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Preface

This report summarises the activities and scientific progress of the
Transregional Collaborative Research Centre 89 “Invasive Computing”
(InvasIC) in 2016.

The CRC/Transregio InvasIC is funded by the Deutsche Forschungs-
gemeinschaft in its second funding phase from July 2014 – July 2018.
The research association aggregates about 60 of the best researchers
from three excellent sites in Germany (Friedrich-Alexander-Universität
Erlangen-Nürnberg, Karlsruher Institut für Technologie, Technische Uni-
versität München). This scientific team includes specialists in algorithm
engineering for parallel algorithm design, hardware architects for recon-
figurable MPSoC development as well as language, tool and application,
and operating-system designers.

Exciting events in 2016 certainly were two Dagstuhl Seminars co-
organised by members of our CRC/Transregio. In January, Prof. Dr.
Michael Gerndt (TUM) and Prof. Dr.-Ing. Michael Glaß (FAU) organised
and coordinated the Seminar 16052 on “Dark Silicon: From Embedded
to HPC Systems”. Prof. Dr.-Ing. Jürgen Teich (FAU) and Prof. Dr. Ir. Ingrid
Verbauwhede (KU Leuven, BE) were the organisers of the Seminar 16441
“Adaptive Isolation for Predictability and Security”, which took place in
October.

2016 also was an outstanding year concerning the professional success
of three members of the CRC/Transregio: Prof. Dr.-Ing. Michael Glaß
(FAU), Dr.-Ing. Muhammad Shafique (KIT) and PD Dr.-Ing. habil. Daniel
Lohmann (FAU) were appointed as professors at the highly reputable
universities of Ulm, Vienna, and Hanover, respectively.

We would like to thank all members of the CRC/Transregio InvasIC
and all our partners from industry and academia for the fruitful collabo-
rations and inspiring discussions in the last year! We do hope that you
will enjoy reading about the progress achieved in 2016, as well as about
our research planned for the following years.

Jürgen Teich
Coordinator
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1 About InvasIC

The Idea of Invasive Computing

The main idea and novelty of invasive computing is to introduce resource-
aware programming support in the sense that a given program gets the
ability to explore and dynamically spread its computations to processors
similar to a phase of invasion, then to execute portions of code of high
parallelism degree in parallel based on the available (invasible) region
on a given multi-processor architecture. Afterwards, once the program
terminates or if the degree of parallelism should be lower again, the
program may enter a retreat phase, deallocate resources and resume
execution again, for example, sequentially on a single processor. To
support this idea of self-adaptive and resource-aware programming,
new programming concepts, languages, compilers and operating sys-
tems are necessary as well as architectural changes in the design of
MPSoCs (Multi-Processor Systems-on-a-Chip) to efficiently support inva-
sion, infection and retreat operations by involving concepts for dynamic
processor, interconnect and memory reconfiguration. Decreasing fea-
ture sizes have also led to a rethinking in the design of multi-million
transistor system-on-chip (SoC) architectures, envisioning dramatically
increasing rates of temporary and permanent faults and feature varia-
tions.

As we can foresee SoCs with 1000 or more processors on a single chip
in the year 2020, static and central management concepts to control the
execution of all resources might have met their limits long before and
are therefore not appropriate. Invasion might provide the required self-
organising behaviour to conventional programs for being able to provide
scalability, higher resource utilisation, required fault-tolerance and, of
course, also performance gains by adjusting the amount of allocated
resources to the temporal needs of a running application. This thought
opens a new way of thinking about parallel algorithm design. Based
on algorithms utilising invasion and negotiating resources with others,
we can imagine that corresponding programs become personalised ob-
jects, competing with other applications running simultaneously on an
MPSoC.
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First Achievements

A Transregional Collaborative Research Centre aggregating the best
researchers from three excellent sites in Germany provides an ideal base
to investigate the above revolutionary ideas. Starting off at basically
zero in terms of invasive processor hardware, language, compiler, and
operating-system availability, we have truly fostered the fundamentals of
invasive computing in our first funding phase: These include the defini-
tion of required programming language elements for the specification of
invasion operations as well as a set of constraints to argue about number,
types, and state of resources that may be invaded defining the invasive
command space (Project Area A). A first invasive language based on the
language X10 by IBM as well as a compiler for translation of invasive
X10 programs (Project Area C) onto a heterogeneous invasive multi-tile
architecture that has also been successfully jointly architected (Project
Area B) is meanwhile ready for experimentation on an FPGA-based
prototype (Project Z2). The compiler interfaces to the invasive run-
time support system iRTSS that provides for dedicated operating-system
support for invasive computing. First invasive applications exploiting
different types of processor and communication resources of an inva-
sive network-on-chip (iNoC) are running successfully and have shown
considerable gains in resource utilisation and computational efficiencies
in comparison with their non-invasive counterparts.

Current Scientific Goals

A unique jewel of invasive computing, however, has not been exploited
at all so far: By the fact that resources are temporally claimed (by
default) in an exclusive manner, interferences due to multiple applica-
tions sharing the same resources being the reality on today’s multicore
systems may be reduced if not avoided completely. Moreover, run-to-
completion is the default mode of thread execution. Finally, memory
reconfiguration and isolation as well as bandwidth guarantees on the
designed network-on-chip allow us also to provide predictable QoS also
for communication.

In the current funding phase, we play out this ace systematically
by tackling (a) predictability of (b) multi-objective execution qualities
of parallel invasive programs and including their (c) optimisation and
exploration of design space. Our joint investigations include new lan-
guage constructs to define so-called requirements on desired, respectively
amended qualities of execution. Application-specified qualities may not
only be of type performance (e. g. execution time, throughput, etc.),
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but do also include aspects of security and fault tolerance. Through
analysis of application requirements from different domains including
stream processing and malleable task applications, not only efficiency
but also predictable execution qualities shall be demonstrated for appli-
cations stemming from robotics, imaging, as well as HPC. As another
new yet very important facet of invasive computing, a special focus in
the current funding phase is devoted to the problem of dark silicon and
energy-efficient computing.

Long Term Vision

With the aforementioned fundamental investigations in mind, we intend
to demonstrate that invasive computing will be a—if not the—vehicle
for solving many current problems of multicore computing today by
providing resource awareness for a mixture of best-effort applications
and applications with predictable quality. We do expect that a huge
application and business field in embedded system applications might
be accessed through the foundations of invasive computing.
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2 Participating University Groups

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Hardware-Software-Co-Design
– Prof. Dr.-Ing. Jürgen Teich

– Prof. Dr.-Ing. Michael Glaß

– Dr.-Ing. Frank Hannig

– Dr.-Ing. Stefan Wildermann

Lehrstuhl für IT-Sicherheitsinfrastrukturen
– Prof. Dr.-Ing. Felix Freiling

Lehrstuhl für Verteilte Systeme und Betriebssysteme
– Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

– PD Dr.-Ing. Daniel Lohmann

Karlsruher Institut für Technologie

Institut für Anthropomatik und Robotik
– Prof. Dr.-Ing. Tamim Asfour

Institut für Programmstrukturen und Datenorganisation
– Prof. Dr.-Ing. Gregor Snelting

Institut für Technik der Informationsverarbeitung
– Prof. Dr.-Ing. Jürgen Becker

Institut für Technische Informatik
– Prof. Dr.-Ing. Jörg Henkel

– Dr.-Ing. Lars Bauer

Technische Universität München

Lehrstuhl für Entwurfsautomatisierung
– Prof. Dr.-Ing. Ulf Schlichtmann

Lehrstuhl für integrierte Systeme
– Prof. Dr. sc. techn. Andreas Herkersdorf

– Prof. Dr.-Ing. Walter Stechele

– Dr.-Ing. Thomas Wild
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Lehrstuhl für Rechnertechnik und Rechnerorganisation
– Prof. Dr. Michael Gerndt

Lehrstuhl für Technische Elektronik
– Prof. Dr. rer. nat. Doris Schmitt-Landsiedel

Lehrstuhl für Wissenschaftliches Rechnen
– Prof. Dr. Hans-Joachim Bungartz

– Prof. Dr. Michael Bader
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3 Overview of Research Program

To investigate the main aspects of invasive computing, the CRC/Tran-
sregio is organised in five project areas:

Area A: Fundamentals, Language and Algorithm Research
Research in project area A focuses on the basic concepts of invasion and
resource-aware programming as well as on language issues, algorithmic
theory of invasion and on analysis and optimisation techniques for
application characterisation and hybrid (mixed static/dynamic) core
allocation.

Area B: Architectural Research
Project area B investigates micro- and macroarchitectural requirements,
techniques and hardware concepts to enable invasive computing in
future MPSoCs.

Area C: Compiler, Simulation and Run-Time Support
The focus of project area C is on software support for invasive computing
including compiler, simulation and operating-system functionality as
well as on design space exploration with a special focus on run-time
management.

Area D: Applications
Applications serve as demonstrators for the diverse and efficient de-
ployment of invasive computing. The applications have been chosen
carefully from the domains of robotics and scientific computing in order
to demonstrate distinct and complementary features of invasive comput-
ing, for example its capability to provide quality-predictable execution
of parallel programs.

Z2: Validation and Demonstrator
A hardware demonstrator will serve again as the key concept for vali-
dation of invasive computing principles. It will allow for co-validation
and demonstration of invasive computing through tight integration of
hardware and software research results at the end of the second project
phase and to decide on the further roadmap of specific hardware for
invasive computing.

The four working groups Predictability, Memory Hierarchy, Bench-
marking and Evaluation and Power Efficiency and Dark Silicon de-
fined on top of these project areas support the interdisciplinary research.
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Research Area Project

A: Fundamentals,
Language and
Algorithm Research

Basics of Invasive Computing A1
Prof. Dr.-Ing. J. Teich, Prof. Dr.-Ing. G. Snelting,
Dr.-Ing. S. Wildermann

Design-Time Characterisation and Analysis of Invasive
Algorithmic Patterns A4
Prof. Dr.-Ing. M. Glaß, Prof. Dr. M. Bader

B: Architectural
Research

Adaptive Application-Specific Invasive Microarchitecture B1
Prof. Dr.-Ing. J. Henkel, Dr.-Ing. L. Bauer,
Prof. Dr.-Ing. J. Becker

Invasive Tightly-coupled Processor Arrays B2
Prof. Dr.-Ing. J. Teich

Power-Efficient Invasive Loosely-Coupled MPSoCs B3
Prof. Dr.-Ing. J. Henkel, Prof. Dr. sc. techn. A. Herkersdorf

Hardware Monitoring System and Design Optimisation for
Invasive Architectures B4
Prof. Dr. rer. nat. D. Schmitt-Landsiedel,
Prof. Dr.-Ing. U. Schlichtmann

Invasive NoCs -– Autonomous, Self-Optimising
Communication Infrastructures for MPSoCs B5
Prof. Dr.-Ing. J. Becker, Prof. Dr. sc. techn. A. Herkersdorf,
Prof. Dr.-Ing. J. Teich

C: Compiler, Simulation
and Run-Time Support

Invasive Run-Time Support System (iRTSS) C1
Prof. Dr.-Ing. W. Schröder-Preikschat, PD Dr.-Ing. D. Lohmann,
Prof. Dr.-Ing. J. Henkel, Dr.-Ing. L. Bauer

Simulative Design Space Exploration C2
Dr.-Ing. F. Hannig

Compilation and Code Generation for Invasive Programs C3
Prof. Dr.-Ing. G. Snelting, Prof. Dr.-Ing. J. Teich

Security in Invasive Computing Systems C5
Prof. Dr.-Ing. F. Freiling, Prof. Dr.-Ing. W. Schröder-Preikschat

D: Applications

Invasive Software-Hardware Architectures for Robotics D1
Prof. Dr.-Ing. T. Asfour, Prof. Dr.-Ing. W. Stechele

Invasion for High-Performance Computing D3
Prof. Dr. H.-J. Bungartz, Prof. Dr. M. Bader, Prof. Dr. M. Gerndt

Z: Administration
Validation and Demonstrator Z2
Prof. Dr.-Ing. J. Becker, Dr.-Ing. F. Hannig, Dr.-Ing. T. Wild

Central Services Z
Prof. Dr.-Ing. J. Teich

WG: Working Groups

Predictability WG1
Prof. Dr. M. Gerndt, Prof. Dr.-Ing. M. Glaß

Memory Hierarchy WG2
Dr.-Ing. L. Bauer, Prof. Dr.-Ing. G. Snelting

Benchmarking and Evaluation WG3
Prof. Dr. M. Bader, Prof. Dr.-Ing. W. Stechele

Power Efficiency and Dark Silicon WG4
Dr.-Ing. F. Hannig, Prof. Dr.-Ing. J. Henkel
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A1

4 Research Projects

A1: Basics of Invasive Computing

Jürgen Teich, Gregor Snelting, Stefan Wildermann

Andreas Zwinkau, Andreas Weichslgartner

The goal of Project A1 is to develop a programming model and the
theoretical foundations for enforcing predictability of invasive program
execution with multiple non-functional requirements. Research focuses
on (a) a formal semantics and a nonstandard (dependent) type system
of the invasive core language to provide resource usage guarantees and
a memory model for invasive architectures, (b) programming extensions
to express typical invasive programming patterns and non-functional
requirements and to alleviate formal program analysis, and (c) run-time
management strategies for feasible and optimal program execution. We
describe our results obtained in these research areas during 2016 in the
following.

*-Predictability

In [Tei+16], we have defined the notion of *-predictability. It is driven
by the fact that in many application domains, not a single but multiple
non-functional requirements have to be enforced at the same time like,
e. g. a timing deadline and a maximum power budget. The definition
of *-predictability for a program implementation p under predictability
analysis is given as follows.

Definition Let o denote a non-functional property of a program (imple-
mentation) p, which has the input space given by I and state space of the
execution environment given by Q. The predictability (marker) of objective
o for program p is described by the interval

o(p,Q, I) = [info(p,Q, I), supo(p,Q, I)]

where inf and sup denote the infimum and supremum under variation of
all states q ∈ Q and inputs i ∈ I, respectively.
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Figure 4.1: Pareto-front showing multiple program implementations pi with two objectives each
being uncertain but bounded by an interval. Also shown constraints (bounds) that
must not be violated (from [Tei+16]).

As an example, a program p that under the uncertainty of dynamic
power management and input leads to a total power consumption P
between 1 and 2 W is described by P (p,Q, I) = [1, 2]. Moreover, this
interval could be refined to be either assumed as a uniform distribution
or by any other discrete or continuous distribution. However, in our
work, we only assume upper and lower bounds on such non-functional
properties.

The result of a *-predictability analysis is a Pareto-front of multiple
implementations pi of an invasive program under analysis, each being
uncertain but bounded by an interval in its objectives as depicted in
Figure 4.1. Implementations are characterised by intervals in the objec-
tive space. Implementations which intervals exceed upper and/or lower
bounds violate requirements and are infeasible (implementations with
red uncertainty intervals in the figure).

Invasive Programming for *-Predictability

Invasive computing propagates resource-aware programming. However,
it might be difficult or even impossible for a programmer to specify by
hand constraints on number and type of resources in order to achieve a
desired *-predictability of program execution. For (automatic) analysis
of complex programs, appropriate higher level abstractions on compu-
tation and communication are necessary for performance analysis and
optimisation. In [Rol+16], Project C2, Project C4, and Project A1 have
presented actorX10, an X10 library of a formally specified actor model
based on the APGAS principles. The realised actor model explicitly
exposes communication paths and decouples these from the control

18
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1 public static def main(args:Rail[String]) {
2 /* Declare actors */
3 val v1 = new SourceActor("v1");
4 val v2 = new Filter1_1Actor("v2");
5 val v3 = new Filter2Actor("v3");
6 // ...
7
8 /* Declare actor graph with requirements */
9 // Performance Requirements
10 @REQUIRE("ag", new Latency(0,110,"ms","hard"))
11 @REQUIRE("ag", new Throughput(20,40,"fps","soft"))
12 // Reliability Requirement
13 @REQUIRE("ag", new PFH(0.001, 0.0000001))
14 // Power Requirement
15 @REQUIRE("ag", new Power(1,2,"W","soft"))
16 // Security Requirement
17 @REQUIRE("ag", new Confidentiality(50))
18 val ag = new ActorGraph("ag");
19
20 // Add actors and connect them
21 ag.addActor(v1);
22 ag.addActor(v2);
23 // ...
24 ag.connectPorts(v1.outPort1, v2.in);
25 ag.connectPorts(v1.outPort2, v3.in);
26 ag.connectPorts(v2.out, v4.in);
27 // ...
28
29 /* This statement is replaced by the design flow */
30 ag.start();
31 }

Figure 4.2: Example of an actor graph generation and execution in actorX10 as well as annotations
regarding requirements on objectives (from [Wil+16]).

flow of the concurrently executed application components. Furthermore,
we have enriched the invasive programming language with the option
to specify so-called requirements on objectives of execution to express
allowable uncertainty intervals rather than specifying constraints on
resources [Wil+16].

Figure 4.2 shows an example of how to construct and execute an
actor graph in actorX10, as well on how to specify requirements on non-
functional execution properties by means of the @REQUIRE annotation.
The figure illustrates requirements regarding lower and upper bounds
on end-to-end latency and throughput (lines 10 and 11), intervals on
the allowed probability of failures per hour (line 13), and on power
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consumption (line 15), as well as a security requirement (line 17). Soft
requirements should be satisfied but infrequent violations are tolerated.
Whereas, hard requirements must never be violated.

Hybrid Application Mapping
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Figure 4.3: Overview of the methodology for predictable hybrid application mapping of applications
with predictable timing and other non-functional requirements onto tile-based MPSoCs
(from [Wil+16]).

For predictable multicore program execution, we propose a design flow
which automatically determines resource constraints that will fulfil a set
of given requirements. Subsequently, the requirement pragmas in the
X10 source code are automatically replaced by the respective set of claim
constraints. The flow implements a hybrid application mapping (HAM)
approach for achieving run-time predictability by combining design-
time analysis of application mappings with their run-time management,
see Figure 4.3. In an invasive architecture, constituting an MPSoC of
heterogeneous compute tiles connected by a network-on-chip (NoC),
various mappings onto different resource constellations are possible.
The idea of HAM is to identify those constellations that fulfil given
timing constraints and possible other user requirements by applying a
design space exploration (DSE) of resource allocations (resource claims)
and task mappings. Each such constellation is called an operating point
of the program, representing a program implementation with intervals
[info(p,Q, I), supo(p,Q, I)] not exceeding the bounds specified in the
user requirements.
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We have elaborated different analysis techniques: A first approach
for timing analysis of invasive architectures is presented in [Wil+16].
Analysis for enhancing security, particularly by avoiding side-channels
on shared resources, is presented in [Wei+16; Dre+16]. Furthermore,
[WT16; Lar+16] present HAM techniques for increasing fault tolerance
on invasive network-on-chip architectures. Finally, analysis can also be
performed by evaluation via simulation [Tei+16]. However, in this case,
only average case results can be analysed.

The mapping constellation information explored in DSE is then used
by the run-time management to find a concrete application mapping at
run time. Each time an application with *-predictability requirements is
activated, the run-time management checks whether a feasible applica-
tion mapping exists that corresponds to one of the operating points with
verified requirement bounds. Only in this case, the application is started
according to the resource constellation corresponding to that point.

Combat Demonstration

We invested a lot of manpower into advancing the stability of our
platform, to demonstrate the benefits of invasive computing in a full-
stack scenario. In cooperation with Project C1 and other projects, several
fixes were developed for the compiler runtime, agent system, and the
operating system. In September, we demonstrated for the first time a
realistic combat scenario using our full software stack to our industry
board.

The visualisation in Figure 4.4 shows one moment in time during
such a combat. The two applications are “Multigrid” and “Integrate”.
In the figure scenario Integrate is started twice to enforce a competi-
tion, since the architecture is big enough to satisfy one Multigrid and
one Integrate completely. Multigrid is a heat dissipation simulation
of a laser engraving a metal plate. It uses a multigrid solver for the
linear equations involved. The multigrid approach implies a v-cycle,
where periodically fewer resources are required. Integrate computes
an integral numerically using a job-queue framework. The hardest part
about this is the load balancing, since it is unpredictable, which parts of
the function are steeper, which requires more precise evaluation. We
developed a generic job-queue framework, which is used here. It does
load balancing within tiles and across tiles.

