an
iterative square-root calculation using an approximate division where accuracy a
describes the number of calculated mantissa bits and iterations how many iterations
in the square-root calculation are performed.

50

B2

Tile-level TCPA Timing Analysis and Guarantees

TCPAs have been shown to provide timing predictability up to a sin-
gle clock cycle due to scheduling each iteration as well as each sin-
gle computation within a loop nest at a statically determined clock
cycle [Bra+19b]. This full predictability of performance, however, as-
sumes that the synchronously clocked processor array is not stalled
due to the lack of input data or lack of memory to store outbound
results. For processing sufficiently large loop nests, the surrounding
buffers of a TCPA as shown in Fig. 4.12 must be fed with new input data,
respectively results drained early enough, because just a single empty
input buffer or a single full output buffer would lead to an immediate
freeze of the clock signal and thus stop in processing the loop nest. As
a result, techniques are needed to feed and drain the I/O buffers of a
TCPA readily to maintain the predictability guarantee. The resulting
problems of scheduling communication are illustrated in the following.

A typical TCPA is surrounded by multiple I/O buffers, from which the
connected processing elements can read and/or write to, see Fig. 4.12.
These buffers serve as an intermediate memory between the processing
array and the data source/sink, which will be in the context of an
invasive multi-tile architecture as shown in Fig. 4.16. Also, it is necessary
to fill those buffers with input data from the originating tile and later
sent the written output data back to a receiver tile (see Fig. 4.16). As
typically, the amount of I/O data may not fit entirely into the buffers, a
continuous buffer refilling and draining during run time is inevitable.

As mentioned before, if any transfer would be too slow and the
corresponding buffer has not been filled/drained in time, a TCPA would

Figure 4.16: Typical tile-level communication of a TCPA. An I/O tile serves as the data source,
while a memory tile is used as the data sink.

51

need to stall its execution until the required data has arrived. Since
such a behaviour would break the full predictability as given by a loop
schedule, we have to determine and schedule remote DMA (RDMA-
like) data transfers between the tiles asynchronously to the next loop
execution on the TCPA. Currently, we are developing constraint sets and
sound I/O buffer request sequences, where each data transfer can be
seen as an instance of a task. Using this model, a proper I/O transfer
scheduling problem must be solved such that no deadline will be missed.
The final goal is to provide such a tile-to-tile timing predictability also
over multiple tiles as shown in Fig. 4.16.

Finally, we are studying the capability of TCPAs to efficiently imple-
ment deep learning algorithms such as convolutional neural networks
by layer-parallel processing [Hei+19a].

Publications

[Bra+19a] M. Brand, M. Witterauf, F. Hannig, and J. Teich. “Anytime
Instructions for Programmable Accuracy Floating-Point Arith-
metic”. In: Proceedings of the ACM International Conference on
Computing Frontiers (CF) (Alghero, Sardinia, Italy). ACM, Apr. 30–
May 2, 2019, pp. 215–219. DOI: 10.1145/3310273.3322833.

[Bra+19b] M. Brand, M. Witterauf, É. Sousa, A. Tanase, F. Hannig, and
J. Teich. “*-Predictable MPSoC Execution of Real-Time Control
Applications Using Invasive Computing”. In: Concurrency and
Computation: Practice and Experience (Feb. 2019). DOI: 10.1002/
cpe.5149.

[Hei+19a] C. Heidorn, M. Witterauf, F. Hannig, and J. Teich. “Efficient
Mapping of CNNs onto Tightly Coupled Processor Arrays”. In:
Journal of Computers (JCP) 14.8 (Aug. 2019), pp. 541–556. DOI:
10.17706/jcp.14.8.541-556.

[Kes+20] O. Keszocze, M. König, M. Brand, and J. Teich. “Error Analysis
for Loop Programs Using Anytime Instructions in Approximate
Computing”. In: Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen. Stuttgart,
Germany, 2020.

[Kho19] F. Khosravi. “System-Level Reliability Analysis and Optimization
in the Presence of Uncertainty”. Dissertation. Hardware/Soft-
ware Co-Design, Department of Computer Science, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, Aug. 5, 2019.

[Kön19] M. König. Approximative Schleifen mit Anytime Instruktionen
in der Simulationsumgebung Daisy. Master Thesis. Friedrich-
Alexander University Erlangen-Nürnberg (FAU). Sept. 1, 2019.

52

https://doi.org/10.1145/3310273.3322833
https://doi.org/10.1002/cpe.5149
https://doi.org/10.1002/cpe.5149
https://doi.org/10.17706/jcp.14.8.541-556

B3

B3: Power-Efficient Invasive Loosely-Coupled
MPSoCs

Jörg Henkel, Andreas Herkersdorf

Hossein Bardareh, Nguyen Anh Vu Doan, Heba Khdr, Martin Rapp,
Mark Sagi, Thomas Wild

The overall goal of Project B3 is to optimise power/energy efficiency
under power density and temperature constraints. Within the paradigm
of invasive computing, the goal is to ensure that invaded claims remain
thermally reliable while maintaining the ability that teams can invade
and execute i-lets to infect new resources. The pursued objectives are:

Objective 1: Improve power/energy efficiency under power density
and temperature constraints.

Objective 2: Develop an adaptive and self-aware system for run-time
power, energy, and thermal management.

Objective 3: Refine the run-time model and online estimation of power
density and temperature for invasive computing.

The related scientific challenges include the maximisation of the per-
formance under given temperature constraints or under a given energy
budget, and minimising the energy consumption or peak power under
a certain performance requirement. For this, accurate run-time power
information is needed. The derivation of such information from re-
lated run-time activity signals is an added scientific challenge which
we solve by adapting machine learning algorithms to this problem. In
addition, these goals require deep insight into the system, which of-
ten is tackled by design-time models. Design-time models, however,
perform poorly due to run-time variations and unpredicted conditions
coming from the hardware, the environment, and the workloads/appli-
cations. Therefore, by applying novel thermal management techniques
based on self-awareness and machine learning, we are trying to achieve
the objectives without relying on the design-time models as much as
possible.

53

B3

Smart Thermal Management

Heterogeneous multicores are favourable as they have different kinds
of processing elements which can provide large performance gains.
However, due to the failure of Dennard scaling, power densities are
increasing, thereby on-chip temperatures are elevating. To keep the
temperature within safe limits, Dynamic Thermal Management (DTM) is
implemented on the chip to downscale the voltage and frequency levels
of all cores, when the temperature of any core exceeds a predefined
thermal threshold. This, however, leads to significant performance
losses. In [HKR19], we proposed smart thermal management techniques
for heterogeneous multicores that improve thermal efficiency through
exploiting heterogeneity parameters both at the chip level and the
application level. Here, thermal efficiency is the ability to maximise the
performance while keeping the temperature within safe limits.

In [Rap+19b], we proposed a run-time algorithm called PCGov that
combines task-agnostic task mapping and task-aware dynamic power
budgeting for manycores with shared distributed Last-Level Cache (LLC).
PCGov exploits a trade-off between power budget and LLC latency in
task mapping while dynamic power budgeting reallocates the power
budgets according to the task’s execution phases which further increases
the performance. Also, it has been shown that our power budget re-
allocation algorithm is very effective in avoiding thermal violations.
Moreover, the proposed PCGov algorithm has a low overhead for both
task mapping and power budget reallocation. In [Rap+19a], we fur-
ther demonstrated that maximum performance in manycores with dis-
tributed LLC can not be achieved with static mapping, but task migration
is required instead. We proposed a run-time algorithm called PCMig
that maximises the performance by doing predictions on task migrations
based on both the tasks phases and manycore state. PCMig uses a
performance prediction model to rate potential migration candidates
before actual task migration by considering the relative impact of power
budget and LLC latency.

Circuit ageing has become a major reliability concern in current and
upcoming technology nodes. In [AKH19], we focused on the ageing ef-
fect from physics to CAD tools. In order to avoid ageing-induced timing
errors, we proposed in [KAH19] a paradigm shift in designing guard-
bands which selects the guardband types on-the-fly with respect to the
workload-induced temperatures aiming at optimising for performance
under temperature and reliability constraints. Negative Capacitance
Field-Effect Transistor (NCFET) has recently attracted significant at-
tention since it exhibits a considerable improvement in the circuit’s

54

B3

performance and energy saving. In [Rap+19c], we presented a novel
methodology to model NCFET at the system level to investigate its
impact on the performance, power, energy, and cooling trade-offs of
a manycore. Since in NCFET, voltage reduction increases the leakage
power unlike in conventional CMOS, in [Sal+19], we proposed the
first NCFET-aware DVS technique that selects the optimal voltage to
minimise the power following the dynamics of workloads.

Thermal and Timing Enforcement

The common practice to avoid thermal emergencies on the chip is to
employ a dynamic thermal management (DTM) unit on the hardware.
DTM will take countermeasures such as dynamic voltage and frequency
scaling (DVFS) and power gating to cool down the chip, if the peak
temperature of the chip exceeds a predefined thermal threshold. How-
ever, such countermeasures might lead to the violation of real-time
constraints of the applications. Therefore, in [Pou+19a], we proposed
a thermally composable Hybrid Application Mapping (HAM) method-
ology that enforces thermal safety proactively at the launch time of
applications. This hybrid methodology employs both a thermal-safety
analysis at design time and a set of lightweight thermal-safety admission
checks to be considered in the mapping-selection process at run time.
As a result, the proposed methodology enables providing thermally safe
real-time guarantees by preventing DTM interferences.

Thermal-aware Simulation

In order to do manycore thermal simulations in open systems, in [PH19],
we presented a toolchain called HotSniper that tightly couples together
Sniper manycore simulator, McPat power modelling framework, and
Hotspot temperature modelling tool. HotSniper allows for interval ther-
mal simulation of manycores, which is several times faster than the
cycle-accurate manycore thermal simulations and at the same time is
more accurate than trace-based manycore thermal simulations. The
HotSniper toolchain provides efficient means to perform thermal-aware
hardware-software codesign of manycore processors in domain of em-
bedded systems.

Accurate Power Estimation

Power and thermal management rely on accurate run-time dynamic
power information to take informed and effective management deci-

55

B3

Figure 4.17: Estimated power using ICA compared to estimated power of a state-of-the-art ap-
proach and high accuracy power simulations for 2 benchmarks

sions. Measuring power consumption of each core and the uncore is
cost prohibitive and often not possible. Therefore, run-time power in-
formation is model-based. These techniques usually approximate the
switching activity of the logic gates constituting the cores and uncore
components through performance counters. However, these perfor-
mance counters show strong collinearity between each other. The
state-of-the-art approach of minimising collinearity relies heavily on so-
called microbenchmarks which have to be tailored to specific processor
subcomponents to generate subcomponent specific power consumption
models. In [Sag+19] we propose a methodology using a representation
learning algorithm, i. e. Independent Component Analysis (ICA), to
find performance counter representation which automatically minimises
collinearity. With this, no microarchitectural knowledge is needed to
generate the microbenchmarks to generate power models and generic
workloads depicting complex processor activity can be used to generate
accurate power models. Resulting power estimations and the actual
power are shown in Fig. 4.17.

Publications

[AKH19] H. Amrouch, H. Khdr, and J. Henkel. “Aging Effects: From
Physics to CAD”. In: Harnessing Performance Variability in Embed-

56

ded and High-performance Many/Multi-core Platforms. Springer,
2019, pp. 43–69.

[HKR19] J. Henkel, H. Khdr, and M. Rapp. “Smart Thermal Management
for Heterogeneous Multicores”. In: Design, Automation & Test in
Europe (DATE). IEEE. 2019, pp. 132–137.

[KAH19] H. Khdr, H. Amrouch, and J. Henkel. “Dynamic Guardband
Selection: Thermal-Aware Optimization for Unreliable Multi-
Core Systems”. In: Transactions on Computers (TC) (2019).

[PH19] A. Pathania and J. Henkel. “HotSniper: Sniper-Based Toolchain
for Many-Core Thermal Simulations in Open Systems”. In: Em-
bedded Systems Letters (ESL) (2019).

[Pou+19a] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich,
and J. Henkel. “Thermally Composable Hybrid Application Map-
ping for Real-Time Applications in Heterogeneous Many-Core
Systems”. In: 40th IEEE Real-Time Systems Symposium (RTSS).
2019.

[Rap+19a] M. Rapp, A. Pathania, T. Mitra, and J. Henkel. “Prediction-Based
Task Migration on S-NUCA Many-Cores”. In: Design, Automation
& Test in Europe (DATE). IEEE. 2019, pp. 1579–1582.

[Rap+19b] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel.
“Power-and Cache-Aware Task Mapping with Dynamic Power
Budgeting for Many-Cores”. In: IEEE Transactions on Computers
(2019).

[Rap+19c] M. Rapp, S. Salamin, H. Amrouch, G. Pahwa, Y. Chauhan, and
J. Henkel. “Performance, Power and Cooling Trade-Offs with
NCFET-based Many-Cores”. In: Design Automation Conference
(DAC). ACM. 2019, p. 41.

[Sag+19] M. Sagi, N. A. V. Doan, T. Wild, and A. Herkersdorf. “Multi-
core Power Estimation using Independent Component Analysis
based Modeling”. In: 2019 IEEE 13th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
Oct. 2019.

[Sal+19] S. Salamin, M. Rapp, H. Amrouch, G. Pahwa, Y. Chauhan, and
J. Henkel. “NCFET-Aware Voltage Scaling”. In: International
Symposium on Low Power Electronics and Design (ISLPED). IEEE.
2019.

57

B4

B4: Generation of Distributed Monitors and Run-
Time Verification of Invasive Applications

Ulf Schlichtmann, Daniel Müller-Gritschneder

Marcel Mettler, Bing Li, Li Zhang

Introduction

The goal of Project B4 in the third funding phase is to provide run-time
monitoring support by evolving the monitors developed in the first two
phases into a distributed monitoring system capable of supporting run-
time verification of user-defined application properties such as latency,
throughput, power, reliability and security. The run-time verification
chain consists of probes, property checkers and event handlers. Probes
are blocks that trace system events or states. Property checkers analyse
the probed trace to generate the verdict whether a certain property is
violated or validated. The verdict is forwarded to the event handler
that can trigger a reaction or generate a log message. In this context,
Project B4 addresses the major research challenge to enable run-time
verification for invasive multi-tile architectures. This is achieved by
working on the following research questions: How can we generate
a programmable hardware monitoring system with probes and prop-
erty checkers and insert software probes and property checkers into
the application code? How do we establish communication between
all distributed system components? What are the trade-offs between
implementing the property checking in hardware blocks, SW annotated
to the application or additional monitoring tasks? Also, at design time,
the mapping of the application on the platform is unknown. On top,
even the exact resource types are unknown as the run-time environment
may select from a set of candidate operating points in the invade phase.
So another question is how to dynamically configure the system when
the mapping information becomes available? Another important aspect
is the usability of such a system, which leads to the following questions:
Which automation support is required for the configuration of the dis-
tributed monitoring system with user-defined properties? Here we plan
to investigate two domain-specific languages (DSLs), a so-called Instru-

58

B4

mentation Language (IL) and a Property Language (PL), as interfaces
for the invasive compiler toolchain to define probing data and property
checks. We intend to develop an automation tool to generate the run-
time verification codes to configure the HW probes and monitors as well
as to generate the SW probes and monitors from the IL/PL specification.
This leads to a highly automated flow to produce and forward verdicts
to event handlers, such as Run-time Requirement Enforcers (RRE) from
Project A1 and Project A4.

Specifically, we investigate (a) non-intrusive instrumentation ap-
proaches to extract events and system states, (b) distributed monitoring
architectures for the verification of functional and non-functional prop-
erties, and (c) languages to express run-time verification properties. The
target monitoring architecture can be used in a pre-deployment stage
for integration testing of software components and post-deployment as
fault recovery measure to maintain a safe and secure system state.

Currently, Project B4 generalises its monitoring approaches to address
tile-based systems. In the following, the results of our research in 2019
are presented.

Figure 4.18: Hierarchical Monitoring System for embedded MPSoCs.

Run-Time Monitoring

In [MMS20], we propose a decentralised monitoring architecture for
embedded MPSoCs. The hardware-based approach supports the mon-
itoring of inter- and intra-thread requirements for logical and timing
supervision. It is built up hierarchically with local monitors for each
core and one global monitor. By resource sharing of the monitoring

59

B4

hardware, it is able to support the concurrent supervision of multiple
threads or applications and to reduce the hardware overhead. The
monitoring system can be used post-deployment for logical and timing
supervision or pre-deployment for run-time verification.

SRAM Ageing - Analysis and Countermeasures

On-Chip SRAMs are an integral part of safety-critical System-on-Chips.
At the same time however, they are also most susceptible to reliability
threats such as Bias Temperature Instability (BTI), originating from the
continuous trend of technology shrinking. BTI leads to a significant
performance degradation, especially in the Sense Amplifiers (SAs) of
SRAMs, where failures are fatal since the data of a whole column is
destroyed. As BTI strongly depends on the workload of an application,
the ageing rates of SAs in a memory array differ significantly and the
incorporation of workload information into ageing simulations is vital.
Especially in safety-critical systems precise estimation of application
specific reliability requirements to predict the memory lifetime is a key
concern. In [Lis+19] we present a workload-aware ageing analysis
for On-Chip SRAMs that incorporates the workload of real applications
executed on a processor. According to this workload, we predict the
performance degradation of the SAs in the memory. We integrate
this ageing analysis into an ageing-aware SRAM design exploration
framework that generates and characterises memories of different array
granularity to select the most reliable memory architecture for the
intended application. We show that this technique can mitigate SA
degradation significantly depending on the environmental conditions
and the application workload.

As a next step, we address countermeasures to reduce ageing. Usually
guardbands are added to the design to prevent failures of the embedded
system before its end of life.
In [LMS19], we present the Mitigation of AGIng Circuitry (MAGIC), a
low-cost circuitry to effectively mitigate ageing in SAs by wear-levelling.
The circuitry consists of an array of XOR gates and a counter. MAGIC
modifies the mapping of SRAM banks to physical addresses. Updating
the counter value distributes the stress of highly used addresses, e. g.
corresponding to program stack data, onto the complete SRAM array.
We evaluate the wear-out for on-chip SRAM data memory loads of a
typical embedded application. MAGIC mitigates SA degradation up to
around 48% for three years of ageing while introducing minimal area
and performance overhead.

60

B4

Timing Optimisation

We also continued and extended our past work on timing optimisation
of complex integrated circuits.

In [Zha+20], we cover several techniques that can enhance the
resilience of timing of digital circuits. Using post-silicon tuning compo-
nents, the clock arrival times at flip-flops can be modified after manufac-
turing to balance delays between flip-flops. The actual delay properties
of flip-flops will be examined to exploit the natural flexibility of such
components. Wave-pipelining paths spanning several flip-flop stages
can be integrated into a synchronous design to improve the circuit
performance and to reduce area. In addition, with this technique, it
cannot be taken for granted anymore that all the combinational paths
in a circuit work with respect to one clock period. Therefore, a netlist
alone does not represent all the design information. This feature enables
the potential to embed wave-pipelining paths into a circuit to increase
the complexity of reverse engineering. In order to replicate a design,
attackers have to identify the locations of the wave-pipelining paths, in
addition to the netlist extracted from reverse engineering. Therefore,
the security of the circuit against counterfeiting can be improved.

Outreach and Further Achievements

In May, we welcomed Andrew B. Kahng (University of California, San
Diego) in the InvasIC seminar for a very interesting talk on “On the
road to Self-Driving IC Design Tools and Flows” which generated a lot
of interest within TUM and from Munich industry.