For the visualisation of the resource needs over the whole execution
time, see Figure 4.5. Both applications have a very dynamic resource
need. In the environment, there were enough resources for both at all
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Figure 4.4: This image shows a graphical representation of an invasive MPSoC architecture, with
8 tiles, 6 cores each (except one I/O tile in the bottom left). Three applications (blue,
pink and green) bargain about the resources. Tile 5 is completely owned by the pink
application, while the others are shared. The red core in tile 0 is the “main” application,
which spawns the other three.1

times. By adding a third application or using a smaller architecture, an
competition on resources arises.

The next steps are to demonstrate on not just the software stack,
which runs on a Linux host system. We want to exploit the features
of the invasive hardware projects. Unfortunately, the reliability of a
house cards exponentially decreases when you add more layers. Like-
wise, various errors in hard- and software currently prevent us from
benchmarking the whole stack.

X10 Memory Model

As a foundation for further formalisation we developed a memory model
for the X10 programming language [Zwi16]. The memory model is an
important part of the specification for the compiler, which must correctly
map the language’s memory model to the target architecture’s memory
model.

1Visualisation is based on tool InvadeVIEW developed and provided by Project C2.
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Figure 4.5: A resource plot of an execution like in Figure 4.4. The upper plot shows the cores
used per application, the lower plot is the same in a stacked format. The Multigrid
application (pink) features a cyclic resource need, while the Integrate applications (blue
and green) has an unpredictable changing resource need. The period of Multigrid
changes depending an the amount of available resources and how its cores are
distributed across the architecture. More tiles with the same total amount of cores
requires more communication and time.

Since X10 is a language initially designed for High-Performance Com-
puting, performance has a high priority for its design. Therefore, the
memory model must not burden the compiler with restrictions, such that
fast execution becomes virtually impossible. On the other hand, safety is
also important, so users can trust the results of the computations. There
are three back ends for the compiler: Java, C++, and assembly. The
C++ mapping requires two noteworthy design choices: a) data races
are undefined behaviour and b) termination can be assumed. If the
X10 memory model would define the behaviour for data races (like the
Java memory model does), the compiler would have to remove all data
races, when compiling to C++. This removal would significantly hurt
performance, since many barrier instructions would have be inserted.
Likewise, C++ assumes that non-trivial loops terminate, so X10 must
do as well. An example is shown in Figure 4.6.

The X10 memory model we developed is simpler than the Java and
the C++ memory model, thanks to the design of X10. For example,
X10 has no object finaliser, which arguably were a mistake in Java. Also,
there are no threads to join and no reflection in X10, compared to Java.
C++ requires to elaborate the model to provide relaxed operations
of atomics. This might eventually be desirable for X10 to improve
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1 def foo(y:int,n:int):void {
2 var x:int = 0;
3 while (x < y) { x += n; }
4 }

Figure 4.6: We store the local variables x, y, n in registers, so there is no memory access within
the loop. During the execution there is no “action” (see below) with respect to the
memory model, so we consider the loop empty. Additionally, x is not used after the
loop, so we do not care about its value. We cannot guarantee termination, since n
might be zero. Still, the compiler can remove the loop.

performance, but is not available in the current version.
Figure 4.7 gives an impression of the memory model. It shows an

activity being created and finishing, which corresponds to thread cre-
ation and termination in Java/C++. The arrows are “happens before”
relations, of which there are two kinds. Program order for intra-activity
relations and synchronises-with for inter-activity relations. The memory
model is built on traces of execution, which means only one specific
interleaving is shown here, where load of x happens after 42 is stored.

We also discovered that the @Volatile annotation and the Fences
class have broken semantics and/or behaviour. Our proposal to remove
them has been discussed with the language authors.

X10 is an APGAS language and provides features explicitly for dis-
tributed computing. For the memory model, this was not relevant. Since
the only mechanism for distributed communication at is subject to
program order, so there is no additional ordering necessary within the
memory model. We only identified one case, where it can matter, which
is the Rail.asyncCopy method. However, such exceptional cases should
be handled in the method documentation, but not in the core memory
model. This specific method uses internal runtime features, which are
not accessible to application code.

Abstract Core Calculus

Our work on the abstract core calculus (WP A1.4) has been delayed,
to provide additional man power to the development of the integrated
demonstration platform partially shown in the visualization above.

A variation of this topic is developed in the dissertation of Andreas
Zwinkau, but not yet published. Instead of a calculus with precise
semantics, he proposes a model, which specifies valid behaviour of
resource management according to resource constraints. This approach
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1 finish {
2 async {
3 atomic { r = x; }
4 }
5 atomic { x = 42; }
6 }

activity creation

x = 42

start of activity

r = x

end of activity

global termination

Figure 4.7: An example execution of an activity life cycle as written in the code on the left. Each
box is an action. The thick arrows are synchronise-with edges and the dotted arrows
show program order. The figure demonstrates the difference between “activity creation”
and “start of activity” actions.

avoids the problem that a calculus must specify the behaviour of the
agent system.

Invasive Programming Patterns

Last year, we worked on the job queue pattern. The actor pattern,
described above, became the focus now. Since implementation is not
yet finished, we will continue with this work package in 2017 although
the working plan allocates no resources there. This is possible, since we
finished the memory model work package early.
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A4: Design-Time Characterisation and Analysis
of Invasive Algorithmic Patterns

Michael Glaß, Michael Bader

Tobias Schwarzer, Behnaz Pourmohseni, Alexander Pöppl

Project A4 investigates existing, develops novel, and analyses invasive
algorithmic patterns w. r. t. diverse qualities of execution to exploit the
resource awareness of invasive computing. The research focuses on (a)
stencil computation and non-regular tree traversals as invasive algo-
rithmic patterns inspired by the invasive applications from Projects D1
and D3 and (b) design-time characterisation techniques for the deriva-
tion of sets of optimised and diverse operating points by considering
symmetries and system services of a given heterogeneous invasive many-
core architecture. Figure 4.8 depicts the core topics and design flow
investigated in Project A4.

In 2016, Project A4 focussed on two main topics, which are detailed in
the following sections: (I) An extension of the X10 language to support
actor-based design was developed together with Project C2 and Proj-
ect A1, and a respective version of the shallow water waves simulation
was developed for actorX10. (II) A novel technique for the distillation
of operating points, i. e. the selection of a subset of the operating points
delivered by the design-time characterisation to be passed to the iRTSS.

SWE-X10 – An actor-based proxy application

SWE-X10 is a proxy application for the simulation of shallow water
waves [PB16; PBSG16]. In collaboration with Project A1 and Project C2,
we developed actorX10 [Rol+16], an actor library that enables the
creation of actor-based applications with a finite-state-machine-based
control flow. Our earlier task-based version of SWE-X10 was amended
to use actorX10, and the semantics of the execution was changed to
resemble the semantics of the finite state machine (FSM). We demon-
strated that FSMs, as part of the actor-oriented parallel programming
model, can be used to identify parts of the computational domain that
are not updated: following a lazy activation paradigm, respective com-
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Figure 4.8: Project A4 in a nutshell: The co-design of invasive algorithmic patterns and a design-
time characterisation as novel contribution to invasive computing shall result in perfor-
mance gains and enable predictability by providing statically analysed operating points
(tuples of claim constraints and quality numbers) to the invasive run-time system for
dynamic resource allocation.

pute resources could be invaded only when they are actually needed.
The actor approach also allows Cartesian grid patches to propagate in
time without global control.

As a key feature, the actor approach prepares the use of methods for
design-time characterisation: using analysis techniques or short sample
simulations to evaluate performance numbers of simulation phases, this
approach not only allows for optimisation of various parameters such as
patch sizes, distributions, or load balancing, but also for exploring trade-
offs between performance, the number of used components, energy
consumption etc.

Lazy Activation via actorX10 To realise actor-based lazy activation, we
model the communication between patches of the discretisation grid via
actors that communicate via channels – Figure 4.9 shows such an actor
graph with 3× 3 actors, illustrating all channels and their capacities.

With lazy activation, simulation patches will remain in an initial
steady state until the propagating wave enters the respective patch. We
avoid superfluous computations on such patches by assigning each actor
an attribute that stores its activity status. Initially, the status of each
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Figure 4.9: Actor graph for a simulation with 3× 3 actors/patches. Each actor (node of the graph)
controls a patch of the simulations domain (compare Figure 4.10). Each edge in the
graph represents a channel between actors. The number of black circles on a channel
reflects its capacity. The data type is denoted by C (control information) and D (ghost
layer data).

actor is set based on the scenario’s initial condition – usually only a
few patches will be activated from the start. Figure 4.10 shows four
snapshots from a simulation run with enabled lazy activation, where
more and more patches are activated as the simulation progresses.

Figure 4.11 illustrates the FSM-based coordination. As a first step, all
actors in the simulation send their activity status to their neighbours
using the control channels (sendActivation()). Actors with an initial
perturbation of the water level are set to the state propagating-wave,
while the rest is set to lake-at-rest. Then, active actors perform the simu-
lation steps (computeStep()) once they receive all necessary updates
(recvActive()). During computation of the update, the patch determines
for each of its copy layers whether the update actually changes any val-
ues. If changes occurred or if the neighbouring actor is already active,
the updated layer will be sent. If the neighbour is still inactive, the actor
will also send a control message stating that updates are now available
(sendActivation()). Upon receiving the message (recvActivation()), a
neighbour in the lake-at-rest state will set itself to propagating-wave
and announce its new activity status to all neighbours (sendStatus()).
Finally, once an actor has reached the termination condition, it will
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Figure 4.10: Simulation run with 8 × 8 actors using lazy activation. As the wave propagates
(starting in the lower-left corner), more and more actors become active. Dark blue
patches represent lazy patches; lighter patches are active.

send a termination signal (sendTerm()) to other actors, which will be
propagated until no more actors are active (recvTerm()).

Benefit due to lazy activation We evaluated the benefit of lazy activa-
tion of patches via the actor approach by determining the accumulated
CPU time (‘CPU hours’). Assuming that inactive actors could remain in
an idle state, we accumulated the total time spent for useful computing
on each CPU. For a scenario similar to that in Figure 4.10 on 8 CPUs,
we found significant reduction in CPU hours (approx. 55 % compared
to without lazy activation). Turning this theoretical gain in CPU hours
into actual reduced execution time (or reduced amount of resources
in general) will require invasive techniques, for example migration of
actors based on the computation of best-possible operation points.

Outlook on Adaptivity and Local Time Stepping Our goal for the project
is to extend the approach to block-adaptive meshes with local time
stepping, as described by LeVeque2. Here, fine-level meshes would
overlay with coarse-level meshes, would only be activated on demand
and be controlled by the actors’ finite state machines, triggering load-
balancing or migration based on a performance characterisation.

2R. LeVeque, D. George, and M. Berger. “Tsunami modelling with adaptively refined
finite volume methods”. In: Acta Numerica 20 (May 2011), pp. 211–289. DOI: 10.
1017/S0962492911000043.
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Figure 4.11: Finite State machine for the simulation actor. Methods written in italics are guard
functions, and functions written in normal letters are actions.

Local time stepping will exploit the FSM semantics provided by the
actor model. For example, actors communicating with neighbouring
actors running at only half of the time step size (e. g. due to higher
resolution) might use two separate states to deal with ghost layer data:
one state for steps where a communication is needed and another state
when the previously received data needs to be interpolated.

Dynamic adaptivity will especially make load balancing more com-
plicated. Actors with a highly refined grid will have a significantly
higher computational load. Hence, we will either need to allow splitting
of actors, and allow actors to have more than one neighbour in each
direction. Or we could make the assignment of actors to patches and
cores more flexible and, for example, assign several cores (maybe even
on accelerators) to the computation of refined patches.

Operating Point Distillation

Given multiple quality objectives (e. g. performance, energy efficiency, or
reliability) and a number of resource objectives (i. e. number of required
processing resource of each type), the DSE (Design Space Exploration)
used in hybrid application mapping (HAM) techniques typically delivers a
substantially large set of operating points, handling of which may impose
an intolerable overhead to the RM (Run-time Manager). Therefore, it is
necessary to reduce the number of the points before providing them to
the RM, a reduction process Project A4 calls operating point distillation.

In [PGT17], we proposed an automatic operating point distillation
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approach that can be seamlessly integrated into the standard hybrid
application mapping flow as illustrated in Figure 4.12. Given a set of
Pareto-optimal operating points in the space of quality objectives and
resource objectives (i. e. one objective per resource type), the proposed
mechanism distils a subset—configurable in size—of operating points. It
is distilled in such a way that (1) a diverse set of trade-off alternatives in
the quality objectives is delivered to meet the—at design time unknown—
run-time quality requirements, while (2) distilled points exhibit modest
yet diverse resource requirements to enhance the embeddability of the
application in view of a dynamic run-time resource availability. To
achieve this, we separated the quality objectives from the resource
objectives and employed a novel two-level distillation mechanism as
follows: In the first step, the space of quality objectives is subdivided
into regions of comparable quality trade-offs. To obtain the regions,
an exponentially-spaced hyper-grid is placed in the normalised space
of quality objectives where the number of divisions per objective is
adaptive to the intended number of operating points and each grid cell
represents one quality region. This is illustrated in Figure 4.13 (left). In
the second step, from each quality region with efficient quality trade-offs
(highlighted cells in Figure 4.13), one representative operating point

32



A4

1

1

K

K
Quality Objective #2

Q
u
al
it
y
O
b
je
ct
iv
e
#
1

0 2 4 6 8 10

0

2

4

6

8

1
2

Resource Type #2

R
es
ou

rc
e
T
y
p
e
#
1

Figure 4.13: (Left) Quality space subdivision with 5 divisions per objective in the space of two qual-
ity objectives. Highlighted cells exhibit efficient quality trade-offs. (Right) Operating
point Pareto-ranking in the space of two resource objectives where points belonging
to the same cluster (with the same ranking) are connected with dashed lines.

is selected based on its resource requirements to enhance the run-time
embeddability. For this purpose, we Pareto-rank the operating points
in the space of resource objectives, as illustrated in Figure 4.13 (right),
and exploit the ranking in distillation of representative points.

Experimental evaluations show that, compared to three standard
multi-objective truncation techniques, the proposed distillation mech-
anism improves the embedding success rate by 8 % up to 45 % and
the embeddability rate by 16 % up to 45 %3. Furthermore, it delivers
a higher diversity in the quality trade-offs of the distilled points, indi-
cated by an ε-dominance improvement of 35 % up to 42 % in the quality
objectives, compared to the other approaches.

Outlook on operating point transition As the next step, we will focus
on design-time investigation of run-time operating point transition. For
this purpose, additional evaluation techniques will be investigated to
compare the operating points obtained from the DSE with respect to
the expected costs of run-time transition. The respective costs shall be
back-annotated, e. g. to edges between operating points.

3Given a set of available platform resources and a set of distilled operating points, success
rate indicates whether at least one of the points can be feasibly embedded, whereas
embeddability rate denotes the proportion of the embeddable points in the set.
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B1: Adaptive Application-Specific
Invasive Microarchitecture
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Marvin Damschen, Tanja Harbaum, Srinivas Rao Kerekare,
Carsten Tradowsky

Project B1 investigates mechanisms that provide run-time adaptivity: in
the microarchitecture (µArch) and by using a run-time–reconfigurable
fabric. We propose concepts and methods that allow invading the re-
configurable fabric and µArch within the invasive core (i-Core). The
i-Core is an integral part of the InvasIC hardware. Therefore, we in-
tegrated our i-Core prototype as well as support hardware into the
new demonstration platform (proFPGA) and provided a tool flow for
partial run-time reconfiguration. In the following, we briefly describe
our recent activities of the second funding phase and results on dynamic
cache architectures, Auto-SI, predictability and the InvasIC hardware
prototype.

Dynamic Cache Architecture

Figure 4.14: Overview of the dynamic cache Ar-
chitecture

In future, most computing sys-
tems will evolve to heteroge-
neous processing systems with
several diverse processing units
and multiple applications will
run concurrently. Therefore,
these applications compete for
computational resources and
thus processing power. Espe-
cially in terms of caches, it is
necessary to use all available re-
sources efficiently, because the
bandwidth and the available re-
sources strongly bound compu-
tation times. For example, if
streaming-based algorithms run
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concurrently with block-based computations, then this could lead to an
inefficient allocation of cache resources.

To tackle these challenges, we developed a dynamic cache architecture
that enables the parametrisation and the resource allocation of cache
memory resources between cores during run-time. Figure 4.14 shows
the structure of the implemented design.

The design is carefully weighted and a method with as little overhead
as possible is chosen without degrading the performance of the cache
architecture to be applicable for the strict timing constraints of an L1
cache. The L1 cache design is integrated into the CPU microarchitecture
and is evaluated on reconfigurable hardware. In our evaluation we
showed that already a slight hardware overhead of less than 10% en-
ables our dynamic run-time cache architecture [Tra+16b]. In addition,
we showed that it is possible to achieve an optimally-utilised cache
memory tile according to the used on-chip memory target architecture.

Non-Cache-Coherent architectures for Manycore systems

In the case of manycore systems the cache coherence is often only en-
sured within single tiles. In cooperation with Project C3 a new technique
to transfer object-oriented data structures on non-cache-coherent shared
memory systems has been designed. The novel cloning approach avoids
serialisation by managing cache coherence in software at object granu-
larity. A compiler-assisted implementation for PGAS languages has been
implemented, which runs fully automatic, save and has zero overhead.
The experimental results using a distributed-kernel benchmark suite
show that using our technique reduces communication time by up to
39.8%. Additionally, the results show that cache operations on address
ranges are desirable on non-cache-coherent architectures. An overhead
of 15% additional hardware resources can extend an existing cache
controller with an efficient implementation of non-blocking range-based
cache operations [MT17].

Auto-SI

Nowadays modern computer systems demand more and more perfor-
mance without increasing power dissipation or chip area too much. To
achieve this, we propose to speed up loops and to load miscellaneous
accelerators during run-time. Several steps are necessary to accelerate
a loop transparently, dynamically, and automatically: i) monitor instruc-
tions, ii) prepare configuration, iii) configure hardware accelerator, iv)
use accelerator on i-Core fabric. The design of the i-Core with its recon-
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figurable fabric has been expanded. Figure 4.15 shows the expanded
work flow. If there is no Special Instruction provided for the i-Core,
a suitable hardware accelerator will be loaded during run-time. The
approach of Auto-SI has been prototyped on a Xilinx Virtex-7 platform.

Timing Analysis on i-Core Tiles

In the last years of InvasIC we demonstrated that the inherent adaptivity
of applications executing on the i-Core provides remarkable average-
case performance improvements. This year, a focus of our work was to
make the performance benefits of the i-Core available for predictable
execution on the InvasIC hardware (one of the main topics of the second
funding phase). To achieve this, we developed models for static timing
analysis of applications running on the i-Core that utilise run-time
reconfiguration of SIs [DBH17; Wil+16].

Static timing analysis is performed on the control flow graph (CFG)
of the application binary and aims to provide a precise upper bound
of the worst-case execution time (WCET). In our model, reconfigura-
tion of SIs for speeding up an upcoming kernel is initiated in a basic
block immediately before entering the kernel. This basic block contains
commands for a reconfiguration controller. Analysing these commands
yields the reconfiguration delay per SI, i. e. the time it takes until an SI
can be executed in hardware. A simple technique to perform analysable
reconfiguration is to stall execution for the whole reconfiguration de-
lay of all SIs and only then enter the kernel. However, this slow but
analysable stalling affects the performance, as the reconfiguration delay
of an SI is in the range of milliseconds. Instead of stalling, the pipeline
of the i-Core can be used to execute functionally-equivalent software
for each SI during the reconfiguration. We achieve this by using a condi-
tional branch that either executes the SI on the reconfigurable fabric (if
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Figure 4.16: Timing analysis of a kernel with parallel reconfiguration of an SI.

reconfiguration has finished) or software on the pipeline. This enables
parallel reconfiguration.