Ulf Schlichtmann gave two invited talks on topics related to TUM
EDA’s invasive computing research. In June 2019, he visited Xidian
University (Xi’an, China) together with Dr. Li Zhang for a presentation
on “Machine Learning Approaches for Efficient Design Space Exploration
of Application-specific NoCs”. In October, he visited the AI College of
National Chiao Tung University in Tainan, Taiwan, for a presentation on
“Novel Ideas in Timing of Digital Circuits”.

Also, in 2019, Daniel Müller-Gritschneder finished his habilitation
procedure successfully [Mue19] and was promoted to “Privatdozent”.

Publications

[LMS19] A. Listl, D. Mueller-Gritschneder, and U. Schlichtmann. “MAGIC:
A Wear-leveling Circuitry to Mitigate Aging Effects in Sense
Amplifiers of SRAMs”. In: 2019 IEEE 17th International New
Circuits and Systems Conference (NEWCAS). July 2019.

61

[Lis+19] A. Listl, D. Mueller-Gritschneder, U. Schlichtmann, and S. Nassif.
“SRAM Design Exploration with Integrated Application-Aware
Aging Analysis”. In: Design, Automation, and Test in Europe
(DATE). Mar. 2019, pp. 1249–1252.

[MMS20] M. Mettler, D. Mueller-Gritschneder, and U. Schlichtmann. “Run-
time Monitoring of Inter- and Intra-Thread Requirements on
Embedded MPSoCs”. In: 2020 33rd International Conference
on VLSI Design and 2020 19th International Conference on
Embedded Systems (VLSID) (Jan. 2020).

[Mue19] D. Mueller-Gritschneder. Advanced Virtual Prototyping and Com-
munication Synthesis for Integrated System Design at Electronic
System Level. 2019.

[Zha+20] G. L. Zhang, M. Brunner, B. Li, G. Sigl, and U. Schlichtmann.
“Timing Resilience for Efficient and Secure Circuits”. In: 25th
Asia and South Pacific Design Automation Conference (ASP-DAC).
Jan. 2020.

62

B5

B5: Invasive NoCs and Memory Hierarchies
for Run-Time Adaptive MPSoCs

Jürgen Becker, Andreas Herkersdorf

Nidhi Anantharajaiah, Leonard Masing, Sven Rheindt, Akshay Srivatsa

In invasive computing architectures, the invasive NoC (iNoC) makes
up the basic communication infrastructure among all tiles, enabling
and supporting invasive concepts from the application level down to
hardware realisation. However, for inter-tile communication, not only
data transport is a key issue, but also aspects of memory accessibility and
the availability of data close to where it is processed play an important
role. In the third funding phase, we look at how the iNoC can be
made more flexible, and can adapt to different applications at run time
to improve performance while still meeting Quality of Service (QoS)
requirements. Further, we examine two complementary approaches
for reducing the synchronisation overheads and improving the data
locality using region-based cache coherence (RBCC) and near memory
acceleration (NMA).

Hybrid Prototyping

When developing novel NoC features, the size of the target architec-
ture plays an important role. Many advanced techniques for shortcuts,
adaptive routing or multicast are specifically designed for improving
traffic flows in large networks. However, existing design and verification
methods struggle in this situation. They are either too slow (hardware
simulations) or have size and cost limitations (hardware emulation). A
hybrid prototype provides a solution to these challenges by combining
a Virtual Platform (VP) with an FPGA-based prototype [MLB19]. The
approach can be applied to many different use-cases, however it is
specifically useful for NoC design since all routers may be mapped onto
the FPGA with full cycle-accurate accuracy while the remaining architec-
ture is modelled in a virtual platform. This includes the tiles, memories
and network interface, leaving more resources for a larger mesh of
routers. The hybrid prototype is realised by an efficient interfacing

63

B5

based on PCIe. It contains a collector unit that gathers respectively dis-
tributes data between the VP side and dummy network adapters on the
FPGA that connect to the local ports of each router. A synchronisation
mechanism is introduced which enables evaluations beyond a purely
functional level. Furthermore, a throughput evaluation highlights the
potential of this approach for scalable design and verification.

Block-Based Multicast Routing

Multicast traffic, i. e. communication between one source and multiple
destinations is extensively used in large-scale multiprocessor systems. It
is a characteristic property of applications using coherency protocols in
distributed shared memory systems, neural network implementations
and fault-tolerant applications using redundant hardware components
to name a few examples.

(a) (b)

Figure 4.19: (a) A 4x4 Mesh with 6 destinations in a block defined by DstS and DstE (b) A 4x4
Mesh with 4 destination nodes (0,2,4,5) in a block defined by DstS, DstE and a BV.

Usage of multiple unicast packets in the above examples degrades
the performance and is an inefficient use of resources. Therefore in
[Ana+19] a block-based multicast technique which is dynamic and
scalable, with lower packet overhead and latency is proposed. The
presented technique uses paths with lower hop count when compared
to multiple unicasts with Dimension Order Routing (DoR). It also has
a decrease in Address Overhead (AO) of 33% for a 4x4 Mesh with 6
destinations and 79% for 128x128 for 16 destinations compared to all
destination encoding commonly used in multicast techniques.

64

B5

In the following, an overview of the block-based concept using an
example is provided. When a source needs to send data to a group
of destinations, a block is identified which contains all the potential
destination nodes as illustrated in Figure 4.19(a). A bit vector (BV) field
shown in Figure 4.19(b) is used to indicate which are the destination
nodes within the block. Since the block can be defined at run time,
dynamic mapping of bit vector index onto the nodes within the block is
implemented. This is explained using an example shown in the figure.
Source node is (0,0), destinations are (1,2),(2,2),(1,3) and (3,3). A
block is defined by DstS (1,2) and DstE (3,3). There are four destinations
within this block identified by the BV. BV indices are mapped to the
nodes within the block as shown.

(a) (b)

Figure 4.20: (a) AO of a multicast when all destination encoding is used and (b) AO of a block-
based multicast with (above graph) and without (below graph) bit vector, respectively.

The block-based technique is beneficial especially for large mesh
networks as the address size gradually increases, which contributes to
greater Address Overhead (AO) in multicast packets. To illustrate the
benefit of the block-based technique, 16 potential destinations grouped
together in a block of 4x4 in a 2D Mesh network are used as an example.
Different network sizes of 4x4, 8x8, 16x16, 32x32, 64x64 and 128x128
are considered. In Figure 4.20(a) AO of multicast packets using all
destination encoding is presented, and results of block-based multicast
is shown in Figure 4.20(b). AO of block-based multicast scales better
and has a 79% decrease in overhead for 128x128 NoC when compared
to all destination encoding.

65

B5

Region-Based Cache Coherence

CPU

CPU

NA TLM

CPU

CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

TLM

CPU

CPU

CPU

CPU

NoC NoC NoC

NoC NoC NoC

NoC NoC NoC

NA NA TLM

NA TLM

NA TLM

CPU

CPU

CPU

CPU

CPU CPU

CPU CPU

TLM
NA

CPU

CPU

NA TLM

CPU

CPU

NoC

CPU

CPU

NA TLM

CPU

CPU

NoC

CPU

CPU

NA TLM

CPU

CPU

NoC

CPU

CPU

NA TLM

CPU

CPU

CPU

CPU

NA TLM

CPU

CPU

Memory
&

I/ONA

CPU CPU

CPU CPU

NoC NoC NoC

NA TLM

CPU

CPU

NA TLM

CPU

CPU

NoC

CPU

CPU

NA TLM

CPU

CPU

CPU

CPU

NA TLM

CPU

CPU

Clustered Coherency Region

Corner Coherency Region

CPU Tile Local
Memory

NA

CPU CPU CPU

L1 L1 L1 L1

L2 DirCRM

.text

.data

.bss
stack

heap

Program/OS code

Initialized Data

Uninitialized Data

Memory Map

Read-Only

Private

Compile Time
Shareable

Runtime
Shareable

Figure 4.21: A 4×4 InvasIC architecture with multiple coherence regions.

Modern MPSoCs have evolved into tile-based systems with physically
distributed memory architectures. To be able to use these systems with
the classical shared memory programming paradigm, cache coherence
is an essential aspect. Global coherence spanning all tiles does not scale
well and is not even necessary for applications with limited degrees of
parallelism. We presented a region-based cache coherence (RBCC)10

concept, which confines coherence support to a selectable cluster of tiles.
A hardware Coherency Region Manager (CRM) module (Fig. 4.21) was
designed to dynamically configure coherency regions, specific to each
application’s requirements, enabling a shared memory programming
environment. This RBCC was extended with RBCC-malloc() [Sri+19]
which tailors coherence to actually shared application working-sets
within the coherency regions at run time. As an example, the feature
extraction task of a video streaming application (developed by Proj-
ect D1) was executed for both shared memory (enabled by RBCC) and
message passing modes, on our FPGA prototype. Experiments revealed
an application acceleration of up to 42% when using shared memory
mode compared to a message passing-based implementation, and a

10A. Srivatsa, S. Rheindt, T. Wild, and A. Herkersdorf. “Region Based Cache Coherence for
Tiled MPSoCs”. In: 2017 30th IEEE International System-on-Chip Conference (SOCC).
Sept. 2017.

66

B5

reduction in directory resources (BRAM) by 57% compared to global
coherence for a region size of 4-tiles.

Previously, the CRM only supported coherence for the Tile-Local
Memory (TLM). Now, this has been extended to include the global DDR
memory, allowing applications with large data-sets to also use the RBCC
concept. RBCC also supports flexible coherency regions at run time
through the CRM’s re-configuration sub-module. When an application
wants to expand/shrink the coherency region, the re-configuration
sub-module performs the necessary context switches, like clearing the
directory sharer information entries and updating the configuration
tables.

Current research in this area focuses on executing and evaluating
shared memory workloads (PARSEC, SPLASH-2) on our FPGA prototype
in collaboration with Project C1. This not only requires the existing
hardware coherence mechanisms, but also additional features like false-
sharing resolution and barrier support. The false-sharing problem is
resolved in hardware by detecting and writing-back only modified data
in a fine-granular manner. For applications that use barriers for synchro-
nisation, a CRM-barrier() instruction was implemented which notifies
the application when all coherence messages have been successfully
executed and acknowledged.

Near-Memory Acceleration

The recent trend towards tile-based manycore architectures has helped
to tackle the memory wall by physically distributing memories and
processing nodes. However, new challenges for MPSoCs arose due to
the emergence of ever increasing memory intensiveness of applications
with big, irregular and cache unfriendly data sets. Distributed operating
systems and applications face a data-to-task locality challenge. Many
recent approaches therefore leverage in- or near-memory computing to
reduce energy-hungry and performance-degrading data movement and
instead perform the computation close to where the data is stored.

Our work in collaboration with Project C1 on software-defined hardware-
managed queues enables efficient inter-tile communication by leverag-
ing application-specific queues with arbitrarily sized elements. Queue
and memory management, intra- and inter-tile data transfer, and task
invocation are entirely handled by a dedicated near-memory hardware
module. Only the dynamic queue creation at run time is performed in
software. The evaluation with the MPI-based NAS benchmarks shows
a reduction in execution time by up to 48% for the communication

67

B5

SHARQ
Remote
Task

Invocation

MPMC
FIFO
Queue

DMA
Transfer

Memory
Mgmt.

Figure 4.22: Architecture and features of SHARQ.

Core

N
A

L2

Core

N
A L2

Core

N
A

L2

Core

N
A

S

D

S

PGAS MEM

G

G´4

3

2 1

D

NMACore

N
A

L2

NCACore

N
A L2

NCACore

N
A

L2

NCACore

N
A

S

D

S

PGAS MEM

1
2

3

4

G

G´

D

Figure 4.23: Far-from memory Pegasus (left) vs. near-memory NEMESYS (right).

intense IS kernel in a 4x4 tile design on an FPGA platform with a total
of 80 LEON3 cores [Rhe+19b].

As some tile-based architectures omit inter-tile cache coherence, they
require a different programming model based on explicit messages.
Inter-tile communication in e. g. the partitioned global address space
(PGAS) programming paradigm is allowed via a remote procedure call
(RPC)-like programming language construct. The more modern PGAS
languages are object-oriented and thus require the transfer of object
graphs as well.

In a collaboration with Project C3, we developed NEMESYS: NEar-
Memory Graph Copy Enhanced SYstem-Software, which outsources the
memory-intensive and cache unfriendly graph copy operation to a near-
memory hardware accelerator. The operation is not only performed
near-memory, but also the hardware accelerator relieves the CPUs from
the graph copy duty (similar to a DMA unit for non-pointered data).
The evaluation with the X10 IMSuite benchmarks, featuring distributed
graph algorithm kernels, showed a speedup in execution time between

68

1.35x and 3.85x compared to a state-of-the-art approach. A comparison
of the mechanisms is depicted in Fig. 4.23 [Rhe+19a].

Due to the high importance of data-to-task locality and the rele-
vance of efficiently transferring queue elements and object graphs, both
contributions [Rhe+19b; Rhe+19a] provide performant and scalable
solutions to mitigate the locality wall.

Publications

[Ana+19] N. Anantharajaiah, F. Kempf, L. Masing, F. M. Lesniak, and J.
Becker. “Dynamic and Scalable Runtime Block-based Multicast
Routing for Networks on Chips”. In: Proceedings of the 12th In-
ternational Workshop on Network on Chip Architectures. NoCArc.
Columbus, Ohio: ACM, 2019, 10:1–10:6. DOI: 10.1145/3356045.
3360718.

[MLB19] L. Masing, F. Lesniak, and J. Becker. “Hybrid Prototyping for
Manycore Design and Validation”. In: Applied Reconfigurable
Computing. Springer International Publishing, 2019, pp. 319–
333.

[Rhe+19a] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkers-
dorf. “NEMESYS: Near-Memory Graph Copy Enhanced System-
Software”. In: MEMSYS 19: The International Symposium on
Memory Systems. Washington DC, 2019.

[Rhe+19b] S. Rheindt, S. Maier, F. Schmaus, T. Wild, W. Schröder-Preikschat,
and A. Herkersdorf. “SHARQ: Software-Defined Hardware-Man-
aged Queues for Tile-Based Manycore Architectures”. In: Pro-
ceedings of the 19th International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS).
2019.

[Sri+19] A. Srivatsa, S. Rheindt, D. Gabriel, T. Wild, and A. Herkersdorf.
“CoD: Coherence-on-Demand – Runtime Adaptable Working Set
Coherence for DSM-Based Manycore Architectures”. In: Embed-
ded Computer Systems: Architectures, Modeling, and Simulation.
Ed. by D. N. Pnevmatikatos, M. Pelcat, and M. Jung. Cham:
Springer International Publishing, 2019, pp. 18–33.

69

https://doi.org/10.1145/3356045.3360718
https://doi.org/10.1145/3356045.3360718

C1

C1: Invasive Run-Time Support System (iRTSS)

Lars Bauer, Jörg Henkel, Timo Hönig, Wolfgang Schröder-Preikschat

Gabor Drescher, Christoph Erhardt, Tobias Langer, Sebastian Maier,
Jonas Rabenstein, Florian Schmaus

Project C1 investigates operating-system support for invasive applica-
tions. It provides methods, principles and abstractions for the application-
aware extension, configuration and adaptation of invasive computing
systems. These are technically integrated into the invasive Run-time
Support System (iRTSS), a highly scalable native operating system in
close contact and constant touch with a standard Unix-like host operat-
ing system. The project works address special-purpose MPSoC-based as
well as general-purpose multicore/manycore machines.

Heterogeneous
HW-Resources

iRTSS

Applica�ons

iNoC iNoC

Tile 1

App 1 App 2

Agent System

OctoPOS

CPU TCPA i-CoreCPU

Memory

libC, x10, MPI, Cilk

Tile 2

App 2 App 3

Agent System

OctoPOS

CPU CPU TCPACPU

Memory

libC, x10, MPI, Cilk

Figure 4.24: iRTSS architecture on a multi-tile system. Colours indicate invaded resources.

Architectural Overview

Figure 4.24 provides a high-level view of the current iRTSS architecture.
Key elements are OctoPOS11, the parallel operating system (POS) that

11Prefix ‘Octo’ indicates the 8th generation within a particular family of special-purpose
operating systems—but also refers to a nature which is highly parallel in its actions
as well as adaptable to its environment: the octopus, being able to act in parallel
by means of its tentacles, adapt itself through colour change, and, due to its highly
developed nervous system, attune to dynamic environmental conditions and impact.

70

C1

A
p
p
li
ca
ti
o
n
L
ay
er

ile
t

el
et

RRE

enfo
rcement target

O
S
L
ay
er

RRMSW

RRMSW

squad

le
ad

ai
de

H
a
rd
w
a
re

Cores

RRMHW

Figure 4.25: Squads: Operating-system
support for RRM and RRE.

implements the mechanisms of iRTSS
to make all capabilities of the under-
lying hardware available to higher
(software) levels, and the agent sys-
tem, which provides global iRTSS
strategies for resource management
through means of self-adaption to
cope with the scalability problem in
large multicore systems, logically re-
siding between the run-time libraries
for various kind of invasive-parallel
applications and the OctoPOS kernel.
OctoPOS makes the computing plat-
form (LEON, x86-64) accessible to
processes as a “virtual machine” that
functions either as native (“satellite”)
neighbouring to or as guest (“planet”)
managed by a host operating system
(Linux). The key aspect in the design
and development of OctoPOS is to
make all the capabilities of the under-
lying hardware available to higher (software) levels in an unfiltered
way. In the reporting phase, particular attention was paid to developing
concepts for operating-system support for RRM and RRE (Figure 4.25;
Project A1, see also [Tei+20a]).

Background Noise and Energetic System Software

With the OctoPOS kernel, Project C1 provides an alterable operating
systems kernel which supports vertical migration of system functions in
terms of hardware offerings and software demands. The main concerns
are to achieve smooth user-/system level transitions of predictable
time/energy demand along with iRTSS calls (downward direction) and
signals (upward direction).

Negative effects that are caused by background noise within the sys-
tem are loss of performance and increased energy demand. To mitigate
such effects, our system software combines measurement-based tech-
niques to provide predictions on the expected resource demand. With
analysis techniques that are based on neural networks, accurate energy
demand estimations are generated [HHS19]. This includes online esti-
mations for sequences of program code (i. e. i-lets) that have not been
assessed in an offline analysis previously. At the operating system level,

71

C1

we investigate the effect of contention on the energy demand [Rei+19]
to adapt the system’s resource demand (i. e. energy and time) dynam-
ically at run time. Fit-to-measure operating systems improve system
responsiveness and ensure low resource demands. Such systems are
achieved by tailor-made system software that adapts the operating
system structure statically to the underlying hardware architectures
[Hei+19b]. Cross-cutting concerns that occur dynamically at run time
require holistic analysis methods that consider both, energy demand and
time demand (i. e. performance) [Sie+19]. In particular, we combine
automated worst-case analysis to enforce a smooth operation of the
overall system by reducing unnecessary background noise.

Asynchronous Abstract Machines

In many systems, the concurrent execution of different applications may
lead to interference, which surfaces in the form of increased cache/TLB
misses, bad branch prediction and a decreased instructions-per-cycle
performance of the CPU. OctoPOS can limit this interference through
the exclusive allocation of cores to specific applications (in the form
of claims). However, noise and interference also occur within applica-
tions when they perform heterogeneous work (e. g. executing different
threads, thread pools) or when they interact with other parts of the
system (like OS or library code).

Therefore, we now went one step further with our new system design
that is based on asynchronous abstract machines [Mai+19]. It allows
for additional partitioning within applications and even the operating
system by structuring the whole system into a number of machines, as
shown in Fig. 4.26. These machines feature a light-weight task scheduler
and are dedicated to a specific group of homogeneous tasks (i. e. shared
code and data). They offer an asynchronous, task-based interface for
efficient interaction between machines via messages. A dedicated OS
component, which is aware of all machines in the system, is responsible
for dynamic and exclusive allocation of cores to machines depending on
their current workload. With asynchronous abstract machines, our goal is
to make frequent transitions between homogeneous workloads fast (by
scheduling light-weight tasks within machines) and costly transitions
between heterogeneous workloads rare (by dedicating cores to specific
machines for extended periods). Our implementation in an independent
prototype features a variety of reusable machines (e. g. for file/network
I/O, database access, encryption, compression), and its performance
evaluation showed promising results.

72

C1

Machine #1

Machine #N

Application

Library

System Machine

Machine Manager

Operating System

Application 1 Application 2

Ke
rn

el
Sp

ac
e

Us
er

Sp
ac

e
… …

CC Active/Idle Core

C C C C

C

C C

C C C

C C

Figure 4.26: Overview of a machine-based system and its core allocations [Mai+19].

Software-defined Hardware-managed Queues

In close collaboration with Project B5 on software-defined hardware-
managed queues (SHARQ) for inter-tile communication [Rhe+19b],
we were able to combine the flexibility of traditional software queues
(i. e. dynamic creation, arbitrary queue length and element size) with
the performance-benefits of hardware-acceleration (i. e. inter-tile DMA
transfers, remote atomic operations). With SHARQ it is possible to avoid
an additional roundtrip for memory allocation that is typically required
when transferring data to other tiles for remote processing. In addition,
the close interaction between SHARQ and the CiC allows to schedule
handler tasks on the receiver side automatically if required.

After an extensive requirement analysis, the HW/SW interface specifi-
cation, and the implementation of the required hardware and software
modules, several use-cases for SHARQ could be identified. We are cur-
rently using SHARQ in the implementation of our distributed TCP/IP
network stack, for the internal communication of our MPI library and
to offload system tasks to dedicated cores efficiently. In the future,
SHARQ could also offer a hardware-acceleration for the communication
between asynchronous abstract machines even across isolation domains.
Our evaluation with the MPI-based NAS parallel benchmarks (shown in
Fig. 4.27) and several microbenchmarks showed significant performance
benefits compared to software-only approaches.

73

C1

CG EP FT IS MG
0

0.25

0.5

0.75

1

1 1 1 1 11
.0
2

1 0.
9
6

0.
9
6 1.
0
4

0.
9
4

1

0.
8
1

0.
5
2

0
.8
6

R
el
at
iv
e
D
u
ra
ti
o
n

BASE SWQ SHARQ

1x1 2x1 2x2 4x4
0

0.25

0.5

0.75

1

1 1 1 11 1 0
.9
7

0
.9
6

0
.9
6

0
.8
5

0.
64

0
.5
2

R
el
at
iv
e
D
u
ra
ti
on

BASE SWQ SHARQ

Figure 4.27: Performance and tile scalability of the NAS parallel benchmarks for our original
MPI implementation (BASE), for a variant using software queues (SWQ) and for a
SHARQ-accelerated variant (SHARQ) [Rhe+19b].

Virtual Shared Memory

In tile-based MPSoCs, tiles dedicated for computation usually are pro-
vided with a relatively small local memory. Access to larger memory is
provided via interconnect/NoC. In these setups, cache coherency and
memory consistency are generally only maintained within the scope of
a tile. This provides better system scalability since e. g. no coherency
protocols have to be implemented in the NoC. This, however, poses the
challenge of efficiently accessing memory via NoC: Data flow dependent
applications have to take care to both, enforce the order of any remote
writes and to explicitly flush caches when reading from remote memory
in order to guarantee correctness.

To address this issue, we investigate the implementation of virtual
shared memory (VSM) in OctoPOS. VSM establishes a shared memory
view to the system memory with consistency guarantees by means of
the operating system. To this end, remote memory is page-wise locally
replicated. Applications then transparently work on the local copies.
Consistency with the original memory page is restored with explicit
system calls for establishing memory consistency. After issuing such a
system call, any local changes are applied back to the original page and
thus become globally visible.

A first API has been proposed and a prototype of the VSM mechanism
has been integrated into OctoPOS and is currently explored. We are
planning to evaluate the benefits of different consistency models in
respect of parallel workloads with the prototype.

Publications

[Hei+19b] B. Heinloth, M. Ammon, D. Nguyen, T. Hönig, V. Sieh, and
W. Schröder-Preikschat. “Cocoon: Custom-Fitted Kernel Com-

74

C1

piled on Demand”. In: Proceedings of the 10th Workshop on
Programming Languages and Operating Systems (PLOS). ACM.
New York, NY, USA: ACM Digital Library, 2019, pp. 1–7. DOI:
10.1145/3365137.3365398.

[HHS19] T. Hönig, B. Herzog, and W. Schröder-Preikschat. “Energy-De-
mand Estimation of Embedded Devices Using Deep Artificial
Neural Networks”. In: Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing (SAC). ACM Digital Library, 2019,
pp. 617–624. DOI: 10.1145/3297280.3297338.

[Mai+19] S. Maier, T. Hönig, P. Wägemann, and W. Schröder-Preikschat.
“Asynchronous Abstract Machines: Anti-noise System Software
for Many-core Processors”. In: Proceedings of the 9th Interna-
tional Workshop on Runtime and Operating Systems for Super-
computers (ROSS) (Phoenix, AZ, USA). ACM, 2019, pp. 19–26.
DOI: 10.1145/3322789.3328744.

[Rap+19a] M. Rapp, A. Pathania, T. Mitra, and J. Henkel. “Prediction-Based
Task Migration on S-NUCA Many-Cores”. In: Design, Automation
& Test in Europe (DATE). IEEE. 2019, pp. 1579–1582.

[Rap+19b] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel.
“Power-and Cache-Aware Task Mapping with Dynamic Power
Budgeting for Many-Cores”. In: IEEE Transactions on Computers
(2019).

[Rei+19] S. Reif, P. Raffeck, H. Janker, L. Gerhorst, T. Hönig, and W.
Schröder-Preikschat. “Earl: Energy-Aware Reconfigurable Locks”.
In: Proceedings of the 9th Embedded Operating Systems Workshop
(EWiLi). Forthcoming. ACM. New York, NY, USA: ACM SIGBED
Review, 2019.

[Rhe+19b] S. Rheindt, S. Maier, F. Schmaus, T. Wild, W. Schröder-Preikschat,
and A. Herkersdorf. “SHARQ: Software-Defined Hardware-Man-
aged Queues for Tile-Based Manycore Architectures”. In: Pro-
ceedings of the 19th International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS).
2019.

[Sch+19a] S. Schuster, P. Wägemann, P. Ulbrich, and W. Schröder-Preikschat.
“Proving Real-Time Capability of Generic Operating Systems
by System-Aware Timing Analysis”. In: Proceedings of the 25th
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE Computer Society, 2019, pp. 313–330. DOI:
10.1109/RTAS.2019.00034.

[Sie+19] V. Sieh et al. “Combining Automated Measurement-Based Cost
Modeling With Static Worst-Case Execution-Time and Energy-
Consumption Analyses”. In: IEEE Embedded Systems Letters 11.2
(June 2019), pp. 38–41.

75

https://doi.org/10.1145/3365137.3365398
https://doi.org/10.1145/3297280.3297338
https://doi.org/10.1145/3322789.3328744
https://doi.org/10.1109/RTAS.2019.00034

[Tei+20a] J. Teich, P. Mahmoody, B. Pourmohseni, S. Roloff, W. Schröder-
Preikschat, and S. Wildermann. “Run-Time Enforcement of Non-
functional Program Properties on MPSoCs”. In: A Journey of
Embedded and Cyber-Physical Systems. Ed. by J.-J. Chen. Springer,
2020.

[WS19] A. Würstlein and W. Schröder-Preikschat. “T-IBE-T: Identity-
Based Encryption for Inter-Tile Communication”. In: Proceedings
of the 12th European Workshop on Systems Security (EuroSec).
ACM Digital Library, 2019, pp. 1–6. DOI: 10.1145/3301417.
3312500.

76

https://doi.org/10.1145/3301417.3312500
https://doi.org/10.1145/3301417.3312500

C3

C3: Compilation and Code Generation
for Invasive Programs

Gregor Snelting, Jürgen Teich

Jorge A. Echavarria, Andreas Fried, Frank Hannig, Michael Witterauf

Project C3 investigates compilation techniques for invasive comput-
ing architectures. Its central role is the development of a compiler
framework for code generation as well as program transformations and
optimisations for a wide range of heterogeneous invasive architectures,
including RISC cores, tightly-coupled processor arrays (TCPAs), and
i-Core reconfigurable processors.

In the second funding phase, a major focus of research has been
the quest for (higher) predictability of non-functional aspects of inva-
sive parallel program execution, i. e. performance, fault tolerance, and
security.

In the current third funding phase, our major research focus is on
run-time requirement enforcement of multiple non-functional execution
qualities such as user-specified performance and energy corridors. This
includes (a) constant latency/throughput loop processing, (b) approx-
imate loop processing including language extensions to specify and
analyse errors of imprecise loop variables, and (c) a symbolic code
generator for TCPA targets to support symbolic loop parallelisation tech-
niques. Moreover, we are investigating (d) compiler optimisations for
the i-Core, (e) optimisations for FPGAs, and (f) discovery of invasive
programming patterns.

We now shortly summarise results on individual aspects achieved
during 2019.

Symbolic Loop Compilation for TCPAs

TCPAs exploit all levels of parallelism that loops provide, including
iteration-level parallelism. Iteration-level parallelism permits the over-
lapped processing of subsequent iterations of a loop to support resp.
increase instruction-level parallelism, but as a consequence puts more
pressure on the number of functional units. That is because not hav-

77

C3

i1

i2

i1

i2

Figure 4.28: A 2× 2 (left) and 2× 3 (right) tiling of a 6× 6 loop program. Each tile is sequentially
executed by one processing element, as indicated by the dashed edges. The two
colours represent two parts of the iteration space with different instructions. As can
be seen, tiling influences both the instructions and the control flow within a processing
element and thus the generated program.

ing enough functional units raises the initiation interval of a loop nest,
the interval between starting two consecutive iterations, a crucial per-
formance metric of loops. To lighten the burden on functional units,
mutually exclusive instructions—that means instructions from state-
ments in disjoint parts of the iteration space (for example, input and
output instructions)—may be scheduled in the same relative time slot
on the same functional unit. However, this sharing makes the control
flow iteration-dependent, which necessitates the generation of a set of
distinct programs for the processing elements (see Fig. 4.28).

Generating this set of programs must be symbolic because (a) loops
usually have parametric bounds and (b) in invasive computing, we do
not know how many processing elements are available until run time.
Therefore, we know neither how many distinct programs must be gen-
erated for the processors of a TCPA and which instructions they contain.
Alternatives to symbolic code generation, like generating and storing
all possible programs or full just-in-time compilation, are prohibitively
expensive, especially in embedded systems. In 2019, we proposed as
a breakthrough in loop compilation the first solution to symbolic code
generation as a hybrid approach that uses a representation for symbolic
programs, called polyhedral syntax trees [WHT19].

The idea is to frontload all intractable sub-problems (in particular the
NP-hard modulo scheduling; compare Fig. 4.29) of mapping a loop onto
a TCPA to compile time and at run time only perform the steps that
require knowledge of the concrete loop bound parameters and number
of allocated processing elements. A polyhedral syntax tree, as shown
and explained in Fig. 4.30, is a data structure that connects these two

78

C3

Red
uc

ed
Dep

en
de

nc
e Gra

ph

PE
Allo

ca
tio

n (T
ilin

g)

M
od

ul
o Sc

he
du

lin
g

Reg
ist

er
Allo

ca
tio

n

Con
tro

l F
low

Ana
lys

is

Gen
er

ati
on

of
Pr

og
ra

ms

TCPA
Bin

ar
y

co
mpil

e

tim
e co

mpil
e

tim
e co

mpil
e

tim
e ru

n
tim

e ru
n
tim

e

Figure 4.29: In our hybrid compile flow for symbolic loop compilation, all intractable problems (in
particular modulo scheduling and register allocation) are solved at compile time. At
run time, only efficient (that is, polynomial in time and space) problems remain.

phases in an elegant and efficient manner and from which all potential
programs can be assembled at run time.

In [WHT19], we showed how to systemically generate polyhedral
syntax trees from a loop description and that using them is both space-
and time-efficient: they require polynomial space to store—whereas
storing all possibly generated programs is non-polynomial—and poly-

Instruction0

addi

Source A

id0 rd0

Source B

10

Destination

od0 rd0
j = p− 1 j < p− 1Ij = 0 j > 0

II I

I

I

Figure 4.30: Partial polyhedral syntax tree for a symbolic instruction. Each node v is annotated
with its domain Iv , represented as a polyhedral set of integers. To evaluate the tree—
i. e. to obtain a concrete instruction—at an iteration I = (j), all nodes where I /∈ Iv
are discarded. The resulting sub-tree represents a syntactically correct concrete
instruction. In the figure, the resulting instruction for the edge case where the tile is
only one iteration wide (p = 1) and I = 0 is marked with a shaded background. It
results in the single instruction addi od0 10 id0 to be executed at I = 0.

79

C3

nomial time to evaluate—whereas just-in-time compilation requires
solving NP-hard problems. For example, in a case study, we showed for
a representative loop program that using a polyhedral syntax tree saves
98.88% of space compared to storing all program variants.

Synthesis of i-Core Special Instructions

We have, extended our compiler libFIRM with a new VHDL back end,
which will be able to support more optimisations than the old ad-hoc
code generation approach. We are confident to see first results in this
area in 2020.

Near-memory Computing

The InvasIC MPSoC is a distributed-memory system, so the CPU cores
on the tiles are located “far from” the main memory: Main memory
accesses need to traverse the NoC, which incurs a latency of at least 100
cycles. We therefore expect large performance gains by running some
recurring computations “near memory”, i. e. on dedicated hardware
positioned close to the main memory controller.

We concentrate our efforts on system software, since that is used
by every application, and programs need not be rewritten in order to
benefit from improved system software. Moreover, our X10-based PGAS
run-time system offers a high-level programming model, which needs
to be well-optimised to avoid overhead in every program.

Therefore, we have developed NEMESYS, Near-Memory Graph Copy
Enhanced System-Software in cooperation with Project B5 [Rhe+19a].
With NEMESYS, we tackle the problem that our PGAS programming
model requires complete object graphs to be transferred between tiles.
For example, in the code snippet

val x = computeX();
at (tile2) { val y = x.getY(); }

x (the root) and all objects transitively reachable from it need to be
copied to tile2. A classical DMA unit is insufficient for this task as the
objects are not necessarily allocated in a contiguous block of memory.

The core component of NEMESYS is a near-memory accelerator which
uses a hardware implementation of the Deutsch/Schorr/Waite algo-
rithm to traverse the source object graph and copy the objects to the
destination. This algorithm is particularly suited for hardware imple-
mentation since it can do without a recursion stack by storing reverse
pointers in the objects themselves. Figure 4.31 shows the basic steps of

80

C3

o1

o2

o3 o4

o1’

o2’

o3’

o1’

o2’

o3’ o4’

o1’

o2’

o3’ o4’

Figure 4.31: Object graph traversal in NEMESYS. On the left, the source graph is shown, and
to its right the steps needed to copy o4 to o4’. The red triangle marks the object
currently under consideration by the NMA. First, the NMA allocates a new object and
sets o2 to point to it. It then moves to the new object, setting the reverse pointer, and
copies o4 to it, recursively following its pointers if necessary. Finally, it returns to o2’
by following the reverse pointer.

the algorithm: allocating a new object, copying it recursively, and going
back to the parent object using the reverse pointer.

In addition, the NMA needs to detect and re-use objects it has already
copied in order to preserve the graph structure. Otherwise, the destina-
tion graph would contain two copies of an object which is reachable via
two different paths from the root.

NEMESYS accomplishes this with a hardware hash table using the
classical universal hash function H3 due to Carter and Wegman. To
hash n bits of input down to k bits, H3 defines a set of functions hM
parameterised by a k × n bit matrix M . The hash hM (x) is then given
by hM (x) =

⊕n−1
i=0 Mixi, where Mi is the i-th column of M , xi is the

i-th bit of x, and ⊕ is the exclusive or operation. This function is easily
and cheaply implemented in hardware, only requiring nk XOR gates for
a fixed matrix.

Evaluating the performance of NEMESYS on the X10-imsuite bench-
marks, we find that we achieve speedups between 1.35× and 3.85×
compared to Mohr’s PEGASUS technique.

Further Results

Faramarz Khosravi has successfully defended his PhD thesis [Kho19]
with important results on the reliability analysis of non-redundant and
replicated loop programs on TCPAs.

Moreover, we are investigating deep learning applications and their
mapping on TCPAs. In [Hei+19a], we have shown that they could
enable the layer-parallel (resp. pipelined) processing of multiple layers
of CNNs quite efficiently concerning energy and memory requirements.

81

With respect to GPUs, we expect an order of magnitude lower energy
consumption for executing the loop nests of such nets.

Publications

[Bra+19b] M. Brand, M. Witterauf, É. Sousa, A. Tanase, F. Hannig, and
J. Teich. “*-Predictable MPSoC Execution of Real-Time Control
Applications Using Invasive Computing”. In: Concurrency and
Computation: Practice and Experience (Feb. 2019). DOI: 10.1002/
cpe.5149.

[Hei+19a] C. Heidorn, M. Witterauf, F. Hannig, and J. Teich. “Efficient
Mapping of CNNs onto Tightly Coupled Processor Arrays”. In:
Journal of Computers (JCP) 14.8 (Aug. 2019), pp. 541–556. DOI:
10.17706/jcp.14.8.541-556.

[Kho19] F. Khosravi. “System-Level Reliability Analysis and Optimization
in the Presence of Uncertainty”. Dissertation. Hardware/Soft-
ware Co-Design, Department of Computer Science, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, Aug. 5, 2019.

[Rhe+19a] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkers-
dorf. “NEMESYS: Near-Memory Graph Copy Enhanced System-
Software”. In: MEMSYS 19: The International Symposium on
Memory Systems. Washington DC, 2019.

[WHT19] M. Witterauf, F. Hannig, and J. Teich. “Polyhedral Fragments:
An Efficient Representation for Symbolically Generating Code
for Processor Arrays”. In: Proceedings of the 17th ACM-IEEE In-
ternational Conference on Formal Methods and Models for System
Design (MEMOCODE) (San Diego, CA, USA). IEEE, Oct. 9–11,
2019.

82

https://doi.org/10.1002/cpe.5149
https://doi.org/10.1002/cpe.5149
https://doi.org/10.17706/jcp.14.8.541-556

C5

C5: Security in Invasive Computing Systems

Felix C. Freiling, Wolfgang Schröder-Preikschat, Gregor Snelting,
Ingrid Verbauwhede (Mercator Fellow)

Simon Bischof, Franziska Schirrmacher, Pieter Maene, Furkan Turan

Project C5 explores security aspects of invasive computing and resource-
aware programming. Invasive MPSoC architectures will only be ac-
cepted if basic security properties are supported. The final goal is
to ensure confidentiality, integrity, and availability in the presence of
untrustworthy programs that compete for resources and/or can con-
tain malicious functionality. This requires a comprehensive approach,
addressing both hardware and software mechanisms.