A safe, but imprecise kernel execution time bound for parallel recon-
figuration can be obtained by assuming that every time an SI should
be executed, execution branches to the unaccelerated software (see
Figure 4.16 a)). While the actual execution time would benefit from
the hardware accelerators, the guaranteeable WCET bound would still
be as high as not using SIs at all. The challenge in analysing parallel
reconfiguration, is to statically determine the worst-case iteration i of
the kernel at which the reconfiguration for an SI can safely be assumed
to be completed. Naively, one could assume that the worst-case iteration
i is obtained by executing all iterations during the reconfiguration in
WCET (see Figure 4.16 b)). However as shown in Figure 4.16 c), exe-
cuting these iterations slightly faster than in WCET can lead to a longer
overall execution time, e. g. because the SI in iteration 3 is executed
just before the reconfiguration finishes and thus one more iteration is
executed without hardware acceleration (such an effect is also known
as a timing anomaly).

We propose models that enable estimation of precise upper bounds for
execution times of tasks that use run-time reconfiguration in presence of
the timing anomaly [DBH17]. Figure 4.17 shows how stalling compares
to parallel reconfiguration in the guaranteed WCET (obtained using
our models) and maximum observable execution time with worst-case
input (simulated) of the Loop Filter Kernel from the H.264 Encoder.
The results were obtained with a frequency of the reconfigurable fab-
ric ffabric of 100 MHz and several values for the CPU frequency fCPU

between 100 and 1600 MHz (fCPU/ffabric ∈ [1 : 16]). We could show
that parallel reconfiguration is always considerably faster than stalling
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Figure 4.17: WCET results for analysing an H.264 encoder that utilises run-time reconfiguration
on the i-Core using our proposed models. Results in a) were obtained using a
reconfiguration bandwidth of 200 MB/s, results in b) using 100 MB/s.

in the maximum observable execution time. The guaranteed WCET is
also lower for parallel reconfiguration despite a higher overestimation
than stalling, because the speedup outweighs the overestimation. Fur-
thermore, we could show that – in addition to a considerable speedup –
overestimation compared to execution without reconfigurable SIs is re-
duced. SIs typically implement functionality that corresponds to several
hundred instructions on the CPU pipeline. While analysing instructions
for worst-case latency may introduce overestimation, the latency of SIs –
executed on the i-Core’s reconfigurable fabric – is precisely known.

Prototyping and Integration

We are continuously extending and improving the i-Core prototype
and integrate new features into the joint InvasIC hardware prototype.
During the last months, we migrated the i-Core to the new version of the
Gaisler IP Library4, which was necessary to move to the new ProDesign
proFPGA prototyping platform. We now provide a tool flow to obtain
partial bitstreams and perform run-time reconfiguration for the InvasIC
hardware prototype on the proFPGA system.

Next Steps in Plan

Together with Projects A4, C1, and C3 we are currently working on
an i-Core-accelerated actorX10-based version of the ‘Shallow Water
Equations’ application that will serve as a comprehensive example to
demonstrate the benefits of InvasIC computing.

4http://www.gaisler.com
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Furthermore, we are continuing our efforts to provide an adaptable
as well as predictable processor architecture.
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B2: Invasive Tightly-coupled Processor Arrays

Jürgen Teich

Marcel Brand, Vahid Lari, Éricles Sousa, Frank Hannig

Project B2 investigates invasive computing on tightly-coupled processor
arrays (TCPAs). These have been shown to provide a highly energy-
efficient and, at the same time, timing-predictable acceleration for many
computationally intensive applications that may be expressed by nested
loops from diverse areas such as scientific computing, image and signal
processing, to name a few.

In the first funding phase, concepts for hardware-controlled inva-
sion through a cycle-wise propagation of invasion control signals be-
tween neighbouring processing elements (PEs) have been investigated.
Such decentralised parallel invasion strategies may not only reduce
the invasion overhead by two orders of magnitude w. r. t. a centralised
software-based approach. Even bounds on the invasion time of invading
N processing elements in O(N) clock cycles have been shown to be
achievable. Moreover, the self-adaptive nature of invasive computing
was also exploited for the purpose of dynamic power management by
controlling the wake up as well as the power down of regions of pro-
cessors directly by the invade and retreat signals, respectively [Lar15;
Lar16a].

Within the last year, we continued our work on providing guarantees
for multiple non-functional properties such as fault tolerance and energy
consumption as the major focus of research for Project B2 in the current
2nd funding phase. In the following, we will describe our results
obtained in these research areas.

Safe(r) Loops – Fault-Tolerant Parallel Loop Processing

The high integration density of future multicore systems will inevitably
lead also to more and more vulnerability of the circuits to malfunction
due to thermal effects, circuitry wear-outs, or cosmic radiation. However,
instead of analysing error and fault effects on single cores, lifting well-
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known fault tolerance schemes such as dual (DMR) and triple modular
redundancy (TMR) to the level of loop programs and their parallel
processing on multicores is our unique solution for supporting fault-
tolerant loop execution. Here, we are investigating approaches in which
based on application requirements on reliable execution, an invasive
loop program may request to switch on and off fault tolerance schemes
for error detection and/or correction of certain parts or a parallel loop
application as a whole [Lar+16]. We have already shown in [Lar+15],
how the regular structure of TCPAs does ideally offer an application to
claim (a) a non-redundant, (b) a dual-replicated, or even (c) a triple-
replicated array instance for computing the parallel program in lock-step
mode. At the programming level, the usage of these mechanisms may
be requested through adding fault tolerance constraints:

1 constraints.add(new FaultTolerance(TMR))

Within a tight collaboration with Project C1 and Project C3, we have
developed hardware/software signalling mechanisms to provide feed-
backs on loop executions on TCPAs, e. g. execution failures, at the level
of InvadeX10 programming [Lar+16]. Such feedbacks are provided
as the return value of an infect request and describes whether the ex-
ecutions on the invaded TCPA has failed, e. g. due to a computation
failure, and which component was influenced by faults. In order to
realise such a capability, we have designed and integrated a so-called
error handling unit (EHU) within each processing element (PE) that is
capable of making majority votes (or comparison) over values within
PE’s register file (see Figure 4.18(a)). An EHU generates three outputs,
a value containing the result of a vote/comparison operation, a one-bit
error signal denoting whether a non-maskable error is detected, and
an error diagnosis value that describes the source of the detected non-
maskable error, e. g. multiple errors in different input replicas or an error
in the EHU etc. As shown in Figure 4.18(b), the error and diagnosis
outputs from different PEs are aggregated at the level of the processor
array, constructing an error index denoting the index of the PE that has
detected a non-maskable error, and an error diagnosis vector per PE
row, describing the cause of the detected error. In case of a detected
error, an interrupt is generated that leads to running an error handling
service routine within the TCPA driver code that is executed on a local
RISC processor. This is then communicated to the application level as a
return value of an infect request which provides an application program-
mer means to error exception handling codes to adapt the employed
fault tolerance mechanisms depending on the application execution

42



B2

Instruction 

Memory

Instr. Decoder

Branch Unit

R
e

g
iste

r F
ile

Branch Unit

struction 

Memory

 Decoder

FlagsPC

Register File

Register File

R
e
g
is

te
r 

F
ile

ADD ADD EHU

ile Fil File

= = =

≥1 +

+

MUX

MUX

Output Err

Err. 

enc.

MUX

Err. Diagnose

Ì

Ì

Ì
PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

Bit position 

encoder

Error interrupt

Error diagnosis vector

Index of the erroneous PE

(a)

(b)

Figure 4.18: Implementation of comparison/voting instructions for DMR/TMR loop executions on
TCPAs. Apart from a multiple cycle software implementation, a special functional
unit called error handling unit (EHU) has been developed (shown highlighted on the
left). (a) An EHU may be integrated as a new functional unit into each processing
element. It votes (or compares) the content of the PE’s register file (input/output
ports or internal registers of the PE) and stores the result on its output port. Upon
the detection of a non-maskable error, this unit generates an error signal as well as
an error diagnosis value that describes the cause of the error. The corresponding
instruction is implemented by a single cycle operation. The figure in (b) shows how
these signals are aggregated at the PE array level, constructing error and diagnosis
vectors per PE row. In case of detecting an error, an interrupt is raised that results in
running an error handling service routine within the TCPA driver code.

feedbacks. An example of how an application programmer may write
his/her own application-specific fault-handler is provided in the follow-
ing. Here, based on a soft error rate (SER) estimated by a model such
as CREME965 or observed using fault monitors, and also the number of
detected non-maskable errors, suitable fault tolerance mechanisms are
activated, i. e. dual or triple modular redundant executions.

1 var stop:boolean = false;
2 var errorCounter:int = 0;
3 var SER:double = 0;
4 var basicConstraints:Constraint = new AND();
5 basicConstraints.add(new TypeConstraint(PEType.TCPA));
6 basicConstraints.add(new PEQuantity(1, 8);
7

5A. J. Tylka et al. “CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics
Code”. In: IEEE Transactions on Nuclear Science 44.6 (Dec. 1997), pp. 2150–2160. DOI:
10.1109/23.659030.
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8 while (!stop) {
9 var adaptedConstraints:Constraint = basicConstraints;
10 model.update();
11 SER = model.softErrorRate();
12
13 if(errorCounter > highErrorCount){
14 stop = true;
15 } else if (errorCounter > minErrorCount){
16 adaptedConstraints.add(new FaultTolerance(TMR));
17 } else if (SER > minSER){
18 adaptedConstraints.add(new FaultTolerance(DMR));
19 }
20
21 if(!stop){
22 val claim = Claim.invade(adaptedConstraints);
23 val claimRet = claim.infect(ilet);
24 // Here, the application has
25 // terminated, either by completion
26 // or by a fault
27 if(claimRet.failed &&
28 claimRet.failureType == COMPUTATION_FAILURE){
29 errorCounter++;
30 }
31 claim.retreat();
32 }
33 }

In case of a low SER (smaller than a threshold minSER) or no de-
tected errors on the claimed resources, an application program shall be
executed without applying any fault tolerance mechanism; in case of
an SER value higher than a minimum threshold (minSER), DMR shall
be employed on the TCPA. When the number of detected errors has
increased but is still within an acceptable range (between a threshold
minErrorCount and a threshold highErrorCount), a higher protection
is employed by running the codes on the TCPA in TMR mode. Otherwise,
if the number of errors that occurred on the claim exceeds the accept-
able range (bigger than a highErrorCount), the application execution
on the claimed resources should terminate.

Ultra-Low Power/Dark Silicon

TCPAs have proven to not only offer high performance but high energy
efficiency in running compute-intensive loop kernels as well compared
to general purpose processors. In order to exploit this capability within
heterogeneous multiprocessor system-on-chip (MPSoC) architecture,
we have investigated techniques for:
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Power density-aware resource management for heterogeneous tiled mul-
ticores In cooperation with Project B3, we investigated a power density-
aware resource management for maximising the overall system perfor-
mance on heterogeneous tiled multicores, where all cores or accelerators
(i. e. TCPAs) inside a tile share the same voltage and frequency levels,
without violating a predefined critical temperature [Khd+16]. Our tech-
nique considers power properties of applications as well as processors
and consists of three steps defined as: (a) uniform power density con-
straints, (b) application assignment and mapping under power density
constraints, and (c) runtime power density adaptation.

In the first step, the heterogeneity within a chip and heat transfer
among cores and TCPAs are considered. A uniform power density
constraint is derived that avoids any thermal violation. Second, our
combined approach for massively parallel architectures takes into ac-
count the power density constraints and assigns applications to tiles
and threads to cores to achieve a maximum throughput. In the last
step, an adaptation scheme exploits available thermal headroom and
reacts to workload changes at runtime. Here, if a power density budget
assigned to a tile is underutilised, we can decrease these predefined
values in order to increase the budget assigned to high power density
cores/applications. Consequently, this will exploit any potential thermal
headroom and maximise the utilisation of the chip cores.

In an experimental setup, a heterogeneous tiled architecture is consid-
ered. Each tile has one v/f domain and all cores and TCPAs inside a tile
share the same v/f level. The TCPA power profiles were derived based
on post-synthesis results from the Cadence Encounter RTL Compiler
using a NanGate 45 nm low power process technology node. The accel-
erator can run at different frequencies from 50 to 650 MHz in steps of
50 MHz. Thus, according to the power budgets assigned to TCPA tiles, it
is also possible to decide which PEs/regions of a TCPA have to become
(a) dark (i. e. have to be turned off), (b) can operate at the highest clock
frequency (white), or (c) will operate at a reduced voltage/frequency
(gray).

Cross-layer approach for distributed dark-silicon management In coop-
eration with Project B1, Project B3, Project B4, Project B5, and Proj-
ect C1, we presented a holistic sensing and optimisation flow for dis-
tributed dark-silicon management for tiled heterogeneous manycores
under critical temperature constraints [Pag+16].

In this approach, applications are initially profiled at design time to
obtain static power/performance and average/peak power consumption
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Figure 4.19: A processing element (PE) with an orthogonal instruction processing architecture
including three functional units (FU). Each FU has a dedicated instruction memory
along with an instruction decoder, a program counter and a branch unit. The FUs
share input and output interfaces as well as the register file. Additionally, each FU
can access the flags of all FUs. The figure depicts the data and control flows inside
a PE by blue and red connections, respectively. The flag logic is depicted by yellow
connections.

values for each application running on different types of processors. To
afford runtime decisions, different monitors can be used for providing
the status of the underlying hardware during application execution.
Based on the status information (e. g. instantaneous power consumption,
temperature, or reliability predictions), the dark-silicon management
layer controls the power mode of the cores and TCPAs (active, idle,
power-gated, etc.). Moreover, it decides the DVFS levels of the tiles
and provides thermally safe partitioning and mapping alternatives or
constraints to the agent layer, which negotiates resource allocation with
respect to current system load and characteristic features of applications.

Orthogonal Instruction Processing

In general, system-on-chips such as TCPAs have only access to a limited
amount of memory, which stands in contrast to the characteristic of
VLIW compilers that typically produce lengthy code, especially when
employing pipelining in loop programs. Therefore, we investigated
a new processor architecture called Orthogonal Instruction Processing
(OIP) that tackles this problem. This architecture is shown in Figure 4.19.
Instead of a conventional VLIW processor that loads each cycle a very
long instruction from a single instruction memory, each FU has its own
instruction memory and branch unit. Only the register files as well
as the flag distribution are shared among all FUs. We are currently
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evaluating the hardware costs of this new PE architecture. We expect
particularly good benefits in terms of instruction memory savings that
dominate a potential small hardware overhead.

Outlook

As aforementioned, we are investigating novel architectures of TCPA
processing elements using the principle of orthogonal instruction pro-
cessing. In the future, we will analyse the overall cost and energy
consumption of OIP.

In addition, a cost-optimised distributed interrupt architecture needs
to be developed for signalling non-maskable errors. Also, for test pur-
poses, we will extend our TCPA architecture with a fault injection
module, capable of injecting temporal faults into the different registers
of the processing elements. Finally, 2017 will be used to develop and
showcase that invasive architectures in general and TCPAs in particu-
lar may provide *-predictability. Focus of our demonstrations will be
hard real-time control applications such as the ones stemming from
Project D1 (robot control).
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B3: Power-Efficient Invasive Loosely-Coupled
MPSoCs

Andreas Herkersdorf, Jörg Henkel

Santiago Pagani, Mark Sagi, Anuj Pathania, Heba Khdr,
Muhammad Shafique, Philipp Wagner, Thomas Wild

The overall goal of Project B3 is to optimise power/energy efficiency
considering the dark-silicon problem. Within the paradigm of invasive
computing, the goal is to ensure that invaded claims remain thermally
reliable while providing the teams for invading and executing i-lets for
infecting. The pursued objectives are:

Objective 1: Improving power efficiency under dark-silicon constraints.
Objective 2: Developing an adaptive system for dark silicon and energy

management.
Objective 3: Modelling and online estimation of dark silicon for inva-

sive computing systems.
The related scientific challenges include the maximisation of the

performance under given power density constraints or under a given
energy budget, and minimising the energy consumption or peak power
under a certain performance requirement. These goals require deep
insight into the system. The intelligent collection and aggregation
of individual data points from all over the SoC is another challenge
that we address by means of powerful on-chip on-the-fly data analysis
infrastructure.

Dark-Silicon Management for Performance Optimisation

The work in [Pag+16] presents an integrated and coordinated cross-
layer sensing and optimisation flow for distributed dark-silicon manage-
ment for tiled heterogeneous manycores under a critical temperature
constraint, which summarises the main contributions of Project B3 and
its interactions with Project B2, Project B4, and Project C1. In this work,
we target some of the key challenges in dark silicon for manycores, such
as: directly focusing on power density/temperature instead of consider-
ing simple per-chip power constraints, considering tiled heterogeneous
architectures with different types of cores and accelerators, handling the
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large volumes of raw sensor information, and maintaining scalability.
Our solution is separated into three abstraction layers: a sensing layer
(involving hardware monitors and preprocessing, i. e. Project B4 and
Project B3), a dark-silicon layer (that derives thermally-safe mappings
and voltage/frequency settings, i. e. Project B3), and an agent layer
(used for selecting the parallelism of applications and thread-to-core
mapping based on alternatives/constraints from the dark-silicon layer,
i. e. Project C1).

In [Khd+16], we focus on maximising the overall system performance
under a critical temperature constraint for heterogeneous clustered mul-
ticores, where all cores or accelerators inside a cluster share the same
voltage/frequency levels. For such architectures, we present a resource
management technique that introduces power density as system level
constraint in order to avoid thermal violations. The proposed tech-
nique then assigns applications to clusters by choosing their degree of
parallelism and the voltage/frequency levels of each cluster, such that
the power density constraint is satisfied. Furthermore, our technique
provides runtime adaptation of the power density constraint according
to the characteristics of the executed applications, and reacting to work-
load changes at runtime. Therefore, the available thermal headroom is
exploited in order to maximise the overall system performance.

Thermal Safe Power (TSP) is a novel power budgeting concept that
provides safe power constraints as a function of the number of simul-
taneously active cores. In [Pag+17; Pag+16b], we extend the TSP
concept from a power constraint to a power density constraint, which is
suitable for heterogeneous systems with different types of cores. TSP
is a fundamental new step and advancement towards dealing with the
dark-silicon problem as it alleviates the pessimistic bounds of TDP and
enables system designers and architects to explore new avenues for
performance improvements in the dark-silicon era.

Some of these (and other) research efforts are also summarised in
[Hen+16].

Dark-Silicon Management for Energy Optimisation

In [Tom+16], we propose a general-purpose middle-ware that reduces
the energy consumption in embedded systems without violating the
real-time constraints. The algorithms in our middle-ware adopt the
computation offloading concept to reduce the workload on the processor
of the embedded system by sending the most computation-intensive
tasks to a powerful server. The algorithms are further combined with
DVFS in order to find an execution frequency such that the energy
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consumption is minimised while all real-time constraints are satisfied.
Our evaluations show that our approach can reduce the average energy
consumption down to nearly 60%, compared to executing all tasks
locally at the maximum processor frequency.

In [Pag+16a], we focus on energy minimisation of periodic real-time
tasks running on a heterogeneous multicore system clustered in multiple
Voltage Frequency Islands (VFIs), where the power consumption and ex-
ecution time of a task changes not only with DVFS, but also according to
the task-to-island assignment. Our technique consists of the coordinated
selection of the voltage/frequency levels for each island, together with
a task partitioning scheme that considers the energy consumption of the
task executing on different islands and at different frequencies, as well
as the impact of the frequency and the core architecture on the resulting
execution time. Every task is then mapped to the most energy-efficient
island for the selected voltage/frequency levels, and to a core inside the
island such that the workloads of the cores in the island are balanced.

Online Data Analysis to Support Dark-Silicon Management

Invasive Diagnosis on Chip (iDoC) extends the InvasIC run-time sys-
tem with hardware components. These hardware components enable
the observation of invasive software applications on-chip. We want to
observe the application and platform metrics to identify potential run-
time inefficiencies, especially power inefficiencies. Having identified
the power inefficiencies, iDoC provides this inefficiency information to
DaSiM. Exploiting this information, DaSiM optimises system behaviour
to allow long-term power savings. Short term power savings are made
possible by an in iDoC integrated low-latency hardware control loop.
Performance requirements of the applications are ensured by both iDoC
and DaSiM. To enable all these features, efficient and effective observa-
tions of the application behaviour are necessary. This is an interesting
and novel challenge. Tremendous amounts of unprocessed data are
available on the hardware level, such as CPU register contents, NoC
flits etc. Potentially, all of this data might reveal power inefficiencies.
However, evaluating all of this data all of the time would easily over-
whelm DaSiM. Therefore, iDoC filters and post-processes the data to
yield useful information for the control infrastructure on higher abstrac-
tion levels, i. e. DaSiM. Towards this goal, we created a flexible library of
data analysis components. This components are coupled to a freely pro-
grammable general-purpose data analysis unit. Multiple data analysis
components combined with the general-purpose data analysis unit build
the iDoC infrastructure. Design-time knowledge of the system is joined
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with run-time knowledge diagnosed by the data analysis components
to be formalised by the data analysis unit. This formal knowledge is
then sent to DaSiM. In [WWH16], we proposed a novel tracing system
architecture. With this architecture, application developers can move
from trace data streams towards self-contained diagnosis events. These
diagnosis events can be used by developers to minimise energy ineffi-
ciencies or to debug the application. Furthermore, we presented novel
ideas on application awareness and power management adaption in
[SH16]. Based on these ideas, we plan to further extend the iDoC library
with analysis components to enable application-aware DFS. These self-
learning analysis components have the goal of automatically identifying
critical application states and to boost the CPU frequencies for such
critical states.