In the current third funding phase, we focus on integrating informa-
tion flow control (IFC) with control flow attestation (CFA) mechanisms
that can reliably and provably assess the information leakage from an
executed code. In addition, we aim at enforcing security properties
that have been requested by applications at run time even if attacker
assumptions are violated, thereby increasing the assumption coverage.

The year 2019 saw the successful PhD defence of the long-time Proj-
ect C5 collaborator Pieter Maene of KU Leuven for his thesis entitled
“Lightweight Roots of Trust for Modern Systems-on-Chip” [Mae19].
Furthermore, we made progress in several work packages. For example,
at the end of 2019, we have already finished a prototype implementation
for yielding a mutual attestation mechanism to check and (re-)enforce
the integrity of computations on remote tiles (in collaboration with the
Mercator fellow, work package C5.6). The progress in work packages
C5.2 and C5.5 is explained below.

Attacker Model

Our attacker model consists of four hierarchy levels at which an attacker
can operate and execute software. An X10-attacker corresponds to
an attacker who can run programs written in X10. These programs
can be statically checked through a trusted X10 compiler, strongly
inhibiting malicious behaviour, e. g. by the type system of X10. In

83

C5

contrast, the binary attacker may execute arbitrary (binary) code that
runs with privileges associated with normal applications (usually user-
level privileges). With the OS-level attacker, we allow an attacker to take
over control of the operating system. Finally, physical attacks are the
most powerful ones which are considered to be technically difficult to
perform, but also to defend against. Physical attacks are not considered
in the project.

Results

Traditionally, information flow control (IFC) checks for non-interference
as security property. This results in a binary answer: Either the secret in-
puts of the program cannot have any influence on the program output or
the security analysis finds that there may be such an influence, however
slight. In the latter case, the program is rejected as insecure. In certain
cases, however, such influence cannot be prevented since it is part of
that program’s functionality. With quantitative IFC, one can deduce
bounds on how many bits a program can reveal, giving a much more
fine-grained answer than traditional IFC. As a part of a master’s thesis,
a quantitative IFC algorithm has been integrated into JOANA. It uses a
data flow analysis to calculate constant bits and dependency relations
between different bits in the program. This results in a dependency
graph on the bit level. A minimal cut is then computed to obtain a
minimal number of bits which determine the output of the program
(see Figure 4.32). Thus, we get a sound approximation of the leakage.
For if-statements, we increase precision in the then- and else-branch by
using guarantees we get from knowing that the if-condition must have
been true or false, respectively. By using techniques based on summary
edges, the analysis is interprocedural, including arbitrary recursion.
While traditional quantitative IFC only works for batch programs, our
approach has been extended to deal with interactive programs, allowing
user input and output at arbitrary program points.

Besides security within a tile using CFI, we worked on extending
the trusted execution environment from one tile to another [TV19b].
For this specific purpose, we introduced the idea of mutual attestation,
which allows the tiles to directly evaluate each other, and manage their
own cooperation. They start with attesting the measurements of their
resources to each other. In this context, the resources refer to code
and data files, and predefined memory regions. Next, the tiles evaluate
the attested resources of each other. The goal of this evaluation is to
compare these resources and decide which one is trusted compared
to the other. To aid this decision, we propose extending the resources

84

C5

x = (h1 & 1 == 1) ? h1 : 3;
y = (h2 & 1 == 1) ? h2 : 3;
s = (x == y)
o = s ? x : 3
p = h2

Figure 4.32: An example program and its bit dependence graph. A minimal cut is marked in blue.
Since the cut has size 3, the program leaks at most 3 bits.

with a metadata, defining them specifically. This definition involves
a version information, for the assumption that a recent version of a
resource is expected to be trusted compared to its older versions, as it
should address the known vulnerabilities. After the decision is made
using the comparison with the metadata, the attestation responses take
place. These responses aim at updating the untrusted resources of a tile
with the trusted ones found in the neighbouring tiles. Furthermore, the
responses aim at preventing even the Denial-of-Service (DoS) attacks
by recovering a tile even when it is exploited.

For executing the above mentioned attestation, evaluation, and re-
sponse mechanisms reliably, we designed a new trusted computing
base as a hardware Root-of-Trust (RoT) attached to each tile. The RoT
modules are supported with a link to the network adapter for direct
communication with each other, and a cryptography module. These
prevent the RoT from relying on the system software, hence avoids any
disruption of its operation by potentially exploited software. For min-
imising the cost of equipping each tile with the proposed RoT module,
we designed a compact [TV19a] elliptic curve implementation.

Considering the case that we have a confidential app we want to
secure, additional hardware solutions are beneficial. Relying on a Dy-
namic Root of Trust, Secure Encrypted Virtualization (SEV) guarantees
the confidentiality of virtual machines (VM). The VM is placed in the
host memory and the SEV firmware attests the integrity of the initial
VM state. We extended this idea by introducing SEVGuard [PNG19],
which allows to secure one application instead of VMs. SEVGuard is a
minimal virtual execution environment that protects the confidentiality
of applications based on AMD’s Secure Encrypted Virtualization. There-
fore, we move the App into a minimal VM that leverages plain KVM API
of the Linux kernel. Using the SEV firmware, the application is injected
in the VM and then the VM is encrypted. The role of SevGuard is to

85

encrypt the guest’s initial memory and instructs the hypervisor to man-
age and control the VM. To keep the VM minimal without consuming
a high amount of memory, system calls and libraries are not included
in the VM. By implementing an advanced trapping mechanism, these
functionalities can be used from host.

Summary and Outlook

The invasive computing paradigm offers applications the possibility of
dynamically spreading their computation in a multicore/multiprocessor
system in a resource-aware way. If applications are assumed to act
maliciously, many security problems arise. Our solutions for isolating ap-
plications as well as for guaranteeing software and control flow integrity
are able to enforce security on invasive computing architectures.

Testing for the existence of potential side channels in the distributed
monitoring system will be part of the upcoming research. We will focus
on the temperature sensor from the monitoring system for the first
investigations. Furthermore, we plan to extend intra-tile security to
inter-tile for integrity and confidentiality and make further progress on
integrating IFC and CFA.

Publications

[Mae19] P. Maene. “Lightweight Roots of Trust for Modern Systems-on-
Chip”. Dissertation. Faculty of Engineering Science, KU Leuven,
Belgium, Oct. 2019.

[PNG19] R. Palutke, A. Neubaum, and J. Götzfried. “SEVGuard: Protecting
User Mode Applications using Secure Encrypted Virtualization”.
In: SecureComm 2019 Proceedings (Orlando). Springer, Oct. 24,
2019.

[TV19a] F. Turan and I. Verbauwhede. “Compact and Flexible FPGA Im-
plementation of Ed25519 and X25519”. In: ACM Transactions
on Embedded Computing Systems (TECS) 18.3 (2019), p. 24.

[TV19b] F. Turan and I. Verbauwhede. “Propagating Trusted Execution
through Mutual Attestation”. In: 4th Workshop on System Soft-
ware for Trusted Execution (SysTEX). Huntsville, Ontario, Canada:
ACM, 2019.

86

D1

D1: Invasive Software–Hardware Architectures
for Robotics

Tamim Asfour, Walter Stechele

Dirk Gabriel, Fabian Paus

Project D1 investigates the benefits and limitations of invasive comput-
ing in robotic applications, which combine methods and algorithms from
the area of computer vision and motion generation with concurrent
processes and timely varying resource demands.

The research activities in Project D1 focus on building an invasive
memory system—as integral part of a robot control architecture—which
encodes prior world and task knowledge, sensorimotor experience and
application resource requirements associated with robot actions and
scene context. Such memory system will allow 1) encoding, storing
and retrieving information about resource requirements, 2) learning
prediction models of robot actions and their consequences (world state)
as well as their computational resources, and 3) implementing specula-
tive resource management system based on resource-aware prediction
models learned from experience. The approach will be validated in the
context of a comprehensive perception and affordance pipeline which
combines a wide variety of robot vision algorithms for scene understand-
ing and action selection.

Furthermore, we will address the challenges posed by the legacy
software of existing robotic systems as currently the code of used algo-
rithms would require complete re-engineering in order to benefit from
invasive computing. We will investigate methods for automatic porting
of the non-invasive code of the perception and affordance to invasive
multicore platforms.

Resource-Aware Parameter Tuning for Real-Time Applications

In the last years we adapted robotic applications like, e. g. the object
detection pipeline to run on the invasive platform. A major challenge
was to extract the resource requirements for different workload scenar-

87

D1

Context
selection

Complexity
classification

Resource
allocation

Application
parameterisation

Skipped resource sets
as allocation failed

Global
scenario

Application
input

Agent
System

Figure 4.33: Workflow of the Resource-Aware Parameter Tuning.

ios and use the resource information provided by the operating system
within the application.

In 2019, we extended this approach to a more generic method which
can be applied to any application whose degree of parallelism can be pa-
rameterised and is executed in multiple iterations. The Resource-Aware
Parameter Tuning (RAPT) [GSW19] relies on a set of operating points
optimised during the Design Space Exploration (DSE). The operating
points combine the information about application specific parameters,
the set of allocated resources, the expected execution time, and the
quality of the calculated result.

At run time a multi-staged lookup mechanism as shown in Figure 4.33
selects one suitable operating point for each iteration. The operating
points are therefore stored in an ordered lookup tree. The first stage
selects a subtree based on the context which specifies the time and
power constraints. The second stage classifies the complexity of the
current problem based on the application’s input and steps one layer
deeper into the tree. The third stage requests the resources from the
system by interacting with the agent system. As it might happen that
the resource demand can not be complied by the system, different
configurations are stored in descending order of quality-level. RAPT
steps through this list until it reaches an entry which resource demand
is successfully mapped by the agent system. The last stage applies the
annotated parameters to the application.

Figure 4.34 depicts the execution time of the object detection applica-
tion running on an hardware platform consisting of 4 Intel®Xeon®E7-
4830 CPUs once with RAPT being used and once with an feedback
mechanism. With RAPT the execution time is only exceeded when the
input complexity unpredictably changed whereas the feedback mecha-
nism fails even with constant complexity class. The overhead introduced
by RAPT remains below 25µs or 0.1% of the whole execution time and
is therefor negligible.

88

D1

20 40 60 80 100 120 140

100

200

300

400

500

iteration

ex
ec

.
ti

m
e

[m
s]

co
m

pl
ex

it
y

[1
00

0]

0

20

40

60

80

100

co
re

s

time limit execution time
complexity cores available

(a) Resource-Aware Parameter Tuning guar-
antees timing constraint by adapting
application specific parameters.

20 40 60 80 100 120

100

200

300

400

500

600

iteration

ex
ec

.
ti

m
e

[m
s]

co
m

pl
ex

it
y

[1
00

0]

0

20

40

60

80

100

co
re

s

time limit target exec. time
execution time complexity
cores available

(b) Timing constraint violated by feedback
mechanism.

Figure 4.34: Comparison of the Resource-Aware Parameter Tuning with a feedback mechanism.

This current workflow of RAPT still relies on modifications of the orig-
inal application code. Therefore we are working on an implementation
of the RAPT library compatible to the pthread-interface. It will allow the
resource-aware execution of applications based on pthreads without any
modifications. The major challenges are the reliable identification of
different thread blocks and an automated approach for the complexity
classification.

Resource-Aware Object Classification and Segmentation

We integrate cameras, robot vision and control algorithms in prosthetic
hands to support semi-autonomous grasping. On these devices, power
consumption determines the operating time in which the device is useful
for the user. Usually, prosthetic hands use myoelectric control which
relies on electromyographic (EMG) signals captured by two surface
electrodes attached to the human body. Controlling the hand by the
user requires long training and depends heavily on the robustness of
the EMG signals. We developed a visual perception system ([HMA19])
to extract scene information for semi-autonomous hand-control that
allows minimising required command complexity and leads to more
intuitive and effortless control. We present methods that are optimised
towards minimal resource demand to derive scene information from a
camera inside the hand (see Figure 4.35). In particular, we show object
classification and semantic segmentation of image data realised by con-
volutional neural networks (CNNs). We present a system architecture
(see Figure 4.36), that takes user feedback into account and thereby

89

D1

Figure 4.35: Left: In-hand camera in the palm of the KIT Prosthetic Hand. Right: Camera image,
ground truth, predicted mask (8 bit) and binary mask.

Figure 4.36: Overview of the pipeline used for semi-autonomous grasping including object classifi-
cation and segmentation.

improves results. In addition, we present an evolutionary algorithm to
optimise CNN architecture regarding accuracy and hardware resource
demand. Our evaluation shows classification accuracy of 96.5% and
segmentation accuracy of up to 89.5% on an in-hand ArmCortex-H7
microcontroller running at only 400 MHz.

Classification is realised by a deep convolutional network optimised
towards inference on the embedded processor. For our application of ob-
ject classification two aspects are relevant: A set of known objects must
be recognised with high accuracy within given real-time constraints. We
set a maximum of ≈ 150 ms as an acceptable value for recognition.

To achieve real-time network inference, the classification network
architecture is synthesised by using an evolutionary algorithm. The al-
gorithm uses multiple evolution steps in which the algorithms evaluated
the fitness of all networks, breeds offspring networks with crossover
characteristics from two parent networks of high fitness and randomly
mutates segment parameters. Since real-time constraints and given
hardware resources allow a maximum number of operations at which
the highest accuracy can be expected, we define the fitness function
to target a given number of operations. Since the convolution layers
are responsible for most of the resulting operations, only the operations
resulting from convolution are regarded. The number of multiply-

90

D1

1 2 3 4 5 6 7
0.84

0.86

0.88

0.9

0.92

0.94

0.96

2

4

6

8

10

12

14

16

18
Accuracy #Operations in Millions

Generation

F
itn

es
s

~
 A

cc
ur

ac
y

M
ill

io
n

C
on

v
M

A
C

 O
pe

ra
tio

ns

Target Operation Count

Figure 4.37: Average accuracy and MAC operations in millions per generation. The evolutionary
algorithm successfully generates networks that have increased accuracy and lower
operation count. The convergence of operations to 2 is a result of the chosen fitness
function.

accumulate (MAC) operations per convolution layer can be calculated
as

βconv =
IH × IW × IC ×KH ×KW ×OC

S2
(4.3)

with input I, kernel K, output O as well as height, width and channels
H,W,C. S is the filter stride. We derive the fitness of a network
combining number of operations and accuracy by designing a fitness
function using a generalised logistic function, in detail

F(αfinal, βconv) = αfinal + (1 + eβconv−(1+ν))−
1

2+ν (4.4)

Results of the evolutionary algorithm used for the design of the
optimised classification network architecture, as average accuracy and
multiply-accumulate (MAC) operations per generation, are depicted in
Figure 4.37. The results show, that evolution as expected decreases
the operation count while increasing accuracy. The operation count,
according to the target count defined in equation 4.4, converges towards
the target operation count. Since accuracy and amount of operations
improved evenly, the fitness function does not overrate either one and
is therefore beneficial.

91

Publications

[GSW19] D. Gabriel, W. Stechele, and S. Wildermann. “Resource-Aware
Parameter Tuning for Real-Time Applications”. In: Architecture
of Computing Systems – ARCS 2019. Ed. by M. Schoeberl, C.
Hochberger, S. Uhrig, J. Brehm, and T. Pionteck. Springer In-
ternational Publishing, 2019, pp. 45–55. DOI: 10.1007/978-3-
030-18656-2_4.

[HMA19] F. Hundhausen, D. Megerle, and T. Asfour. “Resource-Aware
Object Classification and Segmentation for Semi-Autonomous
Grasping with Prosthetic Hands”. In: IEEE/RAS International
Conference on Humanoid Robots (Humanoids). 2019.

92

https://doi.org/10.1007/978-3-030-18656-2_4
https://doi.org/10.1007/978-3-030-18656-2_4

D3

D3: Invasive Computing and HPC

Michael Bader, Hans-Joachim Bungartz, Michael Gerndt

Jophin John, Santiago Narváez Rivas

The overall goal of Project D3 in Phase III is to show that invasive com-
puting can make a difference in High Performance Computing (HPC)—
not only for improving performance and efficiency for individual ap-
plications, but also for overcoming some compelling challenges from
operating large systems at supercomputing centres.

Invasion for HPC Overview

The biggest concerns of the current supercomputing centres are

• high energy consumption and lack of reproducibility,

• increasing failure rate due to growing core numbers which in turn
aggravate the energy consumption problem,

• increasing complexity for efficiently handling resources due to the
increase heterogeneity of the system.

Invasive computing provides remedies for these problems. Building
upon the Elastic MPI (iMPI) infrastructure we developed in Phase II, we
investigate power corridor enforcement using the mechanisms of inva-
sive resource management. This can help to increase the predictability
of the system’s energy consumption. To handle hardware failure, we
are developing a resource-aware checkpointing infrastructure (iCheck)
for fast adaptive data recovery. Additionally, we will investigate the
invasion of memory layers with guidance by the applications. This
will allow for improved execution despite the increased complexity in
resources. On the application side, all these tasks require extreme-scale
and realistic simulation codes [MoH19]. We are invasifying a set of
selected classical HPC applications, originally not designed for resource
elasticity. We will evaluate how well suited is the invasive infrastructure
developed on Phase II to be used with them. Furthermore, we have

93

D3

integrated data analytics framework Apache Spark with the invasive
infrastructure for efficient handling of idle resources [CCG19].

Development of Invasive Infrastructure for HPC

Scaling Invasive Infrastructure: One of the main objectives of Proj-
ect D3 in Phase III is to evaluate how well suited the invasive infrastruc-
ture developed in Phase II is for concrete scientific applications. To do so,
a considerable amount of effort has been devoted to enable our invasive
Resource Manager (iRM) to handle hundreds of nodes. This included
a one week sprint code carried out on SuperMUC phase 2. The code
was also adapted to run on SuperMUC-NG, the newest supercomputer
acquired by the Leibniz Rechenzentrum (LRZ) at TUM.

Power Corridor Management: Invasive computing can be used to en-
force the power corridor of a system [JNG19; Nar18]. The idea is that
the power consumption should be kept in a certain range via a combi-
nation of expansions and reductions of more and less power consuming
applications. Taking this idea into practice required extensive modifi-
cations to both application model (EPOP) and resource management
(iRM), whose new interactions are depicted in Fig. 4.38. A heuristic and

Figure 4.38: Power corridor management infrastructure.

forecast module were added to iRM. The latter allows the system to have
a proactive approach, predicting power corridor violations before they
may be happen. To do so several time series analysis techniques, such
as the AutoRegressive Integrated Moving Average (ARIMA), Seasonal
ARIMA with exogenous regressors (SARIMAX) and the Holt-Winters

94

D3

method are used. When the infrastructure predicts that the system
might go out of the power corridor, the heuristic module calculates a
new resource distribution that prevents a violation.

iCheck—Fault Tolerance in Invasive HPC: As the peak system per-
formance breaks the exascale barrier in HPC, the expected mean time
between failures is in minutes. By utilising the application dynamism
and the scheduler support, the applications can be restarted immedi-
ately with the available resources or continue the application execution
with the smaller number of resources during node failures.

Our proposed system adds fault tolerance and failure recovery by
exploiting this dynamism. It will be tightly coupled with iRM and will
be able to expand and reduce the checkpointing resources according
to application requirements and resource availability. It will be a multi-
level application-level checkpointing system, where the checkpoints
(specified application data) will be stored in compute nodes as well as
in a parallel file system.

The iCheck system has three components with three different objec-
tives and views (see Fig. 4.39). It has one controller node (which is
also a storage node) and one or more storage nodes. Storage nodes are
provided to iCheck by iRM. The iCheck controller negotiates with iRM
for more storage nodes whenever necessary. iRM can take back as well
as add storage nodes to the system thereby making the checkpointing
system itself invasive. Fig. 4.39 showcases the preliminary architecture
of iCheck System. The main components of iCheck are:

Figure 4.39: iCheck architecture design.

controller: has a global view and is the main component of the infras-
tructure. Decisions regarding the checkpoints like storing the

95

D3

checkpoints in parallel file system, creation of initial checkpoint,
redistribution of checkpoint data, deletion of checkpoints etc. are
taken by the controller.

node manager: is run on top of iCheck storage nodes. It has the node-
level view of the system. Node-level information like number
of applications checkpointed, memory available, health of the
node, etc. are periodically passed to the controller or passed upon
request.

agent: is associated with an application. It is responsible for checkpoint
management of an application.

Invasive HPC Applications

Invasive Molecular Dynamics Simulation: The molecular dynamics
simulation code ls1 mardyn is an MPI application that focuses on the
simulation of process engineering scenarios, such as the nucleation
processes in large-scale chemical reactors. The invasification of the code
has started. The current focus is on determining scenarios in which
invasive computing could be especially useful. The following scenarios
are being considered:

1. Full-invasive approach. This scenario relates to the mitigation
of load imbalances in the simulation. For example, in Fig. 4.40
an heterogeneous particle distribution is depicted, with a clearly
visible load imbalance. Nucleation, a process which happens in
the context of condensation (i. e. when droplets are formed in an
over-saturated gas phase), can cause this imbalances. ls1 mardyn
has its own built-in functionality to deal with these cases, but
invasive computing could become an alternative (see Fig. 4.40).

2. A hybrid approach. The idea here is to find the optimal amount
of processors for a certain problem size. To do so, expansion
and reduction operations would be used at the beginning of the
simulation; the adaptations will end once the efficiency of the
program is between a certain margin. Afterwards the native load
imbalance functionality included in ls1 mardyn would be used.

Invasive Earthquake Simulation: The earthquake simulation code
SeisSol is a large-scale application based on hybrid MPI+OpenMP paral-
lelism. With added resource adaptivity, a large improvement in resource
efficiency can be expected in rupture simulations, where most of the

96

D3

Figure 4.40: Load imbalance solution ls1 mardyn vs Invasive approach.

simulation time is characterised by the dynamics of the rupture process.
We plan to adopt the lazy activation approach explored in Project A4 and
activate parallel partitions only when seismic waves reach the partition.
The invasification of SeisSol will begin once the one of ls1 mardyn is
finished.

Outlook

In addition to completing the above mentioned tasks, our next steps
include:

• Hybrid Power Corridor Management: One of the shortcomings
of the invasive approach to power corridor management is that
frequent resource redistributions can be expensive. Our ongo-
ing work, a hybrid system which can use DVFS along with inva-
sive computing to manage power requirements, addresses this
shortcoming. If a power corridor violation is predicted then the
scheduler selects the technique which is least expensive. An in-
frastructure for this hybrid system is implemented on iRM and
EPOP. The power model of this system will be based on our work
[CG19].

• Power-aware Batch Scheduling: Our present power corridor
infrastructure manipulates the running applications to bring back
the system into the power corridor. Having a power-aware batch
scheduler complements this by scheduling a job based on the
power requirements. The batch scheduler can make sure that new
applications won’t break the corridor thereby reducing the need
for resource redistribution.

97

D3

• iCheck API: A preliminary architecture of iCheck system has been
decided and the respective API design is in progress. We will
prototype the iCheck system with a basic API and necessary design
changes will be made as the development progress. Also, an
invasive remote direct memory access (iRDMA) protocol is under
development which will be used for checkpoint transfer and data
redistribution in iCheck.

• Evaluation and Testing with Invasive Applications: Performance
analysis will be conducted on the invasive SeisSol and ls1 mar-
dyn codes to evaluate the impact of resource adaptivity on the
application-level. Furthermore, these codes will be used for test-
ing the power corridor management and iCheck’s fault-tolerant
functionalities. They will eventually adopt the new API provided
by iCheck for automatic data transfer during resource adaptation.

• Investigation of memory invasion: A newly acquired server will
allow us to test OctoPOS and develop applications for it. This
server has Optane DC persistent memory DIMMs, a technology
from Intel that lays in between RAM and storage solutions. It can
be configured as a volatile memory, as a faster storage alternative
to SSD or both. This provides an opportunity to investigate, in
collaboration with Project C1, memory invasion. For example,
applications could be allocated memory either on RAM or on
Optane DIMM depending on its performance.

Publications

[CCG19] J. A. Chacko, I. A. Comprés Ureña, and M. Gerndt. “Integration
of Apache Spark with Invasive Resource Manager”. In: 2019 IEEE
SmartWorld, Ubiquitous Intelligence and Computing, Advanced
and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People and Smart City
Innovation. Best Paper Award. 2019.

[CG19] M. Chadha and M. Gerndt. “Modelling DVFS and UFS for Region-
Based Energy Aware Tuning of HPC Applications”. In: IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS).
2019.

[MoH19] A. Mo-Hellenbrand. “Resource-Aware and Elastic Parallel Soft-
ware Development for Distributed-Memory HPC Systems”. Dis-
sertation. Munich: Technische Universität München, 2019. URL:
http://mediatum.ub.tum.de/?id=1471007.

98

http://mediatum.ub.tum.de/?id=1471007

[JNG19] J. John, S. Narvaez R, and M. Gerndt. “Invasive Computing for
Power Corridor Management”. In: ParCo 2019: International
Conference on Parallel Computing. 2019.

[Nar18] S. Narvaez. “Power model for resource-elastic applications”. Mas-
ter Thesis. Munich: Technische Universität München, 2018. URL:
http://mediatum.ub.tum.de?id=1475095.

99

http://mediatum.ub.tum.de?id=1475095

Z: Central Services

Jürgen Teich

Ina Derr, Frank Hannig, Jürgen Kleinöder, Stefanie Kugler,
Sandra Mattauch

The central activities and services of the CRC/Transregio 89 are coordi-
nated and organised by Project Z. These activities can be divided into:

The first part, administrative support, the organisation of meetings
(i. e. internal project meetings and workshops, Doctoral Researcher
Retreats (DRR)) and assistance for visits of guest researchers and re-
searchers travelling abroad. Project Z also provides technical support
and a multitude of measures improving infrastructure and supporting
data management tools for communication and collaboration (sub-
version repository, mailing lists, Wiki). We continue to support our
researchers in facilitating equal career opportunities as well as balanc-
ing family and scientific career (e. g. cuby, kidsboxes or babysitting
service during our annual meetings). In order to promote our doctoral
researchers, we also organise training courses. Last but not least, the
support of all management activities, financial administration and book-
keeping belong to our central service unit.

The second part, is public relations. This comprises establishing
contacts with important research sites as well as the inception of an
international Industrial and Scientific Board. Scientific ideas and results
of the CRC/Transregio 89 are discussed regularly with guest researchers
at the “InvasIC Seminar” as well as during various workshops and confer-
ences. Among others, our website www.invasic.de, promotion material,
press releases and media relations are also provided by Project Z. Even-
tually, we also support and organise the publishing process of central
publications like the “InvasIC Annual Report”. The CRC/Transregio’s
activities of 2019 are summarised in Part III of this report.

100

Z2

Z2: Validation and Demonstrator

Jürgen Becker, Frank Hannig, Thomas Wild

Nidhi Anantharajaiah, Marcel Brand, Joachim Falk, Fabian Lesniak,
Leonard Masing, Sven Rheindt, Akshay Srivatsa

The major contribution of Project Z2 is to provide a joint environment
for validating the principles of invasive computing. The contributions
of the different projects across all project areas are integrated into one
platform to demonstrate the advantages of invasive computing such as
improved efficiency, resource utilisation, speedup, and *-predictability12.
The currently used ProDesign proFPGA systems contain four Virtex-
7 2000T FPGAs, allowing for large designs to be prototyped. This
prototype has allowed us to implement tiled invasive hardware architec-
tures containing up to 16 multicore (RISC) and manycore (TCPA) tiles,
connected via the invasive NoC (iNoC), with room for extension and
flexibility. To build a working platform, Project Z2 integrated peripher-
als like the transactor, SSRAM and DDR3 memory controllers into the
common demonstrator and established the appropriate tool support for
the integration of all the invasive components.
In the third funding phase, Project Z2 is continuing to support all
projects, particularly in their work on Run-time Requirement Monitoring
(RRM) and Run-time Requirement Enforcement (RRE) of non-functional
properties as well as run-time verification of properties and constraints.
To support the evaluation of RRM and RRE mechanisms such as the con-
cept of leads and aides, Project Z2 will provide probes within invasive
architecture prototypes that allow assessing metrics to be optimised or
enforced and visualise them to an external observer.

12J. Teich et al. “Language and Compilation of Parallel Programs for *-Predictable MPSoC
Execution using Invasive Computing”. In: Proceedings of the 10th IEEE International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). Lyon, France,
Sept. 21–23, 2016, pp. 313–320. DOI: 10.1109/MCSoC.2016.30.

101

https://doi.org/10.1109/MCSoC.2016.30

Z2

Continuous Integration System

At the review meeting in January 2018, two major demonstrators that
showcase the advantages of invasive computing were presented. This
multi-FPGA prototyping environment enabled other projects of the CRC
to integrate and demonstrate the entire invasive hardware/software
technology stack.

Based on this success, many new components have been developed,
researched and published since then [Rhe+19b; Rhe+19a]. Project Z2
assisted their integration and further extended the memory as well as
monitoring subsystem of the demonstrator platform.

In order to maintain the integrity of the system and further ease and
automate the seamless integration of new components and features
into our prototype, Project Z2, in close cooperation with Project C1, is
establishing a continuous integration (CI) and testing environment. Con-
tinuous integration is the practice of continuously integrating changes
made to a project and testing them accordingly at least on a daily basis
or more frequently. An example CI flow is depicted in Fig. 4.41. As this
is common practice for any software development project, we are on
the way to adapt our hardware design flow to it as well. When new
features are integrated, the design will be synthesised in an automated
fashion and an extensive test suite consisting of microbenchmarks as
well as real applications benchmarks will continuously be executed.

As important steps towards this goal, Project Z2 implemented a con-
figurable and already semi-automated script-based synthesis flow. Proj-
ect Z2 and Project C1 further provided an environment that allows
performing holistic tests of project specific components and their inter-
play with the whole demonstrator in an automated fashion. Automated
tracing of the outputs for error messages helps to categorise them and
giving first hints where to focus the further testing on.

Figure 4.41: Continuous integration process.

102

Z2

Automating the build, test and deploy processes can alleviate much of
the headaches and problems commonly happening on projects. Having a
reliable method of integrating smaller changes more frequently ensures
that errors can be identified and resolved easier and earlier.

The benefits of continuous integration are especially important in
such a big, inter-disciplinary and collaborative project. The reduced
integration risk, higher code quality and increased confidence in the
proper functionality of new or modified components makes the col-
laboration of hardware, system-software and application researchers
more comfortable and efficient. As the turnaround cycle for hardware
compared to software development is significantly higher, CI is all the
more important and helpful to avoid unnecessary manual testing.

Non-intrusive Monitoring

The demonstration platform provides concurrent execution of up to 80
processors allowing debugger access to each individual processor. While
this debugging method enables fine-grained control and insight into
single processors and their memory, it does not show the full picture.
Run-time behaviour is determined by many more components, some
of which are not observable in real time using the debugger. This
includes effects like memory performance (e. g. cache misses, DRAM
refreshing), NoC latency and load on the tile-local AHB bus. Any
mechanism spanning over multiple cores like scheduling or resource
allocation is hard to observe from the outside.

Several sensor values are available in the current hardware prototype,
but they are distributed over different hardware components. While
some of these sensors can be accessed using the tile-local bus, it is
not feasible to collect that data in software. That is because access to
the sensors will influence the overall system performance and lead to
imprecise measurement values. This effect intensifies with increasing
the number of observed sensors. To be able to monitor the system
on a very detailed level and not influencing it at the same time, a
non-intrusive monitoring mechanism is required.

Additionally, access to internal sensors as a memory mapped resource
would be beneficial for some applications. By providing a standardised
interface for any kind of sensors, applications can easily access monitor-
ing data in a uniform way. For example, there is a plan to integrate the
power and temperature monitoring system developed by Project B4 to
that generic interface.

103

Z2

These two usage scenarios require the following basic functions:

• Collecting run-time monitoring data from several hardware re-
sources (CPUs, Caches, AHB, Network Adapter, NoC Routers)

• Continuously streaming selected real-time monitoring values to
an external capture device using Ethernet

• Providing memory-mapped access to sensor data values on the
tile-internal bus

Project Z2 is implementing the task of data collection and the local
interface in monitoring cores inside of each tile. They allow the moni-
toring system to scale with the number of tiles in the design, while still
being accessible from inside the tile to provide access to local sensor
data to software. To be able to gather monitoring data without internal
bus access or similar intrusive mechanisms, a monitoring core has direct
connection to all monitored components of its respective tile.

To reach the primary goal of monitoring the system non-intrusively,
sensor data must be brought from the individual monitoring cores to the
outside of the system without using existing architecture components
like the iNoC. Therefore an additional, lightweight and uni-directional
monitoring network is introduced. It connects all monitoring cores with
the network streaming core and handles consolidation of monitoring
data as well as transportation to the network interface (Fig. 4.42).

mon mon mon

monmonmonmon

mon mon mon mon

monmonmonmon

mon

H
os

t
PC

N
et

w
or

k
St

re
am

in
g

C
or

e

Figure 4.42: NoC with monitoring cores inside each tile.

This design allows for great insight into the system at run time while
making sure not to influence the execution in any way. By simplifying
debugging, optimisation and design space exploration, it will improve
the evaluation capabilities of the prototyping system. Ongoing work
includes collecting all sources of necessary sensor data, defining a proper
sensor data interface and working on the streaming subsystem.

104

Z2

Validation and Exploration based on Simulation and Hybrid Prototyping

The system-level simulator InvadeSIM13,14, which was developed by the
previous Project C2, has been one significant and operative instrument
in the previous funding phases. Particularly in project areas A and D,
it has been used as a testbed for invasive programming concepts as
well as a basis for architecture exploration and application mapping.
The research achievements are subsumed in the textbook “Modeling and
Simulation of Invasive Applications and Architectures” [RHT19] published
by Springer in May 2019.

In order to keep up with the latest advances of recent operating sys-
tems (Ubuntu Linux distribution) and compiler versions (GNU Compiler
Collection, GCC) as well as modern Intel processors (e. g. Haswell, Sky-
lake, and Coffee Lake architectures), Project Z2 released a new version
of simulation infrastructure InvadeSIM.

One field of InvadeSIM’s application in the past year has been the test-
ing of the first implementations of run-time requirement enforcement
(RRE) techniques of program execution. In particular, image processing
applications have been employed to study several RRE variants, such
as central or distributed enforcement of soft as well as hard real-time
requirements. For further details, we refer to Project A1 in this report.

Moreover, we have been utilising hybrid prototyping techniques that
combine a virtual platform with FPGA-based prototyping, and are thus a
powerful tool for design validation and exploration, e. g. of NoC features
in manycore architectures [MLB19]. We refer to Project B5 in this report
for additional details.

Public Dissemination

Project Z2 vividly contributed to the dissemination of the CRC by present-
ing the accomplished innovations and research achievements. Particular
highlights of the last year were a booth at the exhibition of the Con-
ference on Design, Automation and Test in Europe (DATE) in Florence
in March 2019 as well as an appearance at the Long Night of Sciences
(“Lange Nacht der Wissenschaften” in Erlangen in October 2019, see

13S. Roloff, D. Schafhauser, F. Hannig, and J. Teich. “Execution-driven Parallel Simulation
of PGAS Applications on Heterogeneous Tiled Architectures”. In: Proceedings of the
52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (San Francisco, CA, USA).
ACM, June 7–11, 2015, 44:1–44:6. DOI: 10.1145/2744769.2744840.

14S. Roloff, F. Hannig, and J. Teich. “High Performance Network-on-Chip Simulation by
Interval-based Timing Predictions”. In: Proceedings of the 15th IEEE/ACM Symposium
on Embedded Systems for Real-time Multimedia (ESTIMedia) (Seoul, Republic of Korea).
ACM, Oct. 15–20, 2017, pp. 2–11. DOI: 10.1145/3139315.3139320.

105

https://doi.org/10.1145/2744769.2744840
https://doi.org/10.1145/3139315.3139320

Fig. 4.43. For more information and photographs see Chapter 8). On
both occasions, our joint demonstrator—the invasive inverted pendu-
lum—was showcased, however, with a different focus. While in the
case of the Long Night of Sciences, the visitors of various age and educa-
tional background got fundamental insights into tomorrow’s manycore
architectures and the concepts of invasive computing, in the case of the
DATE 2019 conference, the visitors were mainly experts in the field.

Figure 4.43: *-Predictable inverted pendulum demonstrator at the Long Night of Sciences 2019.

Publications

[MLB19] L. Masing, F. Lesniak, and J. Becker. “Hybrid Prototyping for
Manycore Design and Validation”. In: Applied Reconfigurable
Computing. Springer International Publishing, 2019, pp. 319–
333.

[Rhe+19a] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkers-
dorf. “NEMESYS: Near-Memory Graph Copy Enhanced System-
Software”. In: MEMSYS 19: The International Symposium on
Memory Systems. Washington DC, 2019.

[Rhe+19b] S. Rheindt, S. Maier, F. Schmaus, T. Wild, W. Schröder-Preikschat,
and A. Herkersdorf. “SHARQ: Software-Defined Hardware-Man-
aged Queues for Tile-Based Manycore Architectures”. In: Pro-
ceedings of the 19th International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS).
2019.

[RHT19] S. Roloff, F. Hannig, and J. Teich. Modeling and Simulation
of Invasive Applications and Architectures. Springer, May 2019.
168 pp. DOI: 10.1007/978-981-13-8387-8.

106

https://doi.org/10.1007/978-981-13-8387-8

WG1

5 Working Groups

WG1: Run-Time Requirement Monitoring and
Enforcement

Coordinators: Felix C. Freiling, Daniel Müller-Gritschneder, Timo Hönig

The focus of this working group lies on the joint investigation of run-
time measures for monitoring and enforcement of requirements on
non-functional properties such as timing, power, temperature, reliability
and security. The enforcement of such requirements is a central research
challenge of the CRC with high practical relevance. In the domain of
real-time systems, strict guarantees on the execution time of tasks are
required. Designers are often forced to add overly pessimistic safety
margins to assure these guarantees. These margins can be relaxed
if the embedded system supports the monitoring and enforcement of
these properties during run-time. Other examples, for which run-time
monitoring and enforcement will aid in making better use of the sys-
tem resources, include systems with reliability or security requirements.
Additionally, also thermal management strategies, which gain increas-
ing attention as we move in the age of dark silicon, require accurate
monitoring data from the chip. Next to embedded computing, also ap-
plications in the high-performance computing (HPC) domain can profit
from run-time requirement enforcement. HPC centres often need to
satisfy certain power corridors, which were negotiated with the power
grid providers. The enforcement of such corridors requires constant
monitoring and run-time adjustments.

Activities

The main activities of the working groups centered around two events:
• A working group meeting and tutorial on “hyperproperties” by

Christopher Hahn (Universität des Saarlandes, Prof. Finkbeiner)
on July 25–26, 2019 in Munich.

• A working group meeting on November 15, 2019 in Karlsruhe.