Dissertations

In November 24th 2016, Santiago Pagani received his Ph. D. (Dr.-Ing.)
with Auszeichnung from the Faculty of Informatics, Karlsruhe Institute
of Technology (KIT). The title of his dissertation is “Power, Energy, and
Thermal Management for Clustered Manycores” [Pag16].

Organisation of Scientific Events and Public Dissemination

Project B3 organised an embedded tutorial on dark silicon titled “The
Dark Silicon Problem: Technology to the Rescue?” at the IEEE/ACM
19th Design, Automation and Test in Europe Conference (DATE), 2016.
More information at
https://www.date-conference.com/date16/conference/session/2.2.

Furthermore, Project B3 also collaborated on the Dagstuhl seminar
“Dark Silicon: From Embedded to HPC Systems”, 2016. More informa-
tion is available at http://www.dagstuhl.de/16052.
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Springer, 2016.
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B4: Hardware Monitoring System and Design
Optimisation for Invasive Architectures

Doris Schmitt-Landsiedel, Ulf Schlichtmann

Qingqing Chen, Elisabeth Glocker, Shushanik Karapetyan,
Daniel Müller-Gritschneder, Bing Li, Cenk Yilmaz

In order to provide the invasive computing systems means to prevent or
at least reduce the impact of hardware failures (including catastrophic
failures as well as parametric failures such as not meeting frequency
requirements or exceeding power limitations), the hardware monitoring
system of Project B4 provides the system with monitoring data giving
information about current hardware health. Permanent or temporal
changes within the hardware can arise due to changes in the operat-
ing conditions such as supply voltage, frequency or temperature, due
to increasing ageing, e. g. due to NBTI (Negative Bias Temperature
Instability) or due to manufacturing variations.

Monitoring data include valuable information in order to support
a flexible resource allocation adapting to these changes within the
hardware and to foresee (based on current and past monitoring data)
potential problems arising from these changes before they can have
serious impact on the correct functioning of the system.

Project B4 is working on new monitoring concepts, especially re-
garding monitoring concepts for ageing, since the ageing of integrated
circuits cannot be neglected in advanced process technologies.

With ageing monitors integrated into the hardware monitoring system,
ageing behaviour can be analysed and ageing monitoring data can be
distributed within the computing system. As for power and temperature
monitoring, integration of ageing monitors into the FPGA demonstrator
will be done via emulation of the behaviour of an ASIC ageing monitor
and integration into the eTPMon framework. This approach gives
the possibility to load and store the ageing status into the eTPMon
framework easily. With that, a specific point in the system’s lifetime
could be loaded onto the demonstrator platform. Also timing pre-errors
could be manually injected.

In [SHJL16] ageing effects are summarised and it is discussed how to
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deal with them on different abstraction levels and on different levels in
the design flow or to counter ageing by post-silicon tuning after design
phase. Besides, an overview of the state-of-the-art is given, on how to
apply techniques like on-chip timing margin monitoring and tuning,
ageing analysis with high-level models and the use of flexible delay
models of flip-flops in order to improve the permanent health of circuits.

[ZLS16] deals with post-silicon tuning: It proposes an efficient delay
test framework (EffiTest) that uses already-existing tuning buffers in
the circuit to align path delays in order to solve the post-silicon testing
problem. Only representative paths are tested, since the delays of other
paths are estimated by using statistical delay prediction.

In cooperation with Project B1, Project B2, Project B3, Project B5
and Project C1, in [Pag+16] an integrated and coordinated cross-layer
approach on dark-silicon management with the novel hardware monitor
approach from Project B4 is presented.

Figure 4.20: improved eTPMon framework to include a higher level of detail in the temperature
and power monitoring part of eTPMon.

We worked on improving the eTPMon framework that emulates the
behaviour of an ASIC power and temperature monitoring system for
FPGA prototyping of MPSoC computing architectures to include a higher
level of detail in the temperature and power monitoring part of eTPMon.
For power monitoring, cache memories, FPU instructions, different
power modes and supply voltage, temperature and frequency depen-
dencies were included. For the temperature monitoring, the inclusion
of transient temperature changes was evaluated. Also, we used accu-
mulated monitoring data from eTPMon in order to extract information
about core’s ageing. In addition to the emulation of eTPMon for the
FPGA demonstrator platform, a simulation framework was created in
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order to visualise the output—the produced monitoring data—of eTP-
Mon. The output data of eTPMon is usable by iDoC/DaSim in order
to select suitable core(s) during resource allocation for efficient load
distribution. The monitoring data produced by eTPMon can be further
abstracted to the needed level of detail on higher system levels. Also
the creation of per-region or per-tiles values is possible.

Besides working on new monitoring concepts, Project B4 continuously
works on the optimisation of the overall monitoring system to offer an
optimal trade-off between accurate monitoring data and used resources
to obtain these data. The optimisation is done considering monitor
types, quantities and placements, needed duty cycles for monitoring
data aggregation, needed accuracy of monitoring data, the power con-
sumption of the monitor system to alleviate problems of dark silicon and
the target architecture leading to differences in the monitoring system
itself.

Publications

[Pag+16] S. Pagani, L. Bauer, Q. Chen, E. Glocker, F. Hannig, A. Herk-
ersdorf, H. Khdr, A. Pathania, U. Schlichtmann, D. Schmitt-
Landsiedel, M. Sagi, Éricles Sousa, P. Wagner, V. Wenzel, T.
Wild, and J. Henkel. “Dark Silicon Management: An Integrated
and Coordinated Cross-Layer Approach”. In: it – Information
Technology 58.6 (Sept. 16, 2016), pp. 297–307. DOI: 10.1515/
itit-2016-0028.
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liability, Adaptability and Flexibility in Timing: Buy a Life In-
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Design Automation Conference (ASP-DAC). IEEE/ACM Press, Jan.
2016, pp. 705–711. DOI: 10.1109/ASPDAC.2016.7428094.

[ZLS16] G. L. Zhang, B. Li, and U. Schlichtmann. “EffiTest: Efficient
Delay Test and Statistical Prediction for Configuring Post-silicon
Tunable Buffers”. In: Proceedings of the 53rd Annual Design
Automation Conference (DAC). (Austin, TX, USA). ACM, 2016,
60:1–60:6. DOI: 10.1145/2897937.2898017.
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B5: Invasive NoCs – Autonomous,
Self-Optimising Communication
Infrastructures for MPSoCs

Jürgen Becker, Andreas Herkersdorf, Jürgen Teich

Srivatsa Akshay, Stephanie Friederich, Leonard Masing, Sven Rheindt,
Andreas Weichslgartner, Thomas Wild

Networks-on-Chip (NoCs) are the solution of choice to cope with scalabil-
ity of manycore systems. Accordingly, invasive computing architectures
are based on NoCs, which make up the infrastructure for communicating
among the different tiles.

One part of the current research within Project B5 focuses on non-
functional properties of invasive NoCs and their predictability. For this,
the non-functional aspects of realtime, security, fault tolerance, and en-
ergy consumption are studied. Further investigations concentrate on
NoC topologies (including 3D NoCs) and cache coherence regions that
can be dynamically established among multiple tiles.

Support for Predictable Real-Time Stream Processing

The previously proposed hybrid application mapping (HAM) method-
ology combines the strengths of design-time analysis and run-time
decision making. In [Wil+16], we present how an application, imple-
mented in actorX10, can be analysed at design time. This publication
also outlines how iNoC X10 constraints, specifying the service level and
the maximal length of a guaranteed service channel, may be generated
from a design-time analysis. If these constraints are fulfilled during run
time, the predictable and composable nature of the iNoC ensures that
also upper bounds for the worst-case end-to-end latencies hold.

Secure Communication for Security-Critical Applications

Sharing of iNoC links and routers may open possible side-channel attacks
which may be used by malicious applications to extract confidential
data of a security-critical application. Together with Project C5, we
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propose in [Wei+16; Dre+16] a solution to provide full spatial isolation,
on tile and NoC level, through hybrid application mapping (HAM)
(see also Project A1 and Project A4). At design time, a design space
exploration explores mappings that exclusively reserve tiles and iNoC
communication, i. e. by assigning all available service levels of a link
to an application. These mappings can be represented by so-called
shapes (see Figure 4.21). These shapes are already determined during
design space exploration and optimised for compactness to prevent
fragmentation. The run-time mapping can be described as 2D placement
problems where a shape of an application must not overlap with any
other shape. To solve this problem, we propose fast heuristics as well as
exact SAT-based methods [Wei+16].

u3 u4

u0

u5

u1 u2

u3 u4

u0

u5

u1 u2

run-time
mapping

Figure 4.21: Example of spatially isolated mapping of applications. Each application can be
represented by various so-called shapes which encapsulate all communication and
computation (left). During run time, the shapes need to be mapped without overlap
to guarantee spatial isolation.

Network Topologies

Higher dimensional networks offer shorter longest paths in the network
and hence result in a lower average latency for inter-tile communica-
tion. The 3D iNoC architecture is partitioned across multiple layers of
3D integrated circuits. An example design implementation is shown
Figure 4.22. To manage the restricted number of inter-layer connec-
tions in three-dimensional integrated circuits, we introduced a novel
router implementation with heterogeneous bandwidth ports. Hence the
bandwidth of through-silicon vias (TSV) is independently adjustable.
In addition, the new router port includes a clock domain crossing,
which makes additional synchronisation mechanisms for cross-layer
connections obsolete. Figure 4.23 shows the schematic of an inter-layer
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connection between two routers [FLB16].

Routing
Reservation

Table
Transmission 

Control

BufferBufferBufferBuffer

Routing
Reservation

Table
Transmission 

Control

BufferBufferBufferBuffer

128 bit

32 bit 128 bit

Layer 1

Layer 2

Crossbar Crossbar
Second 
clock 

domain

Router

Router

M
U

X

M
U

X
D

EM
U

X

D
EM

U
X 32 bit

128 bit
128 bit

CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

i-NoC
Router

CPU CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

i-NoC
Router

CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

CPU

TLM Memory 
Controller

CPU CPU

CPU CPU

Transactor

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

TSVs
SRAM 

memory 
layer

Processor 
layer

Figure 4.22: Heterogeneous multi-layer network architecture. A memory layer is placed in-between
two compute layers.
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Figure 4.23: Schematic of inter-layer router connection with heterogeneous bandwidth and clock
domain crossing.

Power Saving Mechanisms for iNoC Communication Resources

A hardware power manager unit for the network has been implemented
which evaluates communication monitor data at run time to optimise
the power consumption of network components without affecting the
communication performance [FNB16]. The network power management
employs coarse-grained power saving techniques on the one hand. Clock
scaling of NoC regions and clock and power gating of complete routers
is hence possible. And on the other hand, fine-grained power saving
techniques minimise the power consumption in parallel. Single buffers
within the router can be switched off at run time, since the biggest part
of power is consumed by the virtual channel buffers.
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Fault-Tolerant Communication

Manufacturing defects and aging effects are expected to cause per-
manent faults in future highly integrated technology nodes which are
targeted by NoC-based architectures. A lightweight second layer network
takes over the duties of defective routers. In case of no defects, the
second layer network can be used to obtain power savings [Hei+16].
The implementation of the second layer network is now integrated
into the invasive architecture to provide adaptive fault tolerance for
heterogeneous MPSoCs [Lar+16]. Furthermore, disjoint-path routing
can be exploited in the context of HAM to increase the reliability of NoC
communication [WT16].

Support of Region-based Cache Coherence

Originally, our invasive MPSoC architectures did only support intra-
tile cache coherence. This limits the maximum achievable parallelism
using traditional shared memory programming to a single tile. In order
to easily parallelise applications beyond tile borders without software
overheads, hardware-based inter-tile coherency is required.

Here, Project B5 proposed a novel region-based cache coherence
scheme which allows setting up and breaking down of coherency regions
dynamically based on application requirements. It also aims to curb high
coherence traffic and large administrative overheads associated with
traditional global coherence schemes. In discussions with application
programmers, it turned out that applications like DNA sequencing,
sparse matrix processing, or tree traversals could profit from such inter-
tile coherence schemes. Thus, inter-tile coherence support is enabled for
both distributed (TLM) and shared (global) memories of the invasive
architecture.

Extending hardware-based coherence support across multiple tiles
is a relatively new approach especially for distributed shared-memory
systems. Therefore, as a first step, we established a high-level SystemC-
based simulation model of a generic tile-based architecture6. The
generic model was refined in multiple ways to accurately match the
invasive MPSoC architecture as shown in Figure 4.24. The architectural
details of the model are highly configurable with respect to the number
of tiles, the number of processors per tile and various cache/memory
parameters. Then, we introduced a coherency region manager (CRM)

6P. Parayil et al. “Sharer Status-based Caching in tiled Multiprocessor Systems-on-Chip”.
In: HPC 2015 – 23rd High Performance Computing Symposia. SCS, The Society for
Modeling & Simulation, Apr. 2015, pp. 67–74.
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Figure 4.24: Invasive architecture with two dynamic coherency regions.

module in every compute tile of the architectural model. The user can
then set up coherency regions by configuring the individual CRMs. For
example, the user can set up a coherency region consisting of four com-
pute tiles where each tile shares its complete TLM every other tile in the
region. Additionally, the CRM supports fine granular configurations i. e.
regions can be set up where only a specific memory range is shareable.
The CRM monitors sharers of these addresses and enforces appropri-
ate invalidations for all tiles lying in the coherency region. Thus, the
CRM provides a coherent view over all memory ranges present in the
coherency region.

The processor module is modelled to replay benchmark traces which
are generated externally using Gem5. The raw trace file has to be for-
matted to suit invasive computing requirements before being consumed
by the trace-based processor. For example, the trace data needs to
be mapped onto the invasive distributed shared-memory architecture.
An inefficient mapping process may limit the performance benefits of
region-based cache coherence. Therefore, several algorithms are being
developed to ensure optimal placement of data.

Work is actively ongoing to evaluate the performance of region-based
cache coherence using the simulation model, to investigate efficient task-
data mapping techniques and to further refine the simulation model
itself before finalising the hardware implementation.
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Circuit switching extension

The initial NoC design in the first funding phase was developed based
on the concept of a packet-switched network. As an extension to this
basic architecture, circuit-switching is investigated since it promises
many advantages over packet-switching, namely less buffer space, lower
latency and better QoS guarantees. In our current work, a hybrid
synchronous implementation is designed and furthermore a fully asyn-
chronous implementation is currently investigated in a simulation-based
on the cycle-accurate simulator iNoCsim. In this model, new dynamic
approaches that will cope with the drawbacks of circuit switching are
developed, tested and evaluated before a physical implementation of
promising features will be tackled.

Integration Work and Demonstration

As in previous years, a lot of effort was put into implementation, de-
bugging, and prototyping of invasive MPSoC architectures. However,
this effort is mandatory to provide a hardware platform including the
novel features of all the projects of research area B for the research of
the projects of areas C and D. When setting up a hardware architecture
with novel components, debugging plays a key role.

Outlook

One of the main tasks in 2017 for Project B5 will be carrying on the
development of region-based cache coherency. The impact of these
mechanisms on real-world applications shall be investigated in collab-
oration with Project C3. Additionally, Project B5 plans to explore the
possibility to further enhance the benefits of region-based cache coher-
ence with dedicated NoC support, e. g. by utilising and interfacing with
the circuit switching extensions. Also, Project B5 will further contribute
to the integration activities of Project Z2 to setup the demonstrator for
the final review of phase two. Furthermore, Project B5 will contribute to
the multi-tile demo which will showcase timing predictability through
invasion of computation and NoC resources.
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C1: Invasive Run-Time Support System (iRTSS)

Wolfgang Schröder-Preikschat, Daniel Lohmann, Jörg Henkel, Lars Bauer

Gabor Drescher, Christoph Erhardt, Timo Hönig, Sebastian Maier,
Florian Schmauss, Jens Schedel, Anuj Pathania, Volker Wenzel

Project C1 investigates operating-system support for invasive applica-
tions. It provides methods, principles and abstractions for the application-
aware extension, configuration and adaptation of invasive computing
systems. These are technically integrated into the invasive Run-time
Support System (iRTSS), a highly scalable native operating system in
close contact and constant touch with a standard Unix-like host operat-
ing system. The project works address special-purpose MPSoC-based as
well as general-purpose multi-/manycore machines.
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Figure 4.25: iRTSS Architecture on a multi-tile system. Colours indicate invaded resources.

Architectural Overview

Figure 4.25 provides a high-level view of the current iRTSS architec-
ture. Key elements are OctoPOS,7 the parallel operating system (POS)

7The prefix ‘Octo’ stems from the denotation of a nature which is highly parallel in its
actions as well as adaptable to its particular environment: the octopus, being able to
act in parallel by means of its tentacles, adapt itself through colour change, and, due
to its highly developed nervous system, attune to dynamic environmental conditions
and impact.
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that implements the mechanisms of iRTSS to make all capabilities of
the underlying hardware available to higher (software) levels, and the
agent system, which provides global iRTSS strategies for resource man-
agement through means of self-adaption to cope with the scalability
problem in large multicore systems, logically residing between the run-
time libraries for various kind of invasive-parallel applications and the
OctoPOS kernel.

The Configurable OctoPOS Kernel

We provide OctoPOS for a variety of platforms—with and without
support for dedicated hardware. The key aspect in the design and
development of OctoPOS is to make all the capabilities of the underlying
hardware available to higher (software) levels in an unfiltrated way.

In 2016, we could, in cooperation with many other projects, especially
demonstrate the benefits of this approach for the security demands of
invasive applications [Dre+16] and by reducing the energy demand at
operating-system level [HHSP16; EHSP16].

Native x86_64 Port: The main purpose of the x86_64 version is
comparability: In cooperation with Project C3, which provides the
compiler back end for OctoPOS x86_64, application projects can use
this platform to compare the invasive approach with existing (e. g. Linux-
based) approaches on common, state-of-the art hardware.

In this realm, the OctoPOS team performed detailed analyses on the
4-socket Xeon E7v3 (Haswell) system with 96 logical cores that became
available end of 2015. One result is a significant reduction of kernel
latencies and kernel-induced noise by the decoupling of user-level and
kernel-level activities on the i-let level. OctoPOS now supports user-
level scheduling for application i-lets, avoiding otherwise costly syscall
transitions, especially when the system runs with full protection (see
below). For this purpose, we have introduced the new concept of kernel
i-lets, which perform OS-level activities on dedicated cores. Thereby, a
user-level i-let issuing a (conceptually) blocking syscall does not cause
a complete CPU to become unavailable for user-level scheduling. In-
stead, the syscall execution is delegated to a kernel i-let to be processed
asynchronously by a dedicated processor, while the issuing CPU picks
the next request from the user-level queue. Only if no further request is
available, it temporarily enters kernel space to assist in the execution
of kernel i-lets or enter a sleep state (Figure 4.26). On this base, Oc-
toPOS now provides highly efficient scheduling not only for invasive
applications written in InvadeX10, but also for standard programming
models, such as Cilk+ or MPI. The latter, again, facilitates comparability
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Figure 4.26: OctoPOS asynchronous kernel operation by kernel i-lets.

of the invasive hardware/system-software stack to standard Linux-based
systems.

LEON Platform Improvements: Besides work on the x86_64 port,
the OctoPOS team again spent significant resources in 2016 on stability
improvements for the invasive hardware platform and the transition to
the new proFPGA demonstrator platform. This includes the provisioning
of test cases, the development of an automatic testing infrastructure, as
well as general debugging support.