107

The topic of hyperproperties connected to the first working group
meeting in 2018 on run-time verification using linear temporal logic
(LTL). In LTL, system properties are modelled as sets of linear traces
(sequences of system states) that can cover functional properties like
partial correctness and mutual exclusion. It is, however, well known
that certain security properties cannot be formalised in that way. This is
particularly relevant for information flow properties, where an observer
can infer certain secret values by observing particular system traces. Hy-
perproperties are therefore properties of pairs of traces and can be used
to model information flow and therefore also to enforce information
flow control.

The first meeting of the working group in 2019 consisted of a tuto-
rial on hyperproperties and the formalism of HyperLTL that uses LTL
to express relations of traces. Originally, Prof. Bernd Finkbeiner of
Saarland University was to give the tutorial together with his student
Christopher Hahn, but unfortunately Prof. Finkbeiner was ill and so
Christopher Hahn gave the tutorial on his own. It completed the picture
of property specification formalisms that form the basis for the work
in this working group. Further discussions regarded the integration of
run-time monitoring and run-time enforcement into the architecture of
invasive computing systems.

The second meeting in 2019 in Karlsruhe aimed at gaining more
practical insights into run-time monitoring. Also, possible cooperations
on monitoring and enforcement between the projects were discussed. A
major topic of the discussion was on how to guarantee hard real-time
constraints for several applications executing in a parallel fashion within
a dynamic, invasive computing environment. This challenge was identi-
fied as a major task for the Working Group. Additionally, thermal and
power monitoring and enforcement aspects were discussed. Finally, it
was concluded that a workshop with Dr. Ziegenbein (Bosch Research)
should be organised to discuss the concepts, which were developed dur-
ing the workshop, and their practical application in industrial systems.

108

WG2

WG2: Memory Models, Architecture and
Management

Coordinators: Lars Bauer, Andreas Herkersdorf, Wolfgang Schröder-
Preikschat, Gregor Snelting

WG2 is the CRC/Transregio 89-internal forum to exchange and evolve
all memory-related aspects affecting the invasive computing hardware /
software architecture, run-time support system, programming models,
as well as formal properties of the programming language. As can be
seen from Table 5.1 and the list of publications at the end of this report,
the working group is really “alive and kicking”. Mitigating the effects
of memory access interference, e. g. by improving data-to-task locality
and adaptive memory protection, were two of the central topics focused
upon by WG2 members in several collaborative activities during the
past 12 months.

Table 5.1 lists the ongoing, completed, already published, and also
planned activities of inter-disciplinary collaborations among different

Topic Projects Status

OctoPOS Pthread Support B5, C1, D1 ongoing
Region-Based Cache Coherence on Demand B5, C1, D1 [Sri+19]
Advanced Remote Atomic Operations B5, C1, C3 [Rhe+18]
Virtual Shared Memory (VSM) C1, C5 ongoing
Near-Memory Support for VSM B5, C1 planned
Near-Memory Graph Cloning B5, C3 [Rhe+19a]
Software-Defined Hardware Managed Queues B5, C1 [Rhe+19b]

[Mai+19]
Formal X10 Memory Model A1 ongoing
Region-Based Cache Coherence Extension for X10 B5, C1, C3 ongoing
Design Time Characterisation of Memory Accesses A4 planned
Remote Load-Store Optimisations B5 completed
Physically Distributed Global Memory B5, Z2 completed
Near-Memory BLAS B5, D3 ongoing
Invasion of Memory B5, C1 ongoing
Consistency Models Tutorial C1 completed

Table 5.1: Activity status on working group collaborations.

109

CRC/Transregio 89 projects that we consider necessary to tackle the
memory architecture and management challenges. These collaborations
already yielded quite a number of joint publications at well-known
international conferences during the last year, see e. g. [Rhe+19a;
Rhe+19b].

The working group lives from the many bilateral exchanges and
collaborations. Besides the (semi-)annual meetings, the working group
had an additional meeting on July 1, 2019 at TU Munich. The next
meeting is planned for spring 2020. An example for a new topic, which
was brought up in one of the working group meetings, Near-Memory
BLAS (basic linear algebraic subroutines), has been picked up by a
master thesis student at TUM.

Finally, Prof. Herkersdorf also contributed a keynote titled “Tackling
the MPSoC Data Locality Challenge with Regional Coherence and Near
Memory Acceleration” [Her19] at NorCAS 2019 in Helsinki.

Publications

[Her19] A. Herkersdorf. “Tackling the MPSoC Data Locality Challenge
with Regional Coherence and Near Memory Acceleration”. Key-
note talk, 2019 IEEE Nordic Circuits and Systems Conference
(NorCAS). Oct. 29, 2019.

[Rhe+19a] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkers-
dorf. “NEMESYS: Near-Memory Graph Copy Enhanced System-
Software”. In: MEMSYS 19: The International Symposium on
Memory Systems. Washington DC, 2019.

[Rhe+19b] S. Rheindt, S. Maier, F. Schmaus, T. Wild, W. Schröder-Preikschat,
and A. Herkersdorf. “SHARQ: Software-Defined Hardware-Man-
aged Queues for Tile-Based Manycore Architectures”. In: Pro-
ceedings of the 19th International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS).
2019.

110

WG3

WG3: Benchmarking and Evaluation

Coordinators: Michael Gerndt, Walter Stechele

The goal of WG3 is to identify results from the projects and potential use
of these in demonstrators. Benchmarking invasive versus state-of-the-art
computing seems a major challenge.

In 2019, WG3 organised two working group meetings, on January 1,
2019 in Munich with a focus on the planned results of the projects that
may be used in a demonstrator or benchmarking activity, and on June
14, 2019 in Karlsruhe with a specific focus on robotic use cases.

During the Munich Meeting in January 2019, a discussion developed
around the OS concepts of a squad and an aide. These OS concepts are
the basis for the implementation of run-time enforcers. The squad is a
team of application i-lets including one or more aide i-lets. These aide
i-lets implement a single enforcer or multiple enforcers. The enforcers
are application-level concepts that can influence the next invade/infect
operation. It is important that these enforcers can access objects within
application i-lets. They are triggered by the OS in case a violation of a
quality of service requirement is detected. The concept of squad-based
enforcers has been discussed further during the InvasIC annual meeting
in February 2019.

The specific focus of the June 2019 Meeting in Karlsruhe was on two
robotic use cases for invasive computing, the perception pipeline and
the prosthetic hand.

The perception and affordance extraction pipeline is a sequence of
algorithms on a robot, which uses RGB-D data as input to build primitive-
based geometric scene representations and assign whole-body interac-
tion possibilities, so-called affordances, such as push, lift, lean, support,
etc. to the primitives. The proposal was to focus on a special part of
the pipeline, namely Lidar Point Cloud clustering based on a RANSAC
algorithm. This is planned as a demonstrator for the invasification of
legacy code. Relevant topics include legacy application wrapping (D1),
Design Space Exploration (A4), (Agent-based) resource management

111

(C1), and run-time & power enforcement (A1). The goal is to demon-
strate more efficient resource usage and energy reduction compared to
a non-invasive implementation, the trade-off between resource usage,
energy, run-time, and perception quality enforcement.

The hand prosthesis includes a camera and an ARM microcontroller.
It simplifies the control of the prosthesis for the human, by detecting
objects via a convolutional neural network (CNN) and automatically
grasping the object. A critical aspect is the energy consumption since
the hand is battery powered. Currently, the only hardware control knob
for energy saving is the processor frequency. Future extensions might
include multicore processors and FPGA-based accelerators. Invasive
methods might be based on the use of TCPA (Project B2) and i-Core
(Project B1) for acceleration. Dynamic precision adaptation (FloatTC-
PAs) might be exploited to meet the 150 ms reaction time requirement
via multiversioning or anytime precision support. Different CNNs can
be seen as operating points. The goal is to trade classification accuracy
for run-time and energy enforcement.

Beginning of 2020, WG3 organises the workshop on the computing
continuum, as part of the HiPEAC conference in Bologna, January 20,
2020. The term “computing continuum” describes an infrastructure
comprised of high performance computing centres connected to the
servers of clouds, computers at the edge of the network, and embedded
computing resources within distributed IoT (Internet-of-Things) devices.
Currently, invasive computing is exploring resource invasion within
embedded MPSoC and within HPC. The future challenge of the com-
puting continuum might be related to resource invasion on the overall
infrastructure over the boundaries between HPC, edge, and embedded
MPSoC.

112

WG4

WG4: Power and Thermal Aspects

Coordinators: Jörg Henkel, Nicole Megow, Stefan Wildermann

A limiting factor for high performance has been, is, and will be power
consumption. There are various aspects for this limit:

1. The power density represents a physical limit as the amount of power
that can be dissipated at a certain chip area is limited by the maximum
temperature a circuit can stand without the risk of accelerated circuit
degradation or even immediate irreversible damage.

2. The energy efficiency determines how much computation (or com-
munication) can be accomplished with a certain amount of energy.
Especially in energy-limited embedded applications, it is the goal to
make as much as possible use of a limited amount of energy.

3. Power and energy under real-time constraints: while reasons 1 and
2 are already hard to accomplish, the problem grows more complex
when real-time comes into play. For example, if a real-time task needs
to complete at a certain time, boosting might be a preferable means.
That, however, will increase peak temperature and put the circuits
under non-sustainable high stress. A multi-objective optimisation
strategy may be needed. In general, a thorough investigation of the
trade-offs is a primary goal.

4. Investigating how various scheduling and allocation algorithms match
or can be adapted to invasive computer architectures in order to
achieve a high efficiency.

InvasIC has various projects (among them Project A5, Project B2, Proj-
ect B3, Project C1) that focus on one or more aspects of power and
energy with respect to aspects 1, 2, 3 and 4. The goal of WG4 is to bring
these various goals under one umbrella in order to:

• Coordinate these various aspects such that in various phases dur-
ing execution on an invasive multicore architecture, the applied

113

power and energy means at different components (OS, architec-
ture, application software, etc.) are targeted towards the same
goals and contradictory control loops are avoided.

• Develop power and energy models that can be used by all projects
that deal with the topic.

• Identify which aspects of power, energy and temperature analysis
and modelling should be addressed at design time and which
should be modelled as uncertainties when making scheduling and
application mapping decisions (at run time). Of particular interest
is to study how far dynamic resource reservation using invasive
computing and novel ideas on run-time requirement enforcement
and run-time verification can help to reduce such uncertainties.

From an organisational point of view, it is the goal to target two working
group meetings per year. It is also the goal to organise a session at an
international event to present and discuss the very goals of this WG4
with international experts working on similar topics.

Second Meeting – Machine Learning Workshop In our first meeting
in 2018, we have identified that Machine Learning was considered in
several projects. As a result of this meeting, we decided to plan a tutorial-
style workshop on Machine Learning for 2019. Together with Project Z,
we could win Prof. Dr. Alexander Waibel together with Dr. Thanh-Le Ha
and Ngoc Quan Pham to give a two-day workshop.

It took place September 19–20, 2019 at the Technologiefabrik Karl-
sruhe. The considered topics were an introduction to machine learning
and deep neural networks in particular, as well as overviews on feature
generation and extraction, clustering techniques, and neural networks
for classification and recurrent neural networks for time series analysis.

A second result of the meeting in 2018 was to establish collaborations
between groups on the topics of thermal-aware application mapping,
power and energy in HPC, ageing monitoring, power models, as well as
how to model and benchmark our result. Since then, multiple coopera-
tions are ongoing. One successful publication in 2019 stemming already
from this working group is [Pou+19a].

Publications

[Pou+19a] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich,
and J. Henkel. “Thermally Composable Hybrid Application Map-
ping for Real-Time Applications in Heterogeneous Many-Core
Systems”. In: 40th IEEE Real-Time Systems Symposium (RTSS).
2019.

114

Events and Activities

III

Summary

The central activities and services in InvasIC are coordinated and con-
ducted by Project Z.

Figure 5.1: From left to right: Stefanie Kugler (Public Relations), Prof. Dr.-Ing. Jürgen Teich (Co-
ordinator), Dr. Sandra Mattauch (Coordination and Public Relations), Dr.-Ing. Jürgen
Kleinöder (Managing Director) and Ina Derr (Financial Services).

In the following, we summarise the major events Project Z organised
like Internal Meetings (Section 6), Training Courses (Section 7) as well
as further InvasIC Activities (Section 8) and Awards (Section 9). Last
but not least, we present the current composition of the Industrial and
Scientific Board in Section 10.

Figure 5.2: At the annual meeting in Kloster Irsee, February 2019.

116

6 Internal Meetings

Collaboration between the researchers of the three sites Karlsruhe, Mu-
nich, and Erlangen is essential for the success of the CRC/Transregio 89
– Invasive Computing. In 2019, researchers met at the following oppor-
tunities (list not being exhaustive):

Event Date

WG Evaluation and
Benchmarking

Jan. 28, 2019,
Munich

The goal of the meeting was to identify
potential demonstration scenarios for
invasive computing considering the en-
forcement of non-functional properties.

Semi-Annual Meeting Feb. 18/19, 2019,
Kloster Irsee

At the semi-annual meeting, the status
quo of the projects and the working groups
were summarised.

Doctoral Researcher
Retreat

Feb. 26–28, 2019,
Bad Boll

The doctoral researchers met in Bad Boll
to discuss progress and further challenges
of the third funding phase.

WG Evaluation and
Benchmarking

June 14, 2019,
Karlsruhe

Members of the working group met in Karl-
sruhe to identify methods for evaluation
and to determine benchmarks.

Figure 6.1: Impressions from the semi-annual meeting.

117

Event Date

WG Memory Models,
Architecture and
Management

July 1, 2019,
Munich

The agenda of the meeting was to discuss
WG2 work items (especially those not
started yet), to present “Virtual Shared
Memory – Current State and Future Steps”
and how to demonstrate merits of results.

WG Runtime Require-
ment Monitoring and
Enforcement

July 26, 2019,
Munich

The main part of the meeting was a tu-
torial on “Hyperproperties” by Bernd
Finkbeiner and Christopher Hahn from
Saarland University.

Annual Meeting 2019 Oct. 7/8, 2019,
Dinkelsbühl

At the annual meeting all researchers
met. In short talks all projects and working
groups presented their progress.

Doctoral Researcher
Retreat

Oct. 9–11, 2019,
Dinkelsbühl

The 14th InvasIC DRR took place at the
Designhotel Meiser in Dinkelsbühl in
conjunction with the annual meeting.

WG Runtime Require-
ment Monitoring and
Enforcement

Nov 15, 2019,
Munich

Researchers from different groups used
the meeting to collaborate across projects.

Figure 6.2: At the annual meeting in Dinkelsbühl 2019.

118

7 Training Courses

The following internal workshops and training courses were organised
by Project Z to give the doctoral researchers of InvasIC the opportunity
to strengthen their soft skills, train their key qualifications, and improve
their knowledge on topics related to invasive computing. Doctoral
researchers could choose their preferred workshop topics by a poll
beforehand.

Workshop “Machine Learning”

Because of artificial intelligence (AI) and machine learning (ML) being
hyped topics in computer science, which makes trainers for related
topics hard to be found nowadays, we were delighted that Professor
Dr. Alexander Waibel, Professor of Computer Science at the Karlsruhe
Institute of Technology (KIT), Germany and at Carnegie Mellon Uni-
versity, Pittsburgh agreed to be our referee for this workshop. His
research centres around Machine Learning algorithms that improve
human-machine and human-human interaction. His early pioneering
work on the Time-Delay Neural Network was the first “convolutional”
neural network.

Prof. Waibel, accompanied by Dr. Thanh-Le Ha and Ngoc Quan Pham,
brought some specific topics of machine learning closer to our re-
searchers. This tutorial-styled workshop was initiated by WG4 and
included: Feature Generation & Extraction, Clustering, Classification,
Neural Networks, Time Series Analysis, and Deep Learning.

The workshop was completed by a homework assignment to deepen
the understanding of machine learning.

Figure 7.1: Workshop on machine learning, September 19–20, 2019.

119

Workshop “My Project Management Skills”

The “Research Associations of the Friedrich-Alexander University Erlangen-
Nürnberg for the Promotion of Gender Equality” (F³G) are an association
of various DFG projects at the FAU, with our CRC/Transregio being one
of its founding members. In addition to better networking, the goal is the
appropriate and directive use of DFG gender equality funds. Since 2019,
the F³G offers the possibility for doctoral researchers of DFG funded
projects to participate in soft skill workshops at FAU. These workshops
are open to all CRC/Transregio 89 doctoral researchers notwithstand-
ing they work at FAU or not. Some of our doctoral researchers took
advantage of this new opportunity and attended the course “My Project
Management Skills” on November 23, 2019. The course was given by
Dr. Silke Oehrlein-Karpi.

Organisation, coordination and effective leadership have become
a must for growing in one’s career, in Academia as well as in other
sectors. Not only scientist’s day-to-day work, but also acquiring external
funding requires accurate timing, financial structuring and planning of
scientific work. If scientists have little awareness of these skills, this
can hinder their attitude and confidence in achieving their goals. In the
workshop self-awareness was raised to show the participants how to
hone these project-management related skills. More specifically, these
characteristics of project management were compiled by

• recognising how much experience someone has already gained in
life regarding project management,

• reflecting upon personal typical approaches, preferences, and
strategies that have been applied during previous projects,

• figuring out typical role/s in a project (i.e. expert, leader, organiser,
coordinator, conflict manager, facilitator, generalist, specialist,
team player etc.),

• realising someone’s particular strengths in project work and project
teams,

• learning how to integrate the new findings into day-to-day work
and long-term projects,

• improving self-efficacy regarding upcoming projects, and

• communicating project management experience in application
processes.

120

8 InvasIC Activities

To promote the ideas and results of InvasIC and discuss them with lead-
ing experts from industry and academia, international guest speakers
were invited to the “InvasIC Seminar”. In addition, members of InvasIC
gave talks and seminars at important research sites and conferences
(“Invited Talks”) or organised conferences and workshops (“Organised
Conferences and Workshops”) on the topics of invasive computing.
The InvasIC Seminar is a series of talks given at one of the three sites
(“InvasIC Seminar”). Videos of the respective talks are provided at our
website http://www.invasic.de.

Figure 8.1: Dr. Silvia Melitta Mueller, IBM visiting our CRC/Transregio in Erlangen

Figure 8.2: Prof. Alberto Bosio (on the right) and Prof. Jürgen Teich (left).

121

http://www.invasic.de

InvasIC Seminar

Place and Date Title Speaker

Munich,
May 17, 2019

On the road to Self-Driving IC Design
Tools and Flows

Prof. Andrew B. Kahng
(University of California,
San Diego)

Erlangen,
May 17, 2019

Optimizing Enterprise Servers across
the Hardware and Software Stack

Dr. Silvia Melitta Mueller
(IBM, Germany)

Erlangen,
July 19, 2019

Approximate Computing: Design and
Test for Integrated Circuits

Prof. Alberto Bosio
(Ecole Centrale de Lyon,
France)

Erlangen,
Sept. 27, 2019

Design of Decentralized Embedded
IoT Systems

Prof. Sebastian Steinhorst
(Technische Universität
München, Germany)

Erlangen,
Nov. 29, 2019

Scalable Data Management on
Modern Networks

Prof. Carsten Binnig
(Technische Universität
Darmstadt, Germany)

Figure 8.3: Prof. Andrew B. Kahng (middle) together with Prof. Ulf Schlichtmann (left) and
Prof. Andreas Herkersdorf (right).