Adaptive Memory Protection: Hardware-based isolation with re-
spect to protection levels and memory access shall be a run-time config-
urable feature in iRTSS in order to support dynamic (de-)virtualisation:
There is little need to use the MMU and provide the corresponding
operating-system functions if, for instance, the machine is used in single-
user mode or all application processes stem from programs written in
a type-safe language, for which certain properties can be guaranteed
ahead of time (e. g. X10). State-of-the-art operating systems statically
determine which applications or application’s modules run under mem-
ory protection and which do not. This assignment of protection does not
change at run time, thus, all applications are charged with significant
costs of isolation in the course of memory management, system call
and return, interrupt handling, process dispatching and inter-process
communication [DSP16].
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Figure 4.27: Costs and benefits of adaptive memory protection for claim operations of 1 to 60
CPUs and 512 pages of memory on a logarithmic time scale.

OctoPOS, in contrast, now provides adaptive protection: Memory pro-
tection and privilege separation can be enabled and disabled on the fly,
depending on the actual applications at run time. Figure 4.27 shows
that, especially with a larger claims, leaving off protection when not
needed (dynamic off) yields dramatic performance benefits (from 39×
for the retreat operation up to 184× for the mem_unmap operation),
while there are no penalties compared to an always protected system if
protection is enabled later on (protected). Technically, for the possibility
to enable protection later (at runtime), also OctoPOS needs to manage
logically separate address spaces by setting up the MMU and the respec-
tive page tables from the very beginning. However, the price of this
flexibility, that is, the overhead in comparison to an always unprotected
system (static off), is very low from (1.01× for retreat up to 1.86× for
mem_unmap).
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Constructive Measures for Low Energy: With constructive mea-
sures at operating-system level [HHSP16] and run-time mechanisms
embedded into the operating-system kernel, we reduce the energy foot-
print of invasive applications during execution. Aligned to individual
task characteristics (e. g. CPU-boundedness, memory-boundedness) the
OS kernel configures and sets up hardware components specific to the
current task in order to reduce the energy demand of the system during
execution of the application. The task-specific settings are extracted at
design time of the application and are deposited with the application,
and hence, they are available to the OS kernel at run time. Figure 4.28
shows three different applications and their individual energy and time
demands for execution (run-to-completion). In dependance on the
set of applied energy-saving features at run time, the non-functional
properties and resource-demand of the applications differ greatly. With
constructive measures we reduce the energy demand of the by up to
2.9x compared to the baseline while keeping functional properties of the
task intact. The constructive measures increase the resource awareness
of the operating system aligned to the concept of invasive computing.
Additionally to this, we further applied and extended the concepts of
these constructive measures to support more additional scenarios and
runtime environments, such as high-performance computing (HPC)
environments.
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Figure 4.28: Constructive measures at OS level increase the resource awareness by processing
tasks according to non-functional properties (e. g. energy demand, time demand).

Decreasing the energy-demand of workloads at OS level: To in-
crease the energy efficiency for the execution of heterogeneous work-
loads, we designed an extension to our operating-system kernel which
uses a decision-making process at run time [EHSP16]. At run time,
processing criteria for the workloads are considered and matched by
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the OS kernel-extension in order to remove jitter and unnecessary back-
ground noise from the system during execution. To exploit available
energy resources to the greatest extent, we use several energy-saving
features at hardware level which are independent from each other.
Individual job characteristics are compared with available processing
units at system-level in order to find a suitable match of claims and
grants. During the execution of the workloads we monitor and refine
the requirements of workloads in order to optimise the resource con-
sumption of the invasive system, and thus, the OS kernel continuously
readjusts system settings to reduce the consumption of resources. The
approach [EHSP16] considers the optimisation of non-functional prop-
erties (e. g. reduction of execution time and/or energy demand) while
maintaining the functional properties of the individual workloads.

The Agent System

The task of the iRTSS agent system is to provide a decentralised, scalable
resource management for invasive applications. Per application, agents
negotiate among each other for computational resources by comparing
speedup curves to optimise the performance of their applications.

Agent System visualisation: There is an ongoing effort to develop
an online visualisation tool to illustrate the resource allocation of the
agent system on the final demonstrator. Therefore we extended the
Qt-based visualisation tool InvadeView, that was originally developed
within Project C2. The visualisation tool is divided into two parts: Our
modified version of InvadeView running on a Linux host machine and
extensions that are integrated into the agent system. The extended
agent system can immediately be run on the Invasive Demonstrator or
the guest layer and is connected to the host machine via our highly
scalable push-messaging architecture based on Ethernet. System state
data is generated by the agent system, which is then processed by an
on-demonstrator utility program and send over to the Linux machine.
An on-Linux utility then receives the data, formats it and forwards it
to the extended InvadeView application for display. We augmented
InvadeView with additional functionality. This includes support for
stepping through monitor events forwards and backwards, highlighting
of claims, support for heterogeneous hardware and statistical plotting
of the agent system’s resource allocations over time. Figure 4.29 shows
a representative screenshot from the visualisation. The visualisation
helps the application developers to debug their applications on the
iRTSS system and it helps them to understand how their applications
are parallelised and how they compete for resources.
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Figure 4.29: Agent System Visualization

Agent System 2.0 (AS2.0): Considerable effort went into a signif-
icantly improved decentralised implementation of the agent system
(AS2.0) with a new underlying software architecture (see Figure 4.30).
Agents are tile local entities that represent individual applications and
negotiate the application’s resource demand with other agents in the sys-
tem. There is one AgentTileManager on every tile that stores information
about all agents registered to a particular tile. The AgentClusterManager
acts as a local directory service to ease the discovery of agents among
each other within a defined neighbourhood. The AgentTileManager
registers every agent to one of the AgentClusterManagers. Agents use
the Remote Procedure Call (RPC) mechanism provided by OctoPOS to
communicate. To allow for improved parallel execution and scalability
of AS2.0’s underlying communication infrastructure, we implemented
lock-free data structures for the iRTSS. In detail those include a lock-free
hash map and a lock free list. The ‘Compare and Swap’ (CAS) primitive
is used for the lock free data structures as it is the only one available on
the InvasIC demonstrator.

Claim Proxy Mechanism: A proxy mechanism was introduced into
the current agent system that allows i-lets the manipulation of their
corresponding claim across different tiles. Applications can now make
better use of claims that span multiple tiles. The proxy mechanism
makes use of OctoPOS’ underlying RPC functionality. The changes in
the software architecture of the current agent system can be seen in
Figure 4.31.
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Figure 4.30: Overview of AS2.0 architecture

Representation & Satisfaction of Quality-of-Service requirements:
We introduced a sophisticated constraint hierarchy which allows the
representation of complex quality of service requirements (‘constraints’)
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Figure 4.31: Overview of classes that were added to implement the proxy mechanism.

in the current agent system. A backtracking algorithm has been im-
plemented to find claims for complex constraints represented in the
constraint hierarchy. The hierarchy is modelled with a composite pattern
as shown in Figure 4.32.

Figure 4.32: Constraint hierarchy modelled with the composite design pattern. All constraints
inherit from the abstract class Constraint. Classes that inherit from ConstraintList are
constraints themselves, and can store multiple other Constraints.
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Outlook

We will continue the work on the low-overhead dynamic reconfigu-
ration of iRTSS, which will be extended to also support dynamic re-
configuration of processor sharing and preemption points in order to
facilitate on-demand migration of claims (e. g. triggered by the dark-
silicon management layer). On the technical level, this requires specific
code-generation support for low-overhead kernel-level dynamic reconfig-
uration even under high contention by multiverse functions [RDGL16],
which will be integrated into OctoPOS development.

Future plans also include the quick deployment of the first AS2.0
release with the basic functionality in place to run invasive applications.
A stable interface is to be designed that can be integrated with the X10
runtime environment of Project A1. Additionally, we want to develop
a concept for the distribution of the efficient satisfaction of quality of
service requirements. Together with Project A4, we envision to add
support for actor-based constraint graphs in extension of our current
constraint solving system. Another issue that we want to tackle together
with Project B5 is support for dynamic cache coherency, i. e. the agent
system should support finding tile regions that can be made cache
coherent in order to improve application performance.
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C2: Simulative Design Space Exploration

Frank Hannig

Sascha Roloff, Vahid Lari

Project C2 investigates novel simulation techniques that enable the
validation and variants’ exploration of architecture options as well as
invasion strategies. The timed functional simulation, evaluation, and
co-exploration of both invasive resource-aware programs and invasive
heterogeneous tiled architectures are the major objectives of Project C2.
Likewise, the architectures to be investigated are highly complex and
diverse as well as the workloads to be simulated. For example, a
simulation scenario could be made up of: a heterogeneous multi-tile
architecture and multiple competing highly parallel applications. In
order to handle this complexity, novel parallel simulation methods and
environments have been developed. Parallel simulation techniques en-
abled us to test and evaluate the concepts of invasive computing across
all project areas, especially, without the need to have full hardware or
software implementations available.

In addition to this foundation, we advanced our research within
the last year as follows. The first major contribution has been the
modelling of parallel workloads in form of actor-based X10 programs
and automatically generated task graphs based on parallel programming
patterns. The second research direction has focused on simulation-based
predictability analysis of timing and fault tolerance. Finally, we present
our latest achievements regarding simulative design space exploration.

Modelling of Parallel Workloads

An important milestone in the context of modelling invasive applications
was the development of a novel actor-based programming library in
X10 [Rol+16] in close cooperation with Project A1 and Project A4. It
brings together the well known concepts of the actor model and the
Asynchronous Partitioned Global Address Space (APGAS) paradigm and
follows a formalism in describing actor functionality and communica-
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tion, which allows a clear separation of control flow and data flow.
Similar to the previous task model8, this formal actor model may be
seamlessly mapped to the PGAS programming model as data processing
is performed solely on locally available data, whereas all data transmis-
sions between actors are explicitly modelled by channels.

The X10 PGAS model uses the notion of places and allows to dis-
tribute an actor graph among the available places in order to exploit the
processing power of the underlying cores or for an optimal workload
distribution. Each actor and each channel is mapped to a certain tile of a
previously reserved claim, on which they reside during the execution of
the actor graph. In case of an adaptation of the distribution at runtime,
the library allows to dynamically migrate actors and channels to other
tiles.

Besides modelling workloads by actorX10 applications, Project C2
also investigates the usage of task graphs based on parallel programming
patterns. In this context, we developed a method to systematically gen-
erate task graphs, which represent the concurrent execution behaviour
of common parallel programming patterns, such as divide and conquer,
MapReduce, or embarrassingly parallel. In addition, we evaluated a
benchmark set of representative parallel applications with respect to
their parallel runtime behaviour. For this purpose, we instrumented
the runtime library of different parallel programming environments
(Cilk, Pthreads, Python) in order to extract the parallel control flow for
program runs with varying input parameters. These extracted graphs
are compared with our generated synthetic patterns and used as basis
for dynamic invasion graphs. Such graphs are created at runtime based
on a parallel programming pattern and the availability of resources in a
simulated multi-tile architecture.

Simulation-based Predictability Analysis

In cooperation with Project A1 and Project A4, we established a case
study to analyse the ability of invasive computing to isolate applications
from each other in order to reduce execution time and throughput jitter
of soft real-time image stream processing algorithms to a minimum on
a heterogeneous NoC-based multicore architecture [Tei+16]. The case
study chosen was a robot vision object detection algorithm chain, which
provides a lot of pipeline parallelism in case of processing a stream

8S. Roloff, F. Hannig, and J. Teich. “Towards Actor-oriented Programming on PGAS-based
Multicore Architectures”. In: Workshop Proceedings of the 27th International Conference
on Architecture of Computing Systems (ARCS). Lübeck, Germany: VDE Verlag, Feb. 25–
28, 2014.

78



C2

2 4 6

100

120

140

160

NoC budget SL

La
te

nc
y

[m
s]

2 4 6

20

22

24

26

NoC budget SL

Th
ro

ug
hp

ut
[f

ps
]

Figure 4.33: Plot of the object detection task chain latency and throughput and their min/max
values in dependence of different service levels SL allocated for inter-task communi-
cations [Tei+16].

of images, e. g. delivered by a camera. We implemented this object
detection chain using the actorX10 library [Rol+16], encapsulating
each of the object detection tasks in an actor.

In order to show the advantages of invasive computing, we consid-
ered an application scenario, where the object detection application
is executed at the same time as a distributed Monte Carlo simulation.
Both applications are mapped on the target architecture such that their
communication paths are overlapping. Here, we tried to minimise the
execution time and throughput jitter of the object detection task chain by
applying invasive computing principles (in particular isolation). For this
purpose, guaranteed service (GS) channels were reserved between the
tiles on which the tasks were mapped to. In contrast, the Monte Carlo
simulations only use best effort (BE) channels between communicating
tasks.

We simulated the described application scenario on a 4×4 NoC archi-
tecture using the simulator InvadeSIM developed in the first funding
phase. We evaluated this scenario according to latency and throughput,
where latency denotes the time it takes to process one image frame in
the pipeline and throughput, measured in fps, denoting the rate of how
many frames can be processed by the pipeline per second. Different
service levels SL were reserved for the GS channels of the object de-
tection application. As can be seen in Figure 4.33, in both cases, the
objective values latency and throughput as well as their jitter signifi-
cantly improve when increasing the reserved communication bandwidth.
Still, the simulation-based evaluation only allows to determine observed
predictability markers, and is therefore only applicable for soft user
requirements. Whenever the user specifies hard requirements on objec-
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tives, their predictability markers have to be determined analytically.
Together with Project B2 and Project C3, we extended the simulator

for tightly-coupled processor arrays (TCPAs) in order to empirically
evaluate the proposed structural redundancy mechanisms for different
levels, such as dual (DMR) and triple modular redundancy (TMR) when
executing loop programs on TCPAs with immediate, early, and late vot-
ing [Lar+16; Lar16a]. Thanks to the developed simulation-based fault
injection environment, we were able to evaluate the reliability gains
when using each of the mentioned redundancy mechanisms compared
to non-redundant executions.

Architecture Exploration

Besides workload modelling and simulation-based predictability analy-
sis, the main focus of Project C2 is the automatic co-exploration across
all platform layers such as architectures, invasion strategies and appli-
cations. In this regard, we developed a basic infrastructure for archi-
tecture exploration9 based on our parallel execution-driven simulator
InvadeSIM. Architecture exploration is used to determine a set of op-
timal architecture configurations for a given mix of applications with
respect to multiple objectives, including execution latency, temperature
distribution, and power consumption. For this purpose, we utilised the
optimisation framework Opt4J10 to generate different architecture vari-
ants based on genetic algorithms and to evaluate them using InvadeSIM.
A general overview of this tool coupling can be seen in Figure 4.34.

Here, important problems to be solved were the encoding of an
architecture, the definition of appropriate operations to manipulate
the architecture encoding as well as the coupling of these tools. The
encoding of an architecture variant is called genotype and includes the
number of tiles, the number of processors on that tiles as well as the
configuration of these processors such as clock frequency. All parameters
of an architecture are set according to a given range in order to generate
feasible architecture configurations (integer genotype). A special creator
class as part of the Opt4J framework had to be implemented, it is
responsible to generate an initial set of architecture genotypes and new

9R. Andone. “Automatische Generierung von Architekturvarianten zur Entwurfsraumex-
ploration von heterogenen MPSoCs”. Bachelor Thesis. Hardware/Software Co-Design,
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany, Mar. 1, 2016.

10M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich. “Opt4J: A Modular Framework for
Meta-heuristic Optimization”. In: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation (GECCO). (Dublin, Ireland). ACM, 2011, pp. 1723–1730.
DOI: 10.1145/2001576.2001808.
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Figure 4.34: Block diagram of the design space exploration framework for finding optimal architec-
tures with respect to given objectives for a mix of parallel applications.

architecture genotypes based on the current population by applying
genetic operators. A second class called decoder translates the generated
encoded architectures into a so-called phenotype, which is a format that
can be used by an evaluator. Here, a generic XML-based architecture
description format was defined to interface the heterogeneous MPSoC
simulator InvadeSIM, which acts as evaluator in the context of the
Opt4J optimisation process. It loads the XML architecture description,
simulates the given X10 applications onto that architecture, determines
the specified objectives, and feeds them back to Opt4J for determining
a set of Pareto-optimal architectures.

Other Scientific Activities and Public Dissemination

In addition to the aforementioned research, Project C2 contributed
also very much in disseminating the concepts of invasive computing in
talks, tool presentations, and demonstrators. One highlight was this
year’s international trade fair HANNOVER MESSE, where we presented
a demonstrator illustrating the principals of invasive computing. The
exhibit was located at the booth of the FAU Interdisciplinary Centre for
Embedded Systems (ESI), situated in the exhibition area “Research and
Technology”. The demonstrator showed how applications are able to ex-
press the demand for more or less processors while the system attempts
to meet the demands. While processing, a 360◦ camera focussed an
object that could be moved by the visitors. The more processors were
used by the program, the faster and more efficient the object tracking
worked. The more other programs got active in the background while
simulating, the more efficiency of the image processing was reduced.
This demonstrator was also showcased at DTC 2016 (The Munich Work-
shop on Design Technology Coupling). Also at DTC, Vahid Lari gave a
talk about providing fault tolerance through invasive computing and
fault simulation [Lar16b]. Furthermore, we had two tool presentations
at the University Booth of DATE 2016. Both InvadeSIM [RHT16], our
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parallel execution-driven simulator for functional and timing simulation
of resource-aware applications on NoC-based MPSoCs, and the cycle-
accurate TCPA simulator as part of the TCPA tool chain [Tan+16] were
presented.
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C3: Compilation and Code Generation
for Invasive Programs

Gregor Snelting, Jürgen Teich

Sebastian Buchwald, Frank Hannig, Manuel Mohr, Tobias Schwarzer,
Ericles Sousa, Alexandru Tanase, Michael Witterauf

Project C3 investigates compilation techniques for invasive comput-
ing architectures. Its central role is the development of a compiler
framework for code generation as well as program transformations and
optimisations for a wide range of heterogeneous invasive architectures,
including RISC cores, tightly-coupled processor arrays (TCPAs), and
i-Core reconfigurable processors.

Source code
Candidates

for loop
parallelisation

Extended
X10 compiler

AST

libFIRMLoopInvader

Machine code

Invasive
X10 runtime

SPARC . . . Other
backend

Tightly-coupled
processor array

Figure 4.35: Compiler framework for invasive comput-
ing.

Figure 4.35 shows the struc-
ture of the developed com-
piler. The compiler is based
on an existing X10 compiler,
but has been extended with
new transformation phases to
support TCPAs as well as gen-
eral purpose cores, such as
SPARC/x86 processors as well
as i-Cores, through libFIRM.

For general purpose cores,
our research was focused on
optimisations as well as on
verification. First, to acceler-
ate program execution on in-
vasive architectures, we pro-
posed, implemented, and eval-
uated a novel technique to
copy complex data structures
more efficiently between coherence domains. Second, we formally veri-
fied our proposed SSA construction algorithm with the proof assistant
Isabelle/HOL. Third, we designed, implemented, and evaluated a sys-
tem to synthesise a provably correct instruction selector from semantic
descriptions of intermediate representation and target machine.
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For TCPAs, we developed a mathematical framework to symbolically
map loop programs in a hierarchical fashion to balance I/O bandwidth
and memory requirements without knowing the number of processing
elements actually acquired at runtime. We demonstrated our first results
at the DATE 2016 university booth [Tan+16].

Symbolic Multi-Level (Hierarchical) Tiling

To map a loop program onto a TCPA independently of the number of
processing elements—which, in invasive computing, we do not know at
compile time—the mapping must be symbolic, meaning that it retains
parameters until runtime. Symbolic mapping is a two-step process: First,
symbolic tiling tessellates the iteration space of a loop into disjoint, con-
gruent tiles of parametric size. Second, symbolic scheduling determines
a symbolic schedule that assigns an execution time to each iteration.

We developed an algorithm for mapping loop programs symbolically
on multiple levels in a hierarchical fashion. Because the tile size on
each level correlates to different constraints such as I/O bandwidth
or memory size, this allows the compiler to balance such constraints
systematically. This is necessary because TCPAs only have a fixed number
of I/O channels and limited memory per processing element.