122

Invited Talks

Place and Date Title Speaker

Hawaii, USA,
Jan. 4, 2019
ASECOLab

Talk: Adaptive Memory Protec-
tion for Many-Core Systems

Prof. W. Schröder-
Preikschat (FAU)

Darmstadt, Germany,
April 10, 2019
International Symposium on Ap-
plied Reconfigurable Computing

Talk: Hybrid Prototyping for
Manycore Design and Valida-
tion

Prof. J. Becker,
L. Masing (KIT)

Tokyo, Japan,
April 18, 2019
University of Tokyo

Talk: Multi-Core Computing
with Timing, Reliability, and
Security Guarantees

Prof. J. Teich (FAU)

Alghero, Italy,
April 30, 2019
ACM International Conference on
Computing Frontiers 2019

Talk: Anytime Instructions
for Programmable Accuracy
Floating-Point Arithmetic

M. Brand (FAU)

Copenhagen, Denmark,
May 20-23, 2019
32nd International Conference on
Architecture of Computing Systems

Keynote: Predictability Issues
in Operating Systems

Prof. W. Schröder-
Preikschat (FAU)

Xi’an, China,
June 21/22, 2019
Xidian University

Talk: Machine Learning Ap-
proaches for Efficient De-
sign Space Exploration of
Application-specific NoCs

Prof. U. Schlicht-
mann,
Dr.-Ing. L. Zhang
(TUM)

Phoenix, USA,
June 25, 2019
9th International Workshop on
Runtime and Operating Systems
for Supercomputers

Talk: Asynchronous Abstract
Machines: Anti-noise Sys-
tem Software for Many-core
Processors

Dr.-Ing. T. Hönig
(FAU)

Dortmund, Germany
July 4/5, 2019
Technische Universität Dortmund

Talk: Run-Time Enforcement
of Non-functional Program
Properties on MPSoCs

Prof. J. Teich (FAU)

Talk: As Embedded Systems
Became Serious Grown-Ups,
They Decide on Their Own

Prof. A. Herkers-
dorf (TUM)

123

Place and Date Title Speaker

Lausanne, Switzerland
July 31, 2019
International Symposium on Low
Power Electronics and Design

Talk: NCFET-Aware Voltage
Scaling

Sami Salamin
Martin Rapp (KIT)

Wellington, New Zealand,
Sept. 23, 2019
University of Wellington

Talk: Predictability Issues in
Operating Systems: Time,
Space, Energy

Prof. W. Schröder-
Preikschat,
Dr.-Ing. T. Hönig
(FAU)

Otago, New Zealand,
Oct. 4, 2019
University of Otago

Talk: Adaptive Memory Protec-
tion for Many-core Systems

Prof. W. Schröder-
Preikschat (FAU)

Tainan, Taiwan,
Oct 23, 2019
AI College of National Chiao Tung
University in Tainan

Talk: Novel Ideas in Timing of
Digital Circuits

Prof. U. Schlicht-
mann (TUM)

Helsinki, Finland,
Oct 29, 2019
IEEE Nordic Circuits and Systems
Conference

Keynote: Tackling the MPSoC
Data Locality Challenge with
Regional Coherence and Near
Memory Acceleration

Prof. A. Herkers-
dorf (TUM)

Figure 8.4: Prof. Jürgen Teich visited the University of Tokyo giving an invited talk at the Depart-
ment of Creative Informatics.

124

Organised Conferences and Workshops

Place and Date Title Organiser

Leiden, Netherlands,
Jan. 4, 2019

Scheduling Meets Fixed-
Parameter Tractability

Prof. N. Megow (UB),
Dr. M. Mnich (University of
Bonn),
Prof. G. Woeginger (RWTH
Aachen)

Florence, Italy,
March 26, 2019
Design, Automation and Test
in Europe (DATE) 2019

Exhibition Theatre Ses-
sion at DATE

Prof. J. Teich (FAU)

Canmore, Canada,
Sept. 3/4, 2019

1st ACM/IEEE Workshop
on Machine Learning for
CAD

Prof. J. Henkel (KIT),
Prof. U. Schlichtmann (TUM)

Auckland, New Zealand,
Sept. 16, 2019
New Zealand-Germany
Research Workshop

Time predictability, energy
awareness and security in
embedded and real-time
systems

Prof. W. Schröder-Preikschat,
Dr.-Ing. T. Hönig (FAU)

DATE 2019

Professor Jürgen Teich organised as its General Chair the Design, Au-
tomation, and Test in Europe (DATE) 2019 Conference and Exhibition
which took place at the Firenze Fiera in Florence, Italy from 25 to
29 March 2019 [TF19]. The conference attracted more than 1,600
registrations from over 40 countries and concluded with excellent feed-
back from both participants and exhibitors. DATE combines the world’s
favourite electronic systems design and test conference with an inter-
national exhibition for electronic design, automation, and test from
system-level hardware and software implementation right down to
integrated circuit design.

On Monday, the DATE week started with five in-depth technical tuto-
rials on the main topics of DATE as well as a hands-on industry tutorial
given by leading experts in their respective fields. The topics covered
Machine Learning for Manufacturing and Test, OpenCL Design Flows
for FPGAs, Approximate Computing, Hardware-Based Security, and
Safety and Security in Automotive, while the hands-on tutorial was on
Quantum Computing with IBM Q and Qiskit.

During the Opening Ceremony on Tuesday, plenary keynote lectures
were given by Astrid Elbe, managing director of Intel Labs Europe, and
Jürgen Bortolazzi, director driver assistance systems and highly auto-

125

Figure 8.5: Impressions from DATE 2019. (photographs DATE 2019 / © Cruz Garcia)

mated driving at Porsche. On the same day, the Executive Track offered
a series of business panels with executive speakers from companies lead-
ing the design and automation industry, discussing hot topics. Further,
a talk by Claudio Giorgione, curator of the Leonardo Department at
the National Museum of Science and Technology Milano, gave insight
into the life and work of Leonardo da Vinci in honour of the 500th
anniversary of his death, which is celebrated in Florence in 2019.

Figure 8.6: Impressions from DATE 2019. (photographs DATE 2019 / © Cruz Garcia)

The main conference program included 58 technical sessions organ-
ised in eight parallel tracks from the following four areas:

• D – Design Methods and Tools
• A – Application Design
• T – Test and Dependability
• E – Embedded and Cyber-physical Systems

and from several special sessions on hot topics such as Emerging Design
Technologies, Design and Test of Secure Systems, IoT Security, Embed-
ded Systems for Deep Learning, Augmented Living and Personalized
Healthcare, Robotics and Industry 4.0, as well as results and lessons

126

learned from European projects. In addition, numerous interactive pre-
sentations were given during five IP sessions. The technical program
was composed of 834 submitted papers with an acceptance rate of 24%.

Two special days in the program focused on areas bringing new
challenges to the system design community, including Embedded Meets
Hyperscale and HPC and Model-Based Design of Intelligent Systems.
Each of the special days has had a full program of panels, tutorials and
technical presentations, and a lunchtime keynote.

On Wednesday, the keynote on the topic of heterogeneous, high-scale
computing in the era of cloud-connected devices by David Pellerin,
Amazon US, was the highlight of the special day on Embedded Meets
Hyperscale and HPC. During the special day on Model-Based Design of
Intelligent Systems on Thursday, Edward Lee from UC Berkeley took “A
Fundamental Look at Models and Intelligence” in his keynote.

One of the highlights of the DATE week was the DATE Party as one of
the main networking opportunities. The party took place in the Palazzo
Borghese, which is a beautiful example of neoclassic architecture in
the heart of Florence. Local delights, entertaining music, and a visit by
Leonardo da Vinci made this evening a memorable event on its own!

Figure 8.7: Further impressions from DATE 2019. (photographs DATE 2019 / © Cruz Garcia)

127

On Friday, ten workshops covered several hot topics from areas such
as Open Source and Machine Learning in EDA; Emerging Techniques
for Memories, Interconnections, and Quantum Computing; Hardware
Design, Synthesis, and Approximate Computing; as well as EDA in appli-
cation domains such as Autonomous Systems and IoT. Furthermore, an
International F1/10 Autonomous Racing Demo took place, supported by
the IEEE Council on Electronic Design Automation. This presentation of
open-source, affordable, and high-performance 1/10 scale autonomous
vehicles was a particular highlight on the last day of DATE 2019.

Exhibition Theatre Session at DATE 2019

Prof. Teich also organised an Exhibition Theatre Session on “DFG Collab-
orative Funding Instruments” on 26 March with an associated exhibition
of selected currently funded collaborative research initiatives. The ex-
hibition ran for three days (Tuesday to Thursday). The session was
chaired by German Research Foundation (DFG) program director Dr. An-
dreas Raabe who started with an introduction of which types of funding
instruments are offered in Germany, but also funding opportunities for
international cooperations. After this introduction, concrete initiatives in
the scope of topics of DATE were shortly introduced and summarised by
representatives with a majority of these initiatives also exhibiting during

Figure 8.8: Impressions from the Exhibition Theatre Session at DATE 2019. (photographs DATE
2019 / © Cruz Garcia)

128

the conference. Two Priority Programmes (SPP 1648 Software for Exas-
cale Computing and SPP 2037 Scalable Data Management for Future
Hardware), three Collaborative Research Centres (SFB 901 On-the-fly
Computing, SFB 912 Highly Adaptive Energy Efficient Computing and
SFB 876 Providing Information by Resource-Constrained Data Analysis)
and the CRC/Transregio 89 Invasive Computing, as well as the Research
Unit FOR 1800 (Controlling Concurrent Change – Towards Self-Aware
Automotive And Space Vehicles) and a Bi-National Research Project
(Conquering MPSoC Complexity with Principles of a Self-Aware Infor-
mation) used the opportunity to present newest ideas, work-in-progress
and lessons learned from the project.

Public Relations

Long Night of the Sciences 2019

Every other year, the Long Night of the Sciences electrifies the metropoli-
tan region around Nuremberg, Fürth and Erlangen. This kind of event
is the biggest in Germany with around 20,000 visitors. Researchers take
this terrific possibility to showcase their research work to the broad
audience. Also we took the chance to present our CRC. On one hand,
we demonstrated research on real-time multicore computing to visitors
who are already familiar with computer science. In turn, the demonstra-
tions opened up for interesting discussions about the characteristics of
invasive computing.

Figure 8.9: Impressions from the Long Night of the Sciences 2019 at FAU.

129

On the other hand, we introduced “InvasiTrax”, a game based on
the GraviTrax construction kit being very popular among children as a
perfect way to explain invasive computing to people who have never
heard of it before. Interactively visitors experience the differences
between a “normal” multicore system and a system built upon invasive
computing. InvasiTrax was particularly well received by children. We
are very pleased that also a lot of girls came around to get to know
InvasiTrax and learn something about invasive computing. Maybe we
could contribute to more female students deciding for a STEM study
program in the future.

Moreover, our self-made movie “InvasIC for Dummies”15 was shown,
adding a touch of multimedia to our presentation. Furthermore, we
portrayed general information about the CRC/Transregio at a poster.
All in all, we are very satisfied with the Long Night of the Sciences 2019.
We have been able to introduce invasive computing to a large number
of visitors enlarging the comprehension for this young research field
and raise awareness for computer science in general.

LZE Tech Day

The Leistungszentrum Elektroniksysteme (LZE) is a joint initiative of
the Fraunhofer-Gesellschaft, its Institutes IIS and IISB and FAU, together
with other non-university research institutions and associated industrial
partners. The LZE is breaking new ground here. With novel structures

Figure 8.10: Impressions from the LZE Tech Day 2019.

15https://www.youtube.com/watch?v=4kOQYHhnZW0

130

https://www.youtube.com/watch?v=4kOQYHhnZW0

and cooperation models between science and industry, the successful
transfer of research results has been initiated.

At the LZE Tech Day, examples from different stages of the innovation
chain were shown ranging from new wide-range wireless communica-
tion technology as a best practice for comprehensive, successful market
development, to completed research projects that are in the early stages
of exploitation, to technological development that is just beginning. We
presented an invasive parallel Shallow Water application demonstration
to raise awareness for the research work of the CRC/Transregio 89.

B2Run in Nuremberg

“Run for Fun” was the theme under which our team participated at this
year’s B2Run in Nuremberg in July. The B2Run is a company racing
series that is held at 17 locations in Germany. In Nuremberg the course
leads around the great and the small Dutzendteich with the finish in
the Max-Morlock-Stadium. Despite the very hot weather conditions all
ten runners reached the finish of the almost 6 km long running track
and enjoyed the great atmosphere. Inspired by the cheering spectators,
the team proved that they can achieve a great deal together, whether
on the PC, in the lab or in sports.

Figure 8.11: InvasIC runners at the B2Run in Nuremberg.

131

9 Awards

Emerging Talents Initiative

Dr.-Ing. Timo Hönig received a research grant by the Emerging Talents
Initiative (ETI) of FAU for his project “Energy-Aware Gearing of System
Software for Adaptive Leverage of Renewable Energies”. The project
investigates the effects of the digitisation of power grids on the system-
software design for complex computing systems (e.g. operating systems,
workload management systems). In particular, usage and utilisation
patterns of high-performance computing systems (e.g. HPC clusters)
are considered. Following on from this, it is examined how operating
patterns are applied by suitable models in control applications for the
operation of complex computer systems. This serves to reduce or in-
crease the electrical power demand of systems. Increasing the electrical
power demand is necessary in situations where power grids have to be
relieved by key consumers due to large quantities of renewable energies
within the power grid.

PhD Forum Best Poster Prize at DATE 2019 for Tobias Schwarzer

Tobias Schwarzer (FAU) received the PhD Forum Best Poster Prize at
DATE 2019 for his poster titled “System-Level Mapping and Synthesis
of Data Flow-Oriented Applications on MPSoCs” [Sch19]. The prize is
supported by EDAA, ACM Sigda and IEEE CEDA.

Figure 9.1: Tobias Schwarzer receiving the PhD Forum Best Poster Prize at DATE 2019 in Flo-
rence.

132

Best Presentation Award at the RTAS 2019 for Simon Schuster

Simon Schuster (FAU) received the Best Presentation Award for his pre-
sentation on the paper “Proving Real-Time Capability of Generic Operat-
ing Systems by System-Aware Timing Analysis” [Sch+19a] contributed
by Simon Schuster, Peter Wägemann, Peter Ulbrich and Prof. Wolfgang
Schröder-Preikschat (FAU) at RTAS 2019.

VDE Award 2019 for Nael Fasfous

Nael Fasfous (TUM) has been awarded the VDE Award 2019, in recog-
nition of his Master Thesis on the topic of “Compact Directories with
Hybrid Architecture Aware Eviction Policies for Distributed Shared Mem-
ory MPSoCs”. In his thesis, Nael proposed innovative cache eviction
strategies for Multiprocessor System-on-Chip architectures. WithinProj-
ect B5, Akshay Srivatsa was the advisor of this thesis. The VDE Award
has been given to Nael Fasfous from the Association of German Engi-
neers (Verein Deutscher Ingenieure, VDE Südbayern) on November 24,
2019.

Figure 9.2: Simon Schuster (on the left) and Nael Fasfous (on the right).

Best Poster and Presentation Award at MEMSYS 2019 for Sven Rheindt

Sven Rheindt (TUM) received the Best Poster and Presentation Award
for his presentation on the paper “Near-Memory Graph Copy Enhanced
System-Software” [Rhe+19a] contributed by Sven Rheindt, Andreas
Fried, Oliver Lenke, Lars Nolte, Thomas Wild, and Andreas Herkersdorf
(TUM) at International Symposium on Memory Systems (MEMSYS 19).

133

IEEE CS TTTC Outstanding Service Award at the DATE 2019 for
Prof. Jürgen Teich

Prof. Teich was honoured with the IEEE CS TTTC Outstanding Service
Award at the Design, Automation and Test in Europe 2019 (DATE) in
recognition of significant service as DATE 2019 General Chair.

Figure 9.3: Prof. Jürgen Teich at DATE 2019.

Best Paper Award at SAMOS XIX Conference for Akshay Srivatsa

The paper “CoD: Coherence-on-Demand – Runtime Adaptable Working
Set Coherence for DSM-based Manycore Architectures” [Sri+19] au-
thored by Akshay Srivatsa, Sven Rheindt, Dirk Gabriel, Thomas Wild and
Andreas Herkersdorf and presented at this year’s SAMOS Conference (In-
ternational Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation) received the best paper award. It extends
the already published region-based cache coherence (RBCC) approach,
which provides dynamically changeable coherence support in a tiled
manycore processor architecture, and shows design and implementa-
tion details of the Coherency Region Manager, the major component to
realise this property.

134

10 Industrial and Scientific Board

For the promotion of our ideas to the industrial community and for the
discussion with peer colleagues world-wide, we established the InvasIC
Industrial and Scientific Board. Members of the board in its current
constitution are 8 experts from 7 institutions in industry and university:

IBM

Dr. Peter-Hans Roth (IBM Böblingen)

Dr. Patricia Sagmeister (IBM Rüschlikon)

Intel

Hans-Christian Hoppe (Intel Director of ExaCluster Lab Jülich)

Siemens

Urs Gleim (Head of Research Group Parallel Systems Germany,
Siemens Corporate Technology)

University of Edinburgh

Prof. Dr. Michael O’Boyle
(Director Institute for Computing Systems Architecture)

BETTEN & RESCH Patent & Trademark Attorneys

Prof. Dr. Christoph von Praun
(European Trademark Attorney)

IAV – Automotive Engineering

Elmar Maas (IAV, Gifhorn)

Xilinx

Michaela Blott (Xilinx, Dublin)

135

11 Publications

[AKH19] H. Amrouch, H. Khdr, and J. Henkel. “Aging Effects: From
Physics to CAD”. In: Harnessing Performance Variability in Embed-
ded and High-performance Many/Multi-core Platforms. Springer,
2019, pp. 43–69.

[Ana+19] N. Anantharajaiah, F. Kempf, L. Masing, F. M. Lesniak, and J.
Becker. “Dynamic and Scalable Runtime Block-based Multicast
Routing for Networks on Chips”. In: Proceedings of the 12th In-
ternational Workshop on Network on Chip Architectures. NoCArc.
Columbus, Ohio: ACM, 2019, 10:1–10:6. DOI: 10.1145/3356045.
3360718.

[Bau+19] L. Bauer et al. “Analyses and Architectures for Mixed-Critical
Systems: Industry Trends and Research Perspective”. In: Inter-
national Conference on Embedded Software (EMSOFT). Invited
Special Session Extended Abstract. New York City, NY, USA, Oct.
2019, 13:1–13:2.

[Bra+19a] M. Brand, M. Witterauf, F. Hannig, and J. Teich. “Anytime
Instructions for Programmable Accuracy Floating-Point Arith-
metic”. In: Proceedings of the ACM International Conference on
Computing Frontiers (CF) (Alghero, Sardinia, Italy). ACM, Apr. 30–
May 2, 2019, pp. 215–219. DOI: 10.1145/3310273.3322833.

[Bra+19b] M. Brand, M. Witterauf, É. Sousa, A. Tanase, F. Hannig, and
J. Teich. “*-Predictable MPSoC Execution of Real-Time Control
Applications Using Invasive Computing”. In: Concurrency and
Computation: Practice and Experience (Feb. 2019). DOI: 10.1002/
cpe.5149.

[CCG19] J. A. Chacko, I. A. Comprés Ureña, and M. Gerndt. “Integration
of Apache Spark with Invasive Resource Manager”. In: 2019 IEEE
SmartWorld, Ubiquitous Intelligence and Computing, Advanced
and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People and Smart City
Innovation. Best Paper Award. 2019.

[CG19] M. Chadha and M. Gerndt. “Modelling DVFS and UFS for Region-
Based Energy Aware Tuning of HPC Applications”. In: IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS).
2019.

[Che+19] J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der
Brüggen. “Scheduling Self-Suspending Tasks: New and Old
Results”. In: 31st Euromicro Conference on Real-Time Systems
(ECRTS). 2019.