So far, however, we had only considered the particular case that the
iterations of the first and last tiling level are executed sequentially, while
the tiles of all levels in between are executed in parallel. Because other
combinations may lead to better utilisation, in 2016 we alleviated this
limitation to allow each level of the hierarchical tiling to be scheduled
either in parallel or sequentially. For this, we developed a rigorous
mathematical framework that subsumes our previous work as special
cases, making it very general.

Using this framework, we showed that it is possible to derive such
symbolic, hierarchical schedules analytically at compile time.

Modulo Scheduling of Symbolically Tiled Loops

Maximising the throughput of a loop requires to overlap the execu-
tion of subsequent iterations, a concept known as software pipelin-
ing. Software pipelining is most commonly achieved by implementing
resource-constrained modulo scheduling, which our approach to sym-
bolic mapping described in the previous section makes impossible to use
naively because the resulting constraints and objective function contain
multiplicative parameters.
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To circumvent this, we developed a method for symbolically tiled
loops that enables the usage of existing resource-constrained modulo
scheduling algorithms [WTHT16]. Our method first only considers
constraints that do not contain any parameters and solves the resulting
reduced modulo scheduling problem. Of course, this entails a trade-off:
to ensure that the determined schedule is feasible at runtime, the tile
size must be larger than a minimum tile size computed at compile time
from the remaining, parametric constraints. If the schedule is infeasible,
a slower fallback schedule must be used.

However, we showed that for many real-world applications, minimal
tile sizes are very small or do not even exist, yet the gained speed-up is
large.

Fault Tolerance in Invasive Computing and Loop Processing

Because of shrinking feature sizes, integrated circuits are increasingly
susceptible to faults, necessitating fault tolerance measures. Therefore,
in close collaboration with Project B2 and Project B5 [Lar+16; Tei16],
we showcased how to apply invasive computing techniques to provide
adaptive fault tolerance to applications.

For TCPAs in particular, we have developed a compiler transformation
that introduces modular redundancy by replicating loop nests and invad-
ing redundant claims of processing elements11. Different frequencies of
voting (once every iteration, once per tile, only once) enable a trade-off
between reliability and error detection latency.

Compiler LoopInvader

The compilation flow of the loop compiler LoopInvader has advanced
a lot in 2016. It is depicted in Figure 4.36: LoopInvader generates
a unified configuration binary that contains configuration data for all
components of the TCPA and characterises the inputs and outputs of the
loop program.

In particular, LoopInvader provides a communication function that is
called at runtime by the Reconfiguration and Communication Processor
within the TCPA tile each time a buffer interrupt indicates an empty or
full buffer. The communication function then schedules the necessary
transfer to or from the buffer according to the size of the corresponding

11A. Tanase et al. “On-Demand Fault-Tolerant Loop Processing on Massively Parallel Pro-
cessor Arrays”. In: Proceedings of the 26th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP). (Toronto, Canada). IEEE, July 27–
29, 2015, pp. 194–201. DOI: 10.1109/ASAP.2015.7245734.
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Figure 4.36: LoopInvader generates a unified configuration binary that contains the configuration
data for all TCPA components including assembly programs of PEs, address genera-
tors (AG), global execution controller (GC), and characterises inputs and outputs (the
correspondence is illustrated by arrows and matching colours).

input or output array, tile size, scanning order, and buffer size. Using a
function instead of fixed parameters allows us to use arbitrary access
patterns without changing the format of the configuration data.

To support this unified configuration and test the compiler as well as
novel architectural hardware features, we also implemented an easily ex-
tensible TCPA simulator. Benchmarking and testing of the full compiler
flow will be a major task of our 2017 work program in Project C3.

Compiler Optimisations for Invasive Architectures

Inter-tile data transfers We continued our work on accelerating inter-
tile data transfers on our non-cache-coherent tiled architecture [MT17].
One particular challenge on our platform is optimising programs written
in the modern, object-oriented programming language X10. While X10
makes it easy to distribute work over multiple coherence domains by
providing built-in support for message passing, X10 programs, due to
their high-level nature, often transfer pointered data structures.

However, message passing of pointered data structures entails costly
(de-)serialisation. Consider the situation that tile S has a linked list in its
memory partition and wants to send it to tile R. Tile S must first convert
the list to a format suitable for message passing, i. e. serialise it to a
byte stream, which R then receives to reconstruct (deserialise) a copy
of the original list. The (de-)serialisation causes a large overhead, both
memory-wise and computation-wise. As such pointered data structures
occur frequently in general-purpose applications, especially if written
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Figure 4.37: Schematic comparison of approaches to transfer an object graph G from sending
tile S to receiving tile R. Temporary buffers are denoted by B, B′; and G′ is the
resulting copy of G.

in high-level object-oriented languages like X10, it is important to
accelerate their transfer.

Data transfers can be accelerated on non-cache-coherent systems
by exploiting shared memory and managing coherence in software,
i. e. explicitly triggering the needed cache write-backs and invalida-
tions. However, existing techniques for transferring data in this fashion
were limited to contiguous “flat” data structures not containing any
pointers. Hence, in our setting, most data transfers would still require
(de-)serialisation.

Therefore, we proposed, implemented, and evaluated a novel ap-
proach for transferring pointered data structures between shared mem-
ory partitions without requiring coherent caches. In our approach, the
receiver directly accesses the data structure in the sender’s memory
partition and makes a deep copy of it, i. e. clones it, in the receiver’s par-
tition, thereby avoiding the need for serialisation and temporary buffers.
To guarantee correctness, the software forces the necessary cache write-
backs and invalidations with object granularity. Figure 4.37 shows a
schematic comparison of our new data transfer approach compared to
existing techniques. We showed that in a programming language fol-
lowing the partitioned global address space (PGAS) model, such as X10,
the compiler and runtime system can issue the cache operations safely
and fully automatically with zero overhead. Existing X10 programs do
not have to be modified to benefit from our technique. We could show
using the standard X10 benchmark suite IMSuite that our approach
reduces the time spent for communication by up to 39.8% compared to
the state-of-the-art.
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Moreover, we found that both existing approaches and our new tech-
nique benefit greatly from range-based cache operations (called range
operations in the following), i. e. hardware-supported operations that
write back, invalidate, or flush all cache lines relevant to a given (log-
ical) address range. This functionality has been requested before in
prior work on software-managed cache coherence, however, so far it
was never explored in the context of a non-cache-coherent architecture.

In cooperation with Project B1 we implemented novel non-blocking
range operations. We implemented these operations as an instruction
set extension to our LEON3 processors based on the SPARC V8 instruc-
tion set. In our design, the instructions offload the actual work to an
enhanced cache controller. In every cycle, during which the processor
does not execute a load or store, the cache controller uses this spare
cycle to work on range operations. It therefore takes n spare cycles
to apply an operation to a range spanning n cache lines. From the
processor’s view, these instructions only take one processor cycle. We
could show that for our test inputs, this condition is fulfilled for the
average data transfer.

Verified SSA construction During the first funding phase, we devel-
oped a simple and efficient SSA-construction algorithm. Since then, we
formally verified the correctness of our algorithm [BLU16] using the
theorem prover Isabelle/HOL. We also proved that the algorithm always
constructs pruned SSA form, and minimal SSA form in case of reducible
control flow graphs.

In a follow-up work12, we extend the minimality proof to irreducible
control flow graphs. Thus, our algorithm always constructs minimal and
pruned SSA form. We also show that minimal and pruned SSA form
leads to a minimal number of phi functions. Furthermore, we provide a
new criterion for minimal SSA form that coincides with the existing one
but is more general and easier to check.

Synthesised instruction selection In order to rapidly support new spe-
cial instructions provided by Project B1, we developed an instruction
selection synthesiser for the libFIRM back ends13. The synthesiser uses a
new program synthesis algorithm to discover FIRM patterns for the new
instructions. This algorithm greatly improves performance over existing

12M. Wagner. “Minimal Static Single Assignment Form”. Master thesis. Karlsruhe Institute
of Technology (KIT), IPD Snelting, Nov. 2016.

13A. Fried. “Synthesizing Instruction Selection”. Master thesis. Karlsruhe Institute of
Technology (KIT), IPD Snelting, Aug. 2016.
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approaches. Therefore, it does not need hints to restrict its search space,
and can run unsupervised.

Our implementation is capable of covering the integer subset of the
x86 instruction set, as well as some instructions from the BMI extension.
Thus, it easily covers the SPARC integer instructions, as they are less
complex compared to the x86 ones. Furthermore, it demonstrates that
the approach can handle small and mid-size special instructions.

Information Flow Control For Invasive Applications

G. Snelting’s group develops JOANA, a tool for software security analysis
(information flow control, IFC). JOANA is one of the few IFC tools
worldwide that handles full Java with unlimited threads, and provides
high precision (few false alarms) [GHMS16]. Recently, a new (i)RLSOD
algorithm was developed for JOANA, which discovers all probabilistic
leaks, while still allowing secure parallel execution of public (“low”)
statements [Bre+16]14.

It is planned to use JOANA also for invasive X10 programs. An
X10 front end is under development. RLSOD requires a probabilistic
scheduler, as well as sequential consistency; the latter will be provided
by the invasive memory model (see Project A1). On December 1st, a
meeting with the group of Felix Freiling explored how JOANA can be in-
tegrated with the hardware-based invasive security features investigated
in Project C5.

Demonstrator Activities and Integration Work

After extensive debugging work by Project C3 and communication with
Gaisler by Project Z2, we could identify a problem in a stock component
as the cause of a long-standing bug in our system. The bug, whose
symptom were incoherent caches, was confirmed by Gaisler who recom-
mended a different configuration that solved our issue. Furthermore,
we continued our investigation concerning various data corruption prob-
lems related to hardware-accelerated inter-tile data transfers. While
some problems remain, the automated testing framework established
by Project C1 shows noticeable improvements in system stability.

To assist in testing our system, we ported the existing benchmark

14D. Giffhorn and G. Snelting. “A new algorithm for low-deterministic security”. In:
International Journal of Information Security 14.3 (2015), pp. 263–287. DOI: 10.1007/
s10207-014-0257-6.
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suite IMSuite15 to our tiled architecture. IMSuite contains 12 X10 bench-
mark kernels that mainly implement popular graph-based algorithms,
such as computation of spanning trees or vertex colourings. These
programs serve as valuable test cases whose complexity is situated be-
tween simpler test cases provided by Project C1 and considerably larger
invasive applications provided by Project D3. Additionally, they also
allow evaluating the performance of our system.

Furthermore, in cooperation with Project B1, we added support for
the i-Core special instructions to the X10 compiler. Thus, programmers
can now write X10 programs that exploit custom hardware accelerators.
The first user of this functionality is Project D3 where special instruc-
tions accelerate the tsunami simulation SWE-X10. To fully exploit the
hardware accelerators, it is crucial to move data to the i-Core’s local
memory, which it can access much faster than other memory types.
Therefore, in cooperation with Project C1 and Project B1, we developed
a DMA-based mechanism and software interface that enables an asyn-
chronous prefetching of input data. We make this prefetching available
in X10 by standard language means, i. e. the prefetching is presented
to the X10 programmer like a normal activity that can be synchronised
with using a regular finish block. We plan to continue development
and evaluate SWE-X10 on such a heterogeneous manycore platform.

X10 Code Generation for Operating Points

Project A4 investigates design-time characterisation techniques of inva-
sive applications to determine optimised operating points that contain
a set of claim constraints. The characterisation ensures various non-
functional requirements, such as power. In Project C3, we implemented
a transformation in Erlangen that generates X10 source code corre-
sponding to the claim constraints described by the operating points (see
project report of Project A4, 2015). Such a source code is crucial to en-
sure that the application satisfies the non-functional program properties
analysed at design time.
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Algorithms”. In: Journal of Parallel and Distributed Computing 75 (2015), pp. 1–19.
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C5: Security in Invasive Computing Systems

Felix C. Freiling, Wolfgang Schröder-Preikschat,
Ingrid Verbauwhede (Mercator Fellow)

Ruan de Clercq, Gabor Drescher, Johannes Götzfried, Pieter Maene,
Tilo Müller, Furkan Turan, Alexander Würstlein

Project C5 explores security aspects of invasive computing and resource-
aware programming. Invasive MPSoC architectures will only be ac-
cepted if basic security properties are supported. The final goal is
to ensure confidentiality, integrity, and availability in the presence of
untrustworthy programs that compete for resources and/or can con-
tain malicious functionality. This requires a comprehensive approach,
addressing both hardware and software mechanisms.

Project C5 is a new project established within the second funding
phase. In 2015, we began to devise the attacker model and study secu-
rity properties (especially isolation properties) as constraints for invasive
computing (work package 1). In 2016, we achieved different levels
of isolation at different architectural layers. We focused on hardware
(i. e. isolating applications running on the same core, work package
4) and the systems software layer (isolating memory abstractions in
collaboration with Project C1, work package 3). Furthermore, in col-
laboration with Project A1, Project A4, and Project B5 we proposed
spatial isolation as a countermeasure to mitigate side-channels with a
new design-time/run-time mapping of applications.

Attacker Model

Our attacker model consists of four hierarchic levels at which an attacker
can operate and execute software. An X10-attacker corresponds to
an attacker who can run programs written in X10. These programs
can be statically checked through a trusted X10 compiler, strongly
inhibiting malicious behaviour, e. g. by the type system of X10. In
contrast, the binary attacker may execute arbitrary (binary) code that
runs with privileges associated with normal applications (usually user
level privileges). With the OS-level attacker, we allow an attacker to
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Figure 4.38: Encryption unit inserted between cache and main memory to guarantee confidentiality
even in the event of a full (software-based) system compromise.

take over control of the operating system. Finally, physical attacks are
the most powerful ones which are considered to be technically difficult
to perform, but also to defend against. Physical attacks are currently
not considered in the project.

Results

Recently, we have been investigating different solutions to isolate appli-
cations from each other and preserve their integrity and confidentiality
at any time. One such approach is memory encryption that can be
dynamically configured to guarantee security on demand for invasive
applications. For example, we propose the use of a new encryption unit
(Figure 4.38) between the cache and main memory to guarantee confi-
dentiality even in the event of a complete software compromise. While
strong isolation guarantees can be given on a intra-tile level, at least
confidentiality is provided on a inter-tile level, e. g. for global memory.

In the same direction, we developed a solution [Göt+16] that allows
unmodified processes to transparently work on encrypted data. It can
be deployed and enabled on a per-process basis without recompiling
user-mode applications. In every enabled process, data is only stored in
cleartext the moment it is processed, and otherwise remains encrypted
in main memory. In particular, the required encryption keys do not
reside in main memory, but are stored in CPU registers only. Hence,
our solution effectively thwarts memory disclosure attacks, which grant
unauthorised access to process memory, as well as physical attacks. In
the default configuration, only up to 4 memory pages are exposed in
cleartext at the same time.
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Apart from process memory, kernel memory often contains sensitive
data as well. Thus, we presented a hypervisor-based solution [GDPM16]
that encrypts the entire kernel and user space to protect against attacks
on main memory. This solution is fully transparent to the guest operating
system and all applications running on top of it. At any time, only a small
working set of memory pages remains in clear while the vast majority of
pages are constantly kept encrypted. By utilising CPU-bound encryption,
the symmetric encryption key is never exposed to main memory. With
the default configuration of 1024 cleartext pages, successful attacks are
rendered highly unlikely due to large caches on the invasive platform.

In some scenarios not even the hypervisor can be trusted. Therefore
we introduced a hardware-based mitigation [WGGM16] against mem-
ory disclosure attacks. Our FPGA-based prototype with accompanying
software components demonstrates the viability, security and perfor-
mance of our novel approach for partial main memory encryption via
memory proxies. The memory proxy approach is compared to other
existing mitigation techniques, and possible further uses beyond encryp-
tion are discussed, as well. We effectively protect against attacks on
main memory, while being transparent to applications and the operating
system after initialisation.

Since only a part of the software stack usually needs to be protected,
and kernel components are especially at risk, we developed a novel
approach on isolating operating system components [RGM16]. Although
existing trusted computing solutions have not been designed to work in
kernel mode, we found a way of wrapping kernel functionality within
secure containers by moving parts of it to user space. Kernel components
are strictly isolated from each other such that a vulnerability in one
kernel module cannot be escalated to a full kernel compromise. Besides
integrity our implementation ensures that the confidentiality of the
secure container is protected against all software level attacks as well
as physical attacks.

Logical isolation between applications is not enough when it comes to
side-channel attacks. Thus we provided a spatial isolation scheme with
the help of novel design-time/run-time mapping [Wei+16]. Different
applications concurrently running on modern MPSoCs can interfere
with each other when they use shared resources. This interference
can cause side channels, i. e. sources of unintended information flow
between applications. To prevent such side channels, we propose a
hybrid mapping methodology that attempts to ensure spatial isolation,
i. e. a mutually-exclusive allocation of resources to applications in the
MPSoC. As a first step, we compute compact and connected application
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mappings (called shapes) at design time. In a second step, run-time
management uses this information to map multiple spatially segregated
shapes to the architecture. Besides spatial isolation, we also took first
steps in securing interconnects [Tur+16].

Summary

The invasive computing paradigm offers applications the possibility of
dynamically spreading their computation in a multicore/multiproces-
sor system in a resource-aware way. If applications are assumed to
act maliciously, many security problems arise. We argue that all our
solutions for isolating applications by logical means as well as by design-
time/run-time mapping can provide on-demand security for the invasive
platform [Dre+16].

Outlook

We plan to map the existing landscape of trusted computing architec-
tures to further refine our solutions and design the best possible solution
for the invasive platform. Attackers target many different types of
computer systems in use today, exploiting software vulnerabilities to
take over the device and make it act maliciously. Reports of numerous
attacks have been published, against the constrained embedded devices
of the Internet of Things, mobile devices like smartphones and tablets,
high-performance desktop and server environments, as well as com-
plex industrial control systems. Trusted computing architectures give
users and remote parties like software vendors guarantees about the be-
haviour of the software they run, protecting them against software-level
attackers. We aim to define the security properties offered by current
architectures. Our goal is to present detailed descriptions of selected
hardware-based attestation and isolation architectures from academia
and industry. We want to compare those designs with respect to the
security properties and architectural features they offer.

Based on our results of systematically examining existing trusted
computing architectures, we aim at developing a scalable approach
for current heterogeneous MPSoCs. We believe that a hardware-based
mechanism guaranteeing confidentiality of code and data between
applications can be implemented based on the SPARC LEON3 processor,
including tool-chain extensions for developers. Its overhead should be
independent of the number of applications running on the system in
order to support the heavy load of manycore systems. In addition, it
has to be compatible with the complex memory hierarchies of these
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systems, requiring multi-level protection mechanisms, giving developers
the choice to enable them depending on their security requirements.
Finally, a zero-software trusted computing base is required in order to
protect against system-level attackers. Since these mechanisms will be
integrated at the level of a single core, their area overheads should be
small. Furthermore, for them to be used by application developers, they
should have limited impact on performance.

Finally, in the future we plan to additionally look into exploit mitiga-
tion mechanisms such as control flow integrity solutions [Cle+16]. We
plan to propose a hardware-based security architecture which protects
software running on the invasive platform by guaranteeing software in-
tegrity and control flow integrity. This will allow the multicore platform
to defend against a large number of attacks, including code injection,
code reuse, and fault-based attacks on the program counter. In addition,
we also want to defends against software copyright infringement and
reverse engineering. All protection mechanisms will be enforced in
hardware using cryptographic techniques.
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D1: Invasive Software–Hardware Architectures
for Robotics

Tamim Asfour, Walter Stechele

Manfred Kröhnert, Dirk Gabriel

The main research topic of Project D1 is the exploration of benefits
and limitations of invasive computing in humanoid robotics. Our goal
is to demonstrate invasion mechanisms and negotiation for resources
in the context of complex robotic scenarios with concurrent processes
and timely varying resource demands. Invasive computing mecha-
nisms should allow for efficient resource usage and shorter execution
times while adhering to predictability of non-functional properties, e. g.
power, dependability, security. Therefore, research on techniques of
self-organisation are key to efficient allocation of available resources in
situations where multiple applications bargain for the same resources.

In 2016, we enhanced our resource-aware motion planning algorithm
towards a fully malleable application and combined environment knowl-
edge with resource utilisation statistics generated from profiling data
into context-sensitive resource models. Furthermore, we investigated
how a chain of vision algorithms behaves on different resource patterns.

Context-Sensitive Resource Models

The execution of a robot action is influenced by the internal state of the
robot and the environmental context in which the action is performed.
Context dependent parameters are execution time, number and type
of selected algorithms, or CPU and memory utilisation. For example,
grasping an object in a cluttered environment takes longer and requires
more CPU and memory than grasping an object from an empty table. In
the cluttered scene, all visible objects must be recognised by comparing
them against a database of known objects and additionally, a large
number of objects in a scene leads to longer motion planning execution
times since each additional object increases the possibility of collisions.

The developed resource model stores statistics about execution time,
CPU and memory utilisation for each robot action and includes all action
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specific algorithms executed by so called robot components [Krö16].
Furthermore, these statistics are associated with the environmental con-
text the robot was operating in while data was collected. This allows
distinguishing which context can lead to changes in execution time
or resource utilisation. Figure 4.39 shows CPU and dynamic memory
utilisation of the resource model for place object on a table action. This
action has a mean duration of 45 seconds and CPU utilisation during this
action is high for the HeadIK, ViewSelection and RobotStateComponent
components of the robot program. These components are required for
calculating the kinematics of the head and where the robot should look
at. Furthermore, CPU time is also required for sensor processing compo-
nents (ForceTorqueUnit, ForceTorqueObserver) as well as components
required for moving the robot arm to its target position (SystemObserver,
KinematicUnitObserver, XMLStateComponentVisualServoGroup).

The right part of Figure 4.39 shows how much dynamic memory is
used by the running robot components. Except for the RobotControlUnit,
the TCPControlUnit, and the XMLSTateComponentPlaceObjectGroup,
most components do not allocate large quantities of additional memory.
The XMLStateComponentPlaceObjectGroup is responsible for coordi-
nating all subtasks of the robot action, while the RobotControlUnit
continuously receives sensor value updates and updates the internal
representation of the robot accordingly. Allocation in the TCPControlU-
nit is performed by the intermediate calculations required to steer the
robot arm towards the object placement position.
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Figure 4.39: The left graph shows CPU utilisation while the right graphs shows dynamic memory
utilisation of components required by the robot for placing an object on the table.
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Malleable Resource-Aware Motion Planning

Motion planning is used in robotics to calculate collision free motions
for a robot in a given environment. Figure 4.40 shows a typical motion
planning in which the robot ARMAR-III must pull a bottle out of a crate
while avoiding collision with any other bottle and the crate itself. The
depicted task is difficult to compute, due to the narrow free space in the
crate, where minimal movements of the robot arm result in collisions.

Figure 4.40: The goal for the humanoid robot ARMAR-III is to pull a bottle out of the crate without
colliding with any other bottles or the crate.

In [KGVA16] we presented a parallelised resource-aware motion plan-
ning algorithm which is capable of adaptively requesting additional
processing resources based on planning problem difficulty. One key
aspect of the algorithm is a more efficient resource utilisation as com-
pared to static allocation. To make this algorithm fully resource-aware,
we enhanced it to support releasing resources when requested from an
external resource manager. The resulting adaptive utilisation of process-
ing resources is shown in Figure 4.41 which is based on an exemplary
execution of the pull bottle out of the crate planning task. Starting at
-220 seconds, the algorithm gradually acquires a maximum of 8 CPUs,
each being fully utilised and resulting in a CPU utilisation of 800 %. The
external resource manager requests the algorithm to release 6 CPUs
after 70 seconds, allows using 5 CPUs after 100 seconds, allows using
only one CPU after 120 seconds, and so on.
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Figure 4.41: Adaptive CPU utilisation in [%] of the resource-aware motion planning algorithm. The
task is to plan a motion for pulling a bottle out of a crate. After startup the algorithm
gradually acquires new CPUs, each accounting for a rise of 100 % CPU utilisation.
An external resource manager continuously updates the number of maximum allowed
CPU resources and the algorithm responds accordingly by reducing its internal
degree of parallelism and releasing CPUs.

Application Chains

As previously shown the time required to execute a robot action depends
on the environmental context. Although the variation is low for the
most basic algorithms the set of available resources highly influence
the execution time whereby the system must guarantee a limited pro-
cessing delay to ensure correct behaviour. We investigated one visual
object detection algorithm based on SIFT (Scalable Invariant Feature
Transform) features in detail. This algorithm consist of three concurrent
stages (Harris Corner, SIFT extraction and SIFT matching) which can be
parameterised to reduce the computational complexity while decreasing
the result’s quality. During runtime the system has to automatically
select the overall best available configuration for the three stages in-
cluding the mapping of workload onto the different resources and the
stage parameters. The goal is to achieve the highest possible quality
within the given timing and resource constraints. Further non-functional
constraints like power and security may be included later.

As the requested configuration can be found by a computational inten-
sive optimisation we will use results from the Design Space Exploration
(DSE) developed by Project A1. During runtime the application con-
trol will select a suitable operating point from the Pareto front, which
contains the full configuration.

101



D1

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

20
40

60
80

10
0

# CPU cores

E
xe

cu
tio

n 
tim

e 
/ m

s

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

20
40

60
80

10
0

Direct memory access
DMA transfer

Figure 4.42: Execution Time of the Harris Cor-
ner stage on a single socket
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Figure 4.43: Execution Time of the Harris Cor-
ner stage on multiple sockets

In order to provide the required behavioural description for the DSE,
an implementation of the algorithm supporting different communication
patterns and resource distributions based on OctoPOS x86_64 has been
finished in 2016. Figure 4.42 shows the relationship between the total
execution time of the Harris Corner stage and the number of available
CPU cores on a single socket. The workload is distributed equally on
all cores. From one to eleven cores the execution time scales nicely
with the increasing core count. Afterwards not only physical cores are
used, but virtual cores using the Intel Hyper-Threading technology. They
share the ALU with a physical core and therefore interfere with another
i-let which results in a higher execution time. This issue can be solved
by adapting the workload of the different i-lets.

When the cores belong to different sockets, the data must be trans-
ferred from one NUMA domain to another. As in Figure 4.43 shown an
explicit DMA data transfer has an higher overhead than accessing the
data beyond domain borders.

Outlook

In the next year, we will start integrating our work into a more com-
plex demonstration scenario for the review meeting in 2018. Resource
models generated from observation of robot actions will build the ba-
sis for predicting future robot actions and their associated resource
utilisation. This prediction information can then be used by the agent
system within OctoPOS for enhanced resource allocation decisions and
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to start algorithms such as the resource-aware motion planning ahead
of time. Furthermore, we plan a combination of invasive computer
vision algorithms and the resource-aware motion planning where the
amount of free resources allocated to motion planning is determined by
the workload of the vision algorithms.
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D3: Invasion for High-Performance Computing
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Isaías Comprés, Ao Mo-Hellenbrand, Josef Weidendorfer

The overall goal of Project D3 lies in two areas: The first one is to
investigate and exploit the potentials of invasive computing for state-of-
the-art high-performance computing applications16,17 on standard HPC
architectures [LGG16]. The second area is to provide application-level
support for the development of invasive computing hardware platforms.

Invasion for HPC

Significant results have been achieved in the infrastructure required
to support invasive MPI applications in HPC systems. Our infrastruc-
ture consists of a batch scheduler, a runtime scheduler, a collection of
daemons running on each managed node, a launcher for MPI applica-
tions, the PMI library that interfaces MPI processes with the resource
manager, and finally, the MPI library itself. We described each of these
components and their organisation in our previous report.

From the components enumerated before, all are now functional with
the exception of the batch scheduler and the scheduling plugin for the
runtime scheduler. The MPI library in particular has reached feature
completion and stability. The MPI library together with the current
implemented components of the infrastructure provide an already stable
enough platform for invasive MPI applications to be developed and run.
In addition to this, the resource manager is already able to handle
multiple applications and shuffle resources among them with a random
algorithm. We can now perform application runs and measurements
in the SuperMUC petascale system, by dynamically configuring our

16M. Bader et al. “Invasive Programming as a Concept for HPC”. In: Proceedings of the 10th
IASTED International Conference on Parallel and Distributed Computing and Networks
2011 (PDCN). Feb. 2011. DOI: 10.2316/P.2011.719-070.

17M. Gerndt et al. “An Integrated Simulation Framework for Invasive Computing”. In:
Proceedings of the Forum on Specification and Design Languages (FDL). Vienna, Austria:
IEEE, Sept. 18–20, 2012, pp. 209–216.
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infrastructure inside of a Load Leveler allocation. With this technique
we gathered the required data for our publication at the EuroMPI 2016
[CMHGB16] conference in Edinburgh, Great Britain.

Invasive Resource Management (iRM) The main achievement of our
infrastructure development efforts is the latency hiding algorithm for the
adaptation of individual invasive MPI applications. Our infrastructure
is now capable of hiding the scheduling and process creation latencies
from preexisting application processes. Additionally, adaptations can be
performed in groups where resources are reallocated in a collection of
applications asynchronously and concurrently. This functionality will
allow future schedulers to achieve important objectives such as power
level stabilisation by minimising idle time in nodes.
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Figure 4.44: Step by step resource adaptations between the resource manager and MPI applica-
tion.

We have divided the adaptation of a single application into six steps:
1) reallocation message, 2) create new processes in expansion nodes, 3)
new processes ready, 4) notify preexisting processes, 5) adaptation commit,
and 6) reallocation complete. Figure 4.44 illustrates these steps. The
arrows indicating which components participate during each step, point
from the component that initiates the action towards the components
that performs it.
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Invasive MPI (iMPI) The Invasive MPI library has reached feature com-
pletion and stability. This means that future development only remains
in the infrastructure, mainly related to our schedulers. The MPI library
and key parts of the infrastructure provide a reliable software stack for
our invasive MPI application developers today.

Our finalised API consists of the same original 4 operations introduced
in earlier reports. Their final API is now in place, and is described in
listings 4.1.

int MPI_Init_adapt( int *argc, char ***argv, int *local_status);
int MPI_Probe_adapt(int *current_operation, int *local_status,

MPI_Info *info);
int MPI_Comm_adapt_begin( MPI_Comm *intercomm, MPI_Comm *new_comm,

int *staying, int *leaving, int *joining);
int MPI_Comm_adapt_commit();

Listing 4.1: C MPI extensions.

We have observed interest by some members of the MPI forum. We
are in conversations on a possible presentation about our extensions at
the MPI forum next year. There is potential that our work will influence
the Dynamic Processes support of the next MPI standard.

Invasive HPC Applications Last year, we have finished the develop-
ment of a Statistical Inverse Problem, in which the locations of multiple
obstacles in a fluid channel are recovered. This application represents a
class of Bayesian inference problems, which belong to the embarrassingly
parallel application category and is inherently suitable for the invasive
HPC framework. This year, we have devoted efforts to the development
of following applications:

• Invasive Tsunami Simulation

The tsunami simulation befit the invasive HPC framework very
well, due to the fact that it is based on adaptive triangular grids,
which produces dynamic compute loads and requires changing
computational resources during runtime. It represents a class of
grid-based simulation problems, in which data dependencies exist
among parallel processes. This type of problems poses a major
challenge for invasive computing: whenever there is a change
in resources, the computation domain must be re-partitioned,
which naturally adds overhead to the total resource adaptation
time. Therefore, an efficient communication scheme for data re-
distribution and the frequency of resource adaptation must be
carefully chosen.
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Taken such consideration into account, we are able to achieve an
efficient invasive implementation based on an existing tsunami
simulation application [MRB16]. This invasive version probes the
resource manager for adaptation instruction at an appropriate and
adjustable frequency. In case of adaptation, MPI communication
due to data re-distribution is reduced to minimum such that the
overall performance is not comprised. We are currently carrying
out more performance analysis on SuperMUC.

• Invasive Porous Media Flow Simulation

The porous media flow simulation simulates the behaviour of
fluids flowing through a porous medium, such as oil infiltrating
into soil. Similar to the tsunami simulation, this application is
based on adaptive triangular grids and poses the same challenge
described above. The difference, however, is that this application
has one dimension more than the tsunami simulation. It is a 3-D
simulation with two fully adaptive and one static dimensions, due
to which the computational intensity is brought to another level.
At the moment, we are modifying an existing implementation18 to
incorporate the resource adapting scheme with iMPI.

• Elastic Machine Learning: Multivariate Regression

This application solves a typical machine learning problem—high
dimensional regression. It is designed to befit the invasive HPC
framework by utilising the sparse grid combination technique
to decompose the original problem into a set of simpler, inde-
pendent subproblems. The result is an embarrassingly parallel
application that is tailored to the invasive HPC framework with a
master-worker implementation. At the moment, the normal MPI
implementation is completed. We are in the process of incorporat-
ing the resource adapting scheme with iMPI

Demonstrator Platform: X10 Applications

In the area of MPSoCs, we continue our efforts on the development of
different applications in X10 that could be run on the invasive multi-
tile hardware demonstrator platform. These applications should be
of practical value and be able to showcase the benefits of invasive
computing. Our goal for the current funding phase is to demonstrate
18O. Meister and M. Bader. “2D adaptivity for 3D problems: Parallel SPE10 reservoir

simulation on dynamically adaptive prism grids”. In: Journal of Computational Science
9 (May 2015). Special Issue ICCS 2015, pp. 101–106.
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on the InvasIC hardware platform design features such as reliability,
predictability, flexibility, security, among others.

• A computational fluid simulation with arbitrary 2-D geometries
is currently under development. This is a classical grid-based
simulation application with an increased complexity and greater
resource requirements compared to the previously developed heat
simulation. A parallel version has been implemented in X10. An
invasive extension is under development.

• A prototype of a malleable simulation framework utilising the
sparse grid combination technique is under investigation. To
fully demonstrate the flexibility of invasive computing, malleable
applications are highly desirable. Experiments are being carried
out on simulations with finite difference methods (FDM), since
FDM is proven to be suitable for computations on sparse grids.

Outlook

In addition to completing the above mentioned ongoing tasks, our next
steps include:

• HPC Development: (1) Improve and extend the resource man-
ager with intelligence, i. e. the resource manager is pre-trained
with certain features such as application type, application priority,
energy level, among others, such that it can make better decisions
in shorter time. (2) Carry out rigorous performance analysis with
multiple invasive applications for a combat scenario, as well as
study its impact on the overall system throughput and energy
consumption.

• X10 Development: contribute to the topic of dark silicon (Proj-
ect B3) and make features accessible to scientific algorithms. Pro-
vide core-level fault-tolerant applications, such as an iterative
solver for a linear system with full local storage of the right-hand-
side data, or a simple solver using the sparse grid combination
technique.
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Z: Central Services

Jürgen Teich

Jürgen Kleinöder, Katja Lohmann, Sandra Mattauch, Ina Derr, Frank Hannig

The central activities and services in InvasIC are coordinated and organ-
ised by Project Z. These activities and services are subdivided into two
parts:

The first part is administrative support, organisation of meetings
(internal project meetings, doctoral researcher retreats) and assistance
for visits of guest researchers and for researchers travelling abroad.
Technical support and tools for communication and collaboration are
provided as well as support and organisation of central publications.
Last but not least, financial administration and bookkeeping is one of
the central services.

The second part concerns public relations. Contacts with important
research sites are established as well as an international Industrial and
Scientific Board. Scientific ideas and results are discussed at various
workshops and conferences.

For detailed information on the general idea and organisation of
InvasIC as well as on the progress made in the different projects, the
InvasIC website http://www.invasic.de is maintained.

A detailed listing of the scientific meetings and events organised and
conducted by Project Z is provided in Part III of this report.
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Z2: Validation and Demonstrator

Jürgen Becker, Frank Hannig, Thomas Wild

Marcel Brand, Stephanie Friederich, Leonard Masing, Sven Rheindt

The major goal of Project Z2 is to provide a common demonstrator
environment for validating and demonstrating the principles of invasive
computing. Basis for this demonstrator environment are multi-FPGA
prototyping platforms at each site that can accommodate invasive MP-
SoC architectures with dozens of processor cores of different type. In
the current funding phase, Project Z2 acquired a new FPGA-based pro-
totyping platform from ProDesign, which contains four Xilinx Virtex-7
2000T FPGAs. The ProDesign proFPGA platform has about four times
more capacity than the Synopsys CHIPit Platinum system as used in
the first funding phase, and thus, allows to implement larger designs
of up to 64 or 80 standard RISC processors. The Synopsys CHIPit Plat-
inum is still used for debugging and integration work on smaller scale
invasive architectures allowing parallel work by several researchers.
Both platforms are kept compatible with the same architectural descrip-
tion, exchanging only some required parts (i. e. DDR/SRAM controller,
transactor, clocking, etc.).

For demonstrating the unique advantages of invasive computing, e. g.
to enforce non-functional properties of programs, the contributions
from all project areas, the developed concepts at the hardware and
software (compiler, OS and application) level are integrated on this
common demonstrator platform. In cooperation with all projects and
the working groups of the CRC, our tiled invasive multicore architectures
are continuously expanded and prototyped for demonstration of invasive
applications from project area D.

An example configuration of an invasive multi-tile architecture as
shown in Figure 4.45 consists of the following components: Several
computing tiles, each with a set of of RISC processors (LEON3 processor
cores or the i-Core as developed in Project B1), compute tiles based on
TCPAs (Tightly-Coupled Processor Arrays) as developed in Project B2,
as well as I/O and memory tiles. The tiles which contain contributions
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Figure 4.45: A 3×3 invasive multi-tile architec-
ture consisting of seven compute
tiles, as well as one memory and
one I/O tile.

Figure 4.46: The four FPGAs inside the proF-
PGA system including the exten-
sion board setup.

from all projects of project area B (architecture) are connected via the
iNoC as provided by Project B5. The operating system OctoPOS and
the run-time support layer iRTSS (Project C1) are running on top of
this hardware platform. Within Project Z2, different variants of such a
heterogeneous hardware architecture, the associated system software,
as well as a lot of invasive applications on top are made available for
both prototyping systems.

Progress on the new Demonstrator Platform

A proFPGA system is available for integration, development and test at
each site. For a consistent work environment and reusability of devel-
oped FPGA configurations, each proFPGA system has to be configured
with extension boards. Figure 4.46 shows the extension board setup.
The configuration of the upper left FPGA consists of two SRAM extension
boards, one DDR memory card and one DVI extension board. All other
FPGAs are only equipped with two SRAM extension cards. The shown
setup enables on the one hand a configuration of a 2×2 tiled invasive
architecture that can be used for demonstrations on a single FPGA, and
on the other hand prepares the proFPGA platform for extended 4×4
tiled architectures.
The important hardware components for those architectures are ex-
plained in detail in the following:

• SRAM: The tile-local memory (TLM) for each tile consists of 8MB
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SRAM memory that is available via extension boards. Each FPGA
has access to two SRAM extension boards, each providing 24MB
of SRAM memory. The extension boards were specifically de-
signed by ProDesign for the requirements of our CRC. Each TLM
is connected inside a tile over an AHB interface and is available in
two versions: (a) a synchronous design that operates at the same
frequency as the other parts within a tile, utilising a standard
Gaisler memory controller, and (b) an asynchronous design in
form of a custom memory controller that operates the SRAM at a
much higher frequency than the other parts and prefetches data
for faster burst transfers than version (a).

• DDR: Besides the TLM, an invasive multi-tile architecture employs
large DDR global memory units, which can be accessed only over
the NoC. In the current funding phase, Project Z2 has acquired
DDR extension boards which are placed at specific positions in the
design. To enable access to the DDR, Project Z2 incorporated a
Xilinx DDR3 controller IP core into the invasive multi-tile architec-
ture. The generation and pin assignment is fully automated and
embedded in the synthesis scripting. Since the DDR requires high
clock speeds to work reliably, a bridge to the DDR memory was
introduced, allowing the rest of the design to run at a different
speed from the DDR controller.

• DVI: The proFPGA system is able to receive and transfer DVI
streams via an HDMI interconnection on an extension board. The
extension board is connected by a custom controller as part of
the I/O tile utilising an 8 MB SRAM bank of one of the SRAM
extension boards as a double frame buffer. This buffer can be
used to read in the data of a video stream, an RGB video frame,
and making the whole frame available for a customised time to
the system via the aforementioned asynchronous SRAM memory
controller. It can also be used to write the data inside the frame
buffer to the output stream of the DVI controller.