136

https://doi.org/10.1145/3356045.3360718
https://doi.org/10.1145/3356045.3360718
https://doi.org/10.1145/3310273.3322833
https://doi.org/10.1002/cpe.5149
https://doi.org/10.1002/cpe.5149

[Dam19] M. Damschen. “Worst-Case Execution Time Guarantees for Run-
time-Reconfigurable Architectures”. Dissertation. Chair of Em-
bedded Systems (CES), Department of Informatics, Karlsruhe
Institute of Technology, Germany, 2019.

[DBH19a] M. Damschen, L. Bauer, and J. Henkel. “WCET Guarantees for
Opportunistic Runtime Reconfiguration”. In: IEEE/ACM 38th In-
ternational Conference on Computer-Aided Design (ICCAD). West-
minster, CO, USA, Nov. 2019.

[DBH19b] M. Damschen, L. Bauer, and J. Henkel. “Worst-Case Execution
Time Guarantees for Runtime-Reconfigurable Architectures”.
Ph.D. Forum at IEEE/ACM 22nd Design, Automation and Test in
Europe Conference (DATE). Florence, Italy, Mar. 2019.

[Dam+19] M. Damschen, M. Rapp, L. Bauer, and J. Henkel. “i-Core: A
runtime-reconfigurable processor platform for cyber-physical
systems”. In: Embedded, Cyber-Physical, and IoT Systems. Ed. by
S. S. Bhattacharyya, M. Potkonjak, and S. Velipasalar. Springer
International Publishing, 2019.

[GSW19] D. Gabriel, W. Stechele, and S. Wildermann. “Resource-Aware
Parameter Tuning for Real-Time Applications”. In: Architecture
of Computing Systems – ARCS 2019. Ed. by M. Schoeberl, C.
Hochberger, S. Uhrig, J. Brehm, and T. Pionteck. Springer In-
ternational Publishing, 2019, pp. 45–55. DOI: 10.1007/978-3-
030-18656-2_4.

[Har19] T. Harbaum. “Dynamisch adaptive Mikroarchitekturen mit opti-
mierten Speicherstrukturen und variablen Befehlssätzen”. Disser-
tation. Institut für Technik der Informationsverarbeitung (ITIV),
Fakultät für Elektrotechnik und Informationstechnik, Karlsruher
Institut für Technologie (KIT), June 25, 2019.

[Hei+19a] C. Heidorn, M. Witterauf, F. Hannig, and J. Teich. “Efficient
Mapping of CNNs onto Tightly Coupled Processor Arrays”. In:
Journal of Computers (JCP) 14.8 (Aug. 2019), pp. 541–556. DOI:
10.17706/jcp.14.8.541-556.

[Hei+19b] B. Heinloth, M. Ammon, D. Nguyen, T. Hönig, V. Sieh, and
W. Schröder-Preikschat. “Cocoon: Custom-Fitted Kernel Com-
piled on Demand”. In: Proceedings of the 10th Workshop on
Programming Languages and Operating Systems (PLOS). ACM.
New York, NY, USA: ACM Digital Library, 2019, pp. 1–7. DOI:
10.1145/3365137.3365398.

[MoH19] A. Mo-Hellenbrand. “Resource-Aware and Elastic Parallel Soft-
ware Development for Distributed-Memory HPC Systems”. Dis-
sertation. Munich: Technische Universität München, 2019. URL:
http://mediatum.ub.tum.de/?id=1471007.

137

https://doi.org/10.1007/978-3-030-18656-2_4
https://doi.org/10.1007/978-3-030-18656-2_4
https://doi.org/10.17706/jcp.14.8.541-556
https://doi.org/10.1145/3365137.3365398
http://mediatum.ub.tum.de/?id=1471007

[HKR19] J. Henkel, H. Khdr, and M. Rapp. “Smart Thermal Management
for Heterogeneous Multicores”. In: Design, Automation & Test in
Europe (DATE). IEEE. 2019, pp. 132–137.

[Her19] A. Herkersdorf. “Tackling the MPSoC Data Locality Challenge
with Regional Coherence and Near Memory Acceleration”. Key-
note talk, 2019 IEEE Nordic Circuits and Systems Conference
(NorCAS). Oct. 29, 2019.

[HHS19] T. Hönig, B. Herzog, and W. Schröder-Preikschat. “Energy-De-
mand Estimation of Embedded Devices Using Deep Artificial
Neural Networks”. In: Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing (SAC). ACM Digital Library, 2019,
pp. 617–624. DOI: 10.1145/3297280.3297338.

[HMA19] F. Hundhausen, D. Megerle, and T. Asfour. “Resource-Aware
Object Classification and Segmentation for Semi-Autonomous
Grasping with Prosthetic Hands”. In: IEEE/RAS International
Conference on Humanoid Robots (Humanoids). 2019.

[JNG19] J. John, S. Narvaez R, and M. Gerndt. “Invasive Computing for
Power Corridor Management”. In: ParCo 2019: International
Conference on Parallel Computing. 2019.

[Kes+20] O. Keszocze, M. König, M. Brand, and J. Teich. “Error Analysis
for Loop Programs Using Anytime Instructions in Approximate
Computing”. In: Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen. Stuttgart,
Germany, 2020.

[KAH19] H. Khdr, H. Amrouch, and J. Henkel. “Dynamic Guardband
Selection: Thermal-Aware Optimization for Unreliable Multi-
Core Systems”. In: Transactions on Computers (TC) (2019).

[Kho19] F. Khosravi. “System-Level Reliability Analysis and Optimization
in the Presence of Uncertainty”. Dissertation. Hardware/Soft-
ware Co-Design, Department of Computer Science, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, Aug. 5, 2019.

[Kön19] M. König. Approximative Schleifen mit Anytime Instruktionen
in der Simulationsumgebung Daisy. Master Thesis. Friedrich-
Alexander University Erlangen-Nürnberg (FAU). Sept. 1, 2019.

[LMS19] A. Listl, D. Mueller-Gritschneder, and U. Schlichtmann. “MAGIC:
A Wear-leveling Circuitry to Mitigate Aging Effects in Sense
Amplifiers of SRAMs”. In: 2019 IEEE 17th International New
Circuits and Systems Conference (NEWCAS). July 2019.

[Lis+19] A. Listl, D. Mueller-Gritschneder, U. Schlichtmann, and S. Nassif.
“SRAM Design Exploration with Integrated Application-Aware
Aging Analysis”. In: Design, Automation, and Test in Europe
(DATE). Mar. 2019, pp. 1249–1252.

138

https://doi.org/10.1145/3297280.3297338

[Mae19] P. Maene. “Lightweight Roots of Trust for Modern Systems-on-
Chip”. Dissertation. Faculty of Engineering Science, KU Leuven,
Belgium, Oct. 2019.

[Mai+19] S. Maier, T. Hönig, P. Wägemann, and W. Schröder-Preikschat.
“Asynchronous Abstract Machines: Anti-noise System Software
for Many-core Processors”. In: Proceedings of the 9th Interna-
tional Workshop on Runtime and Operating Systems for Super-
computers (ROSS) (Phoenix, AZ, USA). ACM, 2019, pp. 19–26.
DOI: 10.1145/3322789.3328744.

[Mar+20] A. Marchetti-Spaccamela, N. Megow, J. Schlöter, M. Skutella,
and L. Stougie. “On the Complexity of Conditional DAG Schedul-
ing in Multiprocessor Systems”. In: IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2020.

[MLB19] L. Masing, F. Lesniak, and J. Becker. “Hybrid Prototyping for
Manycore Design and Validation”. In: Applied Reconfigurable
Computing. Springer International Publishing, 2019, pp. 319–
333.

[MMS20] M. Mettler, D. Mueller-Gritschneder, and U. Schlichtmann. “Run-
time Monitoring of Inter- and Intra-Thread Requirements on
Embedded MPSoCs”. In: 2020 33rd International Conference
on VLSI Design and 2020 19th International Conference on
Embedded Systems (VLSID) (Jan. 2020).

[Mue19] D. Mueller-Gritschneder. Advanced Virtual Prototyping and Com-
munication Synthesis for Integrated System Design at Electronic
System Level. 2019.

[Nar18] S. Narvaez. “Power model for resource-elastic applications”. Mas-
ter Thesis. Munich: Technische Universität München, 2018. URL:
http://mediatum.ub.tum.de?id=1475095.

[PNG19] R. Palutke, A. Neubaum, and J. Götzfried. “SEVGuard: Protecting
User Mode Applications using Secure Encrypted Virtualization”.
In: SecureComm 2019 Proceedings (Orlando). Springer, Oct. 24,
2019.

[PH19] A. Pathania and J. Henkel. “HotSniper: Sniper-Based Toolchain
for Many-Core Thermal Simulations in Open Systems”. In: Em-
bedded Systems Letters (ESL) (2019).

[PBB19] A. Pöppl, S. Baden, and M. Bader. “A UPC++ Actor Library
and Its Evaluation on a Shallow Water Proxy Application”. In:
Parallel Applications Workshop, Alternatives To MPI+X. IEEE.
Denver, Colorado, United States of America: IEEE, Nov. 2019.

139

https://doi.org/10.1145/3322789.3328744
http://mediatum.ub.tum.de?id=1475095

[Pou+19a] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich,
and J. Henkel. “Thermally Composable Hybrid Application Map-
ping for Real-Time Applications in Heterogeneous Many-Core
Systems”. In: 40th IEEE Real-Time Systems Symposium (RTSS).
2019.

[Pou+19b] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. “Isola-
tion-Aware Timing Analysis and Design Space Exploration for
Predictable and Composable Many-Core Systems”. In: 31th Eu-
romicro Conference on Real-Time Systems (ECRTS). Stuttgart, Ger-
many, 2019, 12:1–12:24. DOI: 10.4230/LIPIcs.ECRTS.2019.12.

[Pou+20] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. “Real-
Time Task Migration for Dynamic Resource Management in
Many-Core Systems”. In: Workshop on Next Generation Real-Time
Embedded Systems (NG-RES). 2020.

[Pou+19c] B. Pourmohseni, S. Wildermann, M. Glaß, and J. Teich. “Hard
Real-Time Application Mapping Reconfiguration for NoC-Based
Many-Core Systems”. In: Real-Time Systems (2019), pp. 1–37.
DOI: 10.1007/s11241-019-09326-y.

[Rap+19a] M. Rapp, A. Pathania, T. Mitra, and J. Henkel. “Prediction-Based
Task Migration on S-NUCA Many-Cores”. In: Design, Automation
& Test in Europe (DATE). IEEE. 2019, pp. 1579–1582.

[Rap+19b] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel.
“Power-and Cache-Aware Task Mapping with Dynamic Power
Budgeting for Many-Cores”. In: IEEE Transactions on Computers
(2019).

[Rap+19c] M. Rapp, S. Salamin, H. Amrouch, G. Pahwa, Y. Chauhan, and
J. Henkel. “Performance, Power and Cooling Trade-Offs with
NCFET-based Many-Cores”. In: Design Automation Conference
(DAC). ACM. 2019, p. 41.

[Rei+19] S. Reif, P. Raffeck, H. Janker, L. Gerhorst, T. Hönig, and W.
Schröder-Preikschat. “Earl: Energy-Aware Reconfigurable Locks”.
In: Proceedings of the 9th Embedded Operating Systems Workshop
(EWiLi). Forthcoming. ACM. New York, NY, USA: ACM SIGBED
Review, 2019.

[Rhe+19a] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkers-
dorf. “NEMESYS: Near-Memory Graph Copy Enhanced System-
Software”. In: MEMSYS 19: The International Symposium on
Memory Systems. Washington DC, 2019.

140

https://doi.org/10.4230/LIPIcs.ECRTS.2019.12
https://doi.org/10.1007/s11241-019-09326-y

[Rhe+19b] S. Rheindt, S. Maier, F. Schmaus, T. Wild, W. Schröder-Preikschat,
and A. Herkersdorf. “SHARQ: Software-Defined Hardware-Man-
aged Queues for Tile-Based Manycore Architectures”. In: Pro-
ceedings of the 19th International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS).
2019.

[RHT19] S. Roloff, F. Hannig, and J. Teich. Modeling and Simulation
of Invasive Applications and Architectures. Springer, May 2019.
168 pp. DOI: 10.1007/978-981-13-8387-8.

[Ros+18] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel.
“Preemption of the Partial Reconfiguration Process to Enable
Real-Time Computing with FPGAs”. In: ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 11.2 (Nov. 2018),
10:1–10:24. DOI: 10.1145/3182183.

[Sag+19] M. Sagi, N. A. V. Doan, T. Wild, and A. Herkersdorf. “Multi-
core Power Estimation using Independent Component Analysis
based Modeling”. In: 2019 IEEE 13th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
Oct. 2019.

[Sal+19] S. Salamin, M. Rapp, H. Amrouch, G. Pahwa, Y. Chauhan, and
J. Henkel. “NCFET-Aware Voltage Scaling”. In: International
Symposium on Low Power Electronics and Design (ISLPED). IEEE.
2019.

[Sch+19a] S. Schuster, P. Wägemann, P. Ulbrich, and W. Schröder-Preikschat.
“Proving Real-Time Capability of Generic Operating Systems
by System-Aware Timing Analysis”. In: Proceedings of the 25th
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE Computer Society, 2019, pp. 313–330. DOI:
10.1109/RTAS.2019.00034.

[Sch19] T. Schwarzer. “System-Level Mapping and Synthesis of Data
Flow-Oriented Applications on MPSoCs”. Ph.D. Forum at the
Design, Automation and Test in Europe Conference (DATE).
Ph.D. Forum Best Poster Award. Mar. 2019.

[Sch+19b] T. Schwarzer et al. “Compilation of Dataflow Applications for
Multi-Cores Using Adaptive Multi-Objective Optimization”. In:
ACM Transactions on Design Automation of Electronic Systems
24.3 (Mar. 2019), 29:1–29:23. DOI: 10.1145/3310249.

[Sie+19] V. Sieh et al. “Combining Automated Measurement-Based Cost
Modeling With Static Worst-Case Execution-Time and Energy-
Consumption Analyses”. In: IEEE Embedded Systems Letters 11.2
(June 2019), pp. 38–41.

141

https://doi.org/10.1007/978-981-13-8387-8
https://doi.org/10.1145/3182183
https://doi.org/10.1109/RTAS.2019.00034
https://doi.org/10.1145/3310249

[Sim+20] B. Simon, J. Falk, N. Megow, and J. Teich. “Energy Minimiza-
tion in DAG Scheduling on MPSoCs at Run-Time: Theory and
Practice”. In: Workshop on Next Generation Real-Time Embedded
Systems. 2020.

[Spi+19] J. Spieck, S. Wildermann, T. Schwarzer, J. Teich, and M. Glaß.
“Data-Driven Scenario-based Application Mapping for Heteroge-
neous Many-Core Systems”. In: Multicore/Many-core Systems-on-
Chip (MCSoC) (Singapore). Oct. 1–4, 2019.

[SWT19] J. Spieck, S. Wildermann, and J. Teich. “Run-Time Scenario-
Based MPSoC Mapping Reconfiguration Using Machine Learning
Models”. In: 1st ACM/IEEE Workshop on Machine Learning for
CAD (MLCAD). 2019.

[Sri+19] A. Srivatsa, S. Rheindt, D. Gabriel, T. Wild, and A. Herkersdorf.
“CoD: Coherence-on-Demand – Runtime Adaptable Working Set
Coherence for DSM-Based Manycore Architectures”. In: Embed-
ded Computer Systems: Architectures, Modeling, and Simulation.
Ed. by D. N. Pnevmatikatos, M. Pelcat, and M. Jung. Cham:
Springer International Publishing, 2019, pp. 18–33.

[TF19] J. Teich and F. Fummi. “Conference Reports: Recap of DATE
2019 in Florence, Italy”. In: IEEE Design & Test 36.4 (2019),
pp. 59–61. DOI: 10.1109/MDAT.2019.2915112.

[Tei+20a] J. Teich, P. Mahmoody, B. Pourmohseni, S. Roloff, W. Schröder-
Preikschat, and S. Wildermann. “Run-Time Enforcement of Non-
functional Program Properties on MPSoCs”. In: A Journey of
Embedded and Cyber-Physical Systems. Ed. by J.-J. Chen. Springer,
2020.

[Tei+20b] J. Teich, B. Pourmohseni, O. Keszocze, J. Spieck, and S. Wilder-
mann. “Run-Time Enforcement of Non-Functional Application
Requirements in Heterogeneous Many-Core Systems”. In: Asia
and South Pacific Design Automation Conference (ASP-DAC). Jan.
2020, pp. 629–636.

[TV19a] F. Turan and I. Verbauwhede. “Compact and Flexible FPGA Im-
plementation of Ed25519 and X25519”. In: ACM Transactions
on Embedded Computing Systems (TECS) 18.3 (2019), p. 24.

[TV19b] F. Turan and I. Verbauwhede. “Propagating Trusted Execution
through Mutual Attestation”. In: 4th Workshop on System Soft-
ware for Trusted Execution (SysTEX). Huntsville, Ontario, Canada:
ACM, 2019.

142

https://doi.org/10.1109/MDAT.2019.2915112

[WHT19] M. Witterauf, F. Hannig, and J. Teich. “Polyhedral Fragments:
An Efficient Representation for Symbolically Generating Code
for Processor Arrays”. In: Proceedings of the 17th ACM-IEEE In-
ternational Conference on Formal Methods and Models for System
Design (MEMOCODE) (San Diego, CA, USA). IEEE, Oct. 9–11,
2019.

[WS19] A. Würstlein and W. Schröder-Preikschat. “T-IBE-T: Identity-
Based Encryption for Inter-Tile Communication”. In: Proceedings
of the 12th European Workshop on Systems Security (EuroSec).
ACM Digital Library, 2019, pp. 1–6. DOI: 10.1145/3301417.
3312500.

[Zha+20] G. L. Zhang, M. Brunner, B. Li, G. Sigl, and U. Schlichtmann.
“Timing Resilience for Efficient and Secure Circuits”. In: 25th
Asia and South Pacific Design Automation Conference (ASP-DAC).
Jan. 2020.

143

https://doi.org/10.1145/3301417.3312500
https://doi.org/10.1145/3301417.3312500

	Preface
	Contents
	I Invasive Computing
	About InvasIC
	Participating University Groups

	II Research Program
	Overview of Research Program
	Research Projects
	A1: Basics of Invasive Computing
	A4: Characterisation and Analysis of Invasive Algorithmic Patterns
	A5: Scheduling Invasive Multicore Programs Under Uncertainty
	B1: Adaptive Application-Specific Invasive Micro-Architectures
	B2: Invasive Tightly-Coupled Processor Arrays
	B3: Power-Efficient Invasive Loosely-Coupled MPSoCs
	B4: Generation of Distributed Monitors and Run-Time Verification of Invasive Applications
	B5: Invasive NoCs and Memory Hierarchies for Run-Time Adaptive MPSoCs
	C1: Invasive Run-Time Support System (iRTSS)
	C3: Compilation and Code Generation for Invasive Programs
	C5: Security in Invasive Computing Systems
	D1: Invasive Software–Hardware Architectures for Robotics
	D3: Invasive Computing and HPC
	Z: Central Services
	Z2: Validation and Demonstrator

	Working Groups
	WG1: Run-Time Requirement Monitoring and Enforcement
	WG2: Memory Models, Architecture and Management
	WG3: Benchmarking and Evaluation
	WG4: Power and Thermal Aspects

	III Events and Activities
	Internal Meetings
	Training Courses
	InvasIC Activities
	Awards
	Industrial and Scientific Board
	Publications