• Tool flow: The automation of a full tool flow for the proFPGA
platform is now completed. The new tool flow is entirely based
on Xilinx Vivado and can be started from a console in a scripted
mode. Additionally, the scripts create a full Vivado project which
can be opened in the graphical user interface to view results and
support the debugging efforts with the available tools and views
on the design.
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• Test suite: The continuous integration of the architecture com-
ponents is supported by the establishment of a test suite, i. e. a
collection of binaries and test cases that can be automatically
executed in batch mode on a prototype and, in the end, create
statistics about the results. The automated scripting for the test
suite was adapted to work on the proFPGA system and is now
fully compatible with both systems.

Integration of components specific to invasive computing

In addition to the above mentioned work related to the migration
to the new prototyping system, Project Z2 continued its contribution
to the realisation of the overall CRC demonstrator platform. In the
last year, there has been a lot of progress regarding the integration
of components developed by the individual projects. The goal was to
bring all contributions of the hardware projects into one large design
and make each special feature selectable through a configuration file
before synthesis. Project Z2 provided support for the integration by
giving introductory and intensive discussions at the Doctoral Researcher
Retreat with the colleagues of the involved projects, provided technical
documentation in the Wiki and directly helped with integration, test, and
verification of the designs. The integration of the following hardware
components into the architecture and the tool flow on the proFPGA
system has made significant progress:

i-Core Project B1 fully integrated the i-Core into the provided tool
flow and the latest set of invasive multi-tile designs. The integration was
enabled and eased by the new tool flow for the proFPGA system and
supportive work as well as successful testing was provided by Project Z2.

TCPA Project B2 and Project Z2 together integrated the TCPA into the
provided tool flow and provide multi-tile designs. Tests to ensure the
correct functioning and interfacing with the operating system OctoPOS
were finished successfully in cooperation with Project C1. Moreover, a
2×2 architecture including one TCPA tile has been developed for testing
hard real-time capabilities of invasive computing architectures.

Atlas Atlas is a hardware-based security architecture protecting code
and data confidentiality even when the operating system has been
compromised. A transparent encryption unit was added between the
processor’s cache and memory. This unit is controlled through custom
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instructions which were added to the ISA. For this purpose, Project C5
developed a new library with all LEON3 components that required
changes. As already possible for the i-Core, tiles can now be configured
with a number of Atlas cores. Currently, the modified design can be
synthesised using the new Vivado-based tool flow, and Project C5 are in
the process of debugging the integrated design on the proFPGA system
with the support of Project Z2. In addition, it is planned to make
necessary changes to the software tool chain.

Testing and Debugging

The integration of an extended test suite exposed some communication
bugs, especially a lot of corner cases, that have not been triggered by
earlier tests. Therefore, a comprehensive test environment was designed
and implemented, containing, amongst others, a Modelsim simulation
of the full tiled architecture, which helped to trigger, locate and fix
bugs. For solving these problems, Project Z2 worked together in close
cooperation with Project B2, Project B5, and Project C1.

Outlook

In 2017, Project Z2 will focus on two major directions: (a) scaling
of the invasive heterogeneous tiled architecture in terms of size and
performance, and (b) setting up of demonstrators.

Scaling of the performance involves optimisation of critical paths
inside the hardware architecture, decoupling parts of the architecture
by connecting components asynchronously (e. g. memory controllers,
NoC interfaces), as well as further improving the overall system stability.
In addition, we want to expand the current 2×2 tile designs to 4×4
tiled architectures, comprising mixtures of 64–80 RISC cores as well as
i-Core and TCPA tiles to utilise the full proFPGA system.

Together with all other projects of the CRC, Project Z2 will take
care and support setting up demonstrators for showing the benefits of
invasive computing in the second funding phase, namely predictability
enforcement for hard real-time, fault tolerance, and security properties
on demand of applications. Common demonstration scenarios were
discussed in several WG3 meetings (see also corresponding section in
this report), not only for public dissemination but also with regard to
the review meeting in 2018. In more detail, the ability of invasive
computing to isolate applications from each other shall demonstrate
enforceable timing predictability, fault tolerance, and security. The heart
of this demonstrator will be a computationally intensive cyber-physical
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system with hard real-time requirements that will be controlled by an
InvasIC architecture. To interface the proFPGA prototyping system to
the physical world, we have started to build several I/O interfaces. In
order to showcase fault-tolerant loop processing in TCPAs, as already
theoretically and simulatively investigated by Projects B2, C2, and C3,
we will design and integrate fault injectors into the prototyped invasive
MPSoC architecture.
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5 Working Groups

WG1: Predictability

Coordinators: Michael Gerndt, Michael Glaß

Focal points of interdisciplinary investigation in this working group
are all questions around the current lead topic of the CRC: The pre-
dictability of non-functional aspects of parallel computation. The term
*-predictability was defined and used to express a current deficiency of
today’s multicore systems and parallel applications to provide a bounded
(guaranteed) quality of the their execution—not only w. r. t. execution
time, but also to security, reliability and/or power consumption. The
topics of this working group stem from the fact that predictability is an
all-encompassing concept that requires consideration across architec-
ture, system software and services, up to the level of applications. Here,
WG1 serves as a discussion group for these topics, organises information
exchange, and triggers and coordinates collaborations between projects
and project areas with respect to predictability.

In 2014 and 2015, WG1 could already identify the most relevant
topics concerning *-predictability within this CRC, create a glossary of
all relevant predictability terms to enhance the common understanding
of predictability concepts, and provide a predictability landscape that
outlines predictability challenges which (a) can be solved by employing
existing analysis techniques, (b) are tackled within this CRC, and (c)
may be subject to future research directions. The focus of WG1 in 2016
was set on two main topics: (I) Coordinate the aspect of predictability
throughout the invasive computing design flow and (II) enhance the
external perception of predictability topics covered by this CRC as well
as *-predictability in general.
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Figure 5.1: Design flow to support *-predictability in invasive computing: Starting with an ap-
plication written in actorX10, an automatic model extractor gathers a graph-based
specification that is suitable as an input for the design space exploration which itself
employs various evaluators to determine the quality numbers such as latency or energy
consumption of each operating point candidate. Given the set of optimised operating
points—where each contains a constraint graph which encodes constraints how to
feasibly embed the point at run time—a source-to-source compiler then transforms
the constraint graph and other determined parameters into the InvadeX10 constraint
language. Based on the latter, the invasive run-time support system then solves
the respective constraints which delivers—if possible—a claim at run time where the
operating point can be feasibly embedded.

Achievements

Figure 5.1 shows the invasive-computing design flow in the context
of *-predictability as coordinated by this working group. In 2016,
the following important steps to realise this design flow have been
completed:

• In a collaborative work of Project C2, Project A4, and Project A1,
an actor-oriented extension of the X10 programming language
called actorX10 [Rol+16]—which was initially discussed at the
doctoral-researcher course “Benchmarking for Multi-Criteria-Pre-
dictable Multi-Core Computing” at the Sarntal Academy in South
Tyrol, 2015—has been implemented, published, and will be pub-
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licly available soon. From such an actor-oriented specification,
graph-based models and performance models as required by the
design space exploration step can now be automatically extracted
via respective transformations and tool support.

• Two transformations delivered by Project A1 and Project C3 now
allow to (I) derive a graph-based exploration and performance
model of an actorX10 application as required for the design space
exploration step and (II) translate the constraint graphs which are
the main result of the DSE to the InvadeX10 constraint system
such that the requirements on what to claim at run time to embed
a certain operating point is fully contained in the program itself.

The required interfaces for the design flow have been discussed at
two physical meetings, at the 1st of June 2016 in Munich as part of
a bigger WG3 meeting as well as at the 15st of September 2016 as
part of the CRC annual meeting in Blaubeuren. At the latter meeting,
one *-predictability demonstrator which has been initially projected at
the Sarntal Academy in 2015 could already be presented to the CRC’s
industrial board in October 2016.

Activities

To enhance the public perception of this CRC’s work on predictability
and the concept of *-predictability in general, several activities have
been initiated:

1. Two keynotes have been presented by Prof. Teich at (I) the 8th
Workshop on Rapid Simulation and Performance Evaluation: Meth-
ods and Tools (RAPIDO 2016), Prague, Czech Republic on “The
Role of Restriction and Isolation for Increasing the Predictabil-
ity of MPSoC Stream Processing” and (II) the 6th International
Workshop on Polyhedral Compilation Techniques (IMPACT 2016),
Prague, Czech Republic on “Symbolic Loop Parallelization for
Adaptive Multi-Core Systems – Recent Advances and Benefits”
with the latter focusing on the ability of tightly coupled processor
arrays (TCPAs, Project B2) to create strictly predictable execu-
tion times for loop nests. Moreover, Prof. Teich gave a talk on
“Adaptive Restriction and Isolation for Predictable MPSoC Stream
Processing” at the Friday Workshop on “Resource Awareness and
Application Autotuning in Adaptive and Heterogeneous Comput-
ing” of the Design, Automation and Test in Europe (DATE 2016)
conference, Dresden, Germany.
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2. In a special issue on Invasive Computing in it – Information Tech-
nology, guest edited by Prof. Teich, an overview article [Wil+16]
that details how *-predictability is integrated in and realised by
means of the invasive computing paradigm and design flow is
presented. A significant part of this overview article is based on
the coordinative work of WG1 to establish the outlined design
flow.

3. Two Dagstuhl-Seminars have been organised with this CRC and
in particular this working group as nuclei:

• Dagstuhl-Seminar 16052 “Dark Silicon: From Embedded to
HPC Systems”, January 31–February 3, 2016 [GGPR16]. This
seminar was organised and coordinated by PIs Prof. Gerndt,
Prof. Henkel, and Prof. Glaß together with Prof. Sri Parames-
waran, UNSW Sidney, and Dr. Barry L. Rountree, LLNL Liver-
more and discussed implications and challenges arising from
dark silicon for both embedded and HPC systems. Amongst
others, the topic of predictability w. r. t. performance, power
consumption, and temperature gained special attention.

• Dagstuhl-Seminar 16441 “Adaptive Isolation for Predictability
and Security”, October 30–November 4, 2016. This seminar
was organised by PIs Prof. Teich and Prof. Verbauwhede to-
gether with Prof. Tulika Mitra, NUS, and Prof. Lothar Thiele,
ETH Zurich and discussed methods for temporal and spa-
tial isolation to enforce non-functional properties on timing
predictability as well as security without sacrificing any effi-
ciency or resource utilisation.
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WG2: Memory Hierarchy

Coordinators: Lars Bauer, Gregor Snelting

In the first funding phase of InvasIC, cache coherence was only provided
within a tile. In the current second funding phase, Project B5 proposed
the work package “Dynamic and run-time-adaptive cache coherence”,
which essentially proposes to dynamically extend the size of a cache-
coherence region beyond the boundaries of a single tile. For instance, it
could be extended over two or three (possibly neighboured) tiles. As
such an extension affects several aspects of the memory hierarchy (e. g.
memory consistency) and other projects as well, the memory hierarchy
working group WG2 provides a platform to discuss all aspects related
to this topic, as well as other topics that are related to the memory
hierarchy (e. g. about memory management; see below).

As in 2015, WG2 also organised a mini workshop in 2016 that took
place in May 2016. All related projects participated in the meeting in
Munich. This WG2 annual report summaries the results and current
discussions that came up during that WG2 Meeting.

Inter-Tile Cache Coherence

The basic idea of this topic was already presented and discussed in
the last annual report and can also be found in the description of Proj-
ect B5. At this year’s meeting, different implementation variants and
protocols were presented by Project B5 to address the cache coherence
of different tiles. During these discussions, the relevance of not only
providing cache coherence, but of also providing mechanisms to ensure
atomicity of dedicated atomic operations was emphasised. For clarity,
an atomic operation is an operation (assembly instruction) that does
multiple things as one inseparable operation. For instance consider a
function swap as follows:
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int swap(int* addr, int new) {
int old = *addr;

*addr = new;
return old;

}

If swap is an atomic operation, then that ensures that no other i-let
can modify *addr after it was read by swap but before it is overwritten
by it. Due to a rather flexible communication approach, envisioned by
Project B5 to realise cache coherence between tiles, it was possible to
add extensions for atomic operations as well.

For integration purpose, a language construct is needed that allows
the application to express its desire to have multiple cache-coherent
tiles. That is basically a constraint in the invade call. The agent system
of Project C1 needs to support such a new constraint and plans to do
so in the next year. Additionally, an interface between Project B5 and
OctoPOS is needed that allows to configure two (or more) tiles to be
cache-coherent, i. e. to activate the inter-tile cache coherency for those
tiles that the agent system decided to make cache-coherent.

As potential application that could benefit from inter-tile cache coher-
ence, we discussed a parallel multi-dimensional tree search algorithm,
where it is not clear upfront which part of the tree will actually be
accessed by which core during the search. So traditionally (i. e. without
inter-tile cache coherence), either the entire tree needs to be copied to
each core upfront (results in high overhead) or it needs to be copied as
demanded (results in several individual small transfers which result in
high latency). Instead, the inter-tile cache coherency can be activated
and used to exchange exactly those message between the cores/caches
that are needed.

MMU

We discussed the steps required to integrate an MMU into the current
memory hierarchy. Hardware-wise, Gaisler provides a MMU for the
LEON3, but it is known to have issues along with certain cache con-
figurations. To avoid having on-going debugging challenges due to
Gaisler cache configurations, we agreed that we would use a known-
good MMU/Cache configuration, for instance one of those that is known
to be functional by booting and running Linux on it.

When using an MMU, we can no longer use the scratchpad. To clarify:
Gaisler uses the term scratchpad to denote a core-local memory, i. e. a
small addressable SRAM per core that can only be accessed by the core
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to which it belongs. No other bus device can access that scratchpad.
That is not the typical definition of scratchpad used by the community.
There, it would denote a relatively bigger addressable SRAM that can
be accessed by all bus participants. To avoid any naming confusions, we
call that bigger memory as tile-local memory (TLM). We will keep using
TLM, but to use an MMU we have to disable the core-local scratchpad.

As a special case, the i-Core needs some additional treatment to
support an MMU. This is due to its dedicated 2×128 bit ports from its
reconfigurable fabric to the TLM. As these ports bypass the bus, they
also bypass the regular MMU and thus addresses would go untranslated.
Therefore, an extra MMU is needed to translate accesses via these ports.
This special MMU is basically a simple address translation unit. On
every address-space switch on the i-Core, the content of this special
MMU has to be updated as well. OctoPOS will add support for this
along with their MMU support. Project B1 implemented and integrated
a corresponding code into Linux already and will provide that code as a
basis.

X10 Memory Model

As a foundation for further formalisation, Project A1 developed a mem-
ory model for the X10 programming language. The memory model is an
important part of the specification for the compiler, which must correctly
map the language’s memory model to the target architecture’s memory
model. This is essential for reasoning about the correctness of programs,
especially when we are discussing inter-tile cache coherence. For exam-
ple, we considered scenarios, where the compiler was responsible for
some aspects of inter-tile cache coherence. However, the current state
of discussion is that the hardware should maintain the same memory
model for intra-tile as for inter-tile cache coherence (SPARC Total Store
Order), such that no changes to program or compiler are necessary.
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WG3: Benchmarking and Evaluation

Coordinators: Michael Bader, Walter Stechele

In 2016, WG3 had three main activities, starting in March with the
DATE Friday Workshop, in June a joint WG1 and WG3 demonstrator
workshop in Munich to plan common demonstrators for the TRR, and
in September a demonstrator session for the Industrial Board at the
annual meeting in Blaubeuren.

DATE Workshop The DATE Friday Workshop on Resource Awareness
and Application Autotuning in Adaptive and Heterogeneous Computing
has been co-organised by Cristina Silvano (PoliMilano), Walter Stechele
(TUM), and Stephan Wong (TU Delft), with contributions from high per-
formance computing arranged by Michael Bader (TUM). The workshop
had invited talks from industry and academia and a poster session with
12 peer-reviewed contributions. Invited talks included an introduction
to Invasive Computing by Jürgen Teich, contributions from High Perfor-
mance Computing from the Leibniz Computing Centre (LRZ) and RSC,
a leading Russian developer and integrator of HPC solutions, industry
contributions from Xilinx and Bosch, university contributions from Axel
Jantsch (TU Vienna) and João Cardoso (University Porto), as well as a
panel featuring Sharon Hu (University of Notre Dame).

Demonstrator Workshop The goal of the joint WG1 and WG3 work-
shop in June was to identify a smaller set of common demonstrators,
suitable to stimulate and illustrate cooperation between the projects,
to identify further needs on the hardware and software side and to de-
fine show-cases for the benefit by the invasive programming paradigm,
such as predictability. Four main common demonstrators have been
discussed:

1. robotic visually guided grasping on Intel & proFPGA prototyping
platforms,
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2. visual control of an inverted pendulum on proFPGA prototyping
platforms,

3. competition of InvadeX10 applications fighting for resources on
proFPGA,

4. a design flow demo to illustrate the interaction of the invasive
programming stack.

Additionally, there are project-specific demos, such as i-Core reconfigura-
tion, TCPA error correction, dark-silicon management, monitors, cache
coherence, memory protection, robotic motion planning, X10 multigrid,
and invasive programming models (invasive MPI) and applications (e. g.
tsunami simulation) for commodity HPC platforms.

Many project contributions, such as compilers and programming mod-
els, design space exploration, the actorX10 model, invasive hardware
extensions, iRTSS, etc. (to name just a few) will be relevant for several
of these common demonstrators. Hence, a crucial task for 2017 will be
to determine in which of the demonstrators the impact of these invasive
concepts can be evaluated in the best way. Tailoring and fine-tuning the
demonstration scenarios will therefore stay the main focus of WG3, and
define the work for 2017, already in preparation for the final review of
second funding phase.

Demonstrator session Over the summer, substantial progress could be
observed towards the demonstrators. For the meeting with the Indus-
trial Board in September, ten demos could be shown, illustrating various
results on timing predictability, security, power efficiency, and fault tol-
erance through invasive computing. The demonstrations covered a wide
range of topics, including Design Space Exploration, inverted pendulum
control, visual object tracking, robotic pick and place, multigrid combat,
dark-silicon management, and security attacks. Related methods cov-
ered actorX10 models, invasive simulation and compilation, operating
point selection, all based on OctoPOS running on X86 and on the FPGA
platform.
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WG4: Power Efficiency and Dark Silicon

Coordinators: Santiago Pagani, Frank Hannig

The focus of this working group is to align research problems in the
direction of the dark silicon challenge.

The term dark silicon has been coined with respect to the increasing
power density problem: since the classical Dennard scaling will be
no longer applicable in upcoming silicon technology nodes, the power
density, i. e. the amount of electrical power that is dissipated per chip
area, increases drastically. In the past, the power density could be kept
at tolerable levels since the increased amount of transistors per chip
was (power-density-wise) compensated by lowering Vdd. This, however,
is not possible any longer. Dark silicon denotes the problem of future
multicore/manycore systems where a considerate amount of computing
and/or communication resources needs to stay ‘dark’, i. e. unused in
order not to exceed what is called the Thermal Design Power (TDP): this,
in short, is the maximum amount of power that a chip can be operated
at without suffering short or long term damage. As a matter of fact, dark
silicon is becoming a severe problem for all future manycore systems
where performance, predictability, and efficiency matter. Especially, in
invasive computing, the dark-silicon problem will significantly matter
because it is targeted towards high efficiency, e. g. how to make best use
of on-chip computing and communication resources at the lowest cost
possible (e. g. amount of consumed energy, cost of chip packaging for
cooling, etc.). In other words: if the dark-silicon problem would not
be addressed, invasive computing would lose its advantages compared
to competing manycore systems. Hence, addressing the dark-silicon
problem will enable the invasive computing paradigm to come ahead
for the upcoming generations of technology nodes.

Towards this end, this working group aims at facilitating information
exchange by building power and dark-silicon models for an InvasIC-wide
power and dark-silicon estimation. Furthermore, it targets collecting re-
sults for power/dark-silicon estimation and agent knowledge as well as
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WG4

investigate common possibilities for cross-level energy efficiency optimi-
sations. Through integrated dark-silicon efforts across different projects,
it is not only ensured that the (worst-case) thermal constraints of the
on-chip computation and communication resources are not violated, but
this also aids in the predictability of an invasive computing system as a
shutdown of cores can be avoided, thereby satisfying the constraints of
also applications with predictable execution requirements.

Because of its key importance, this working group enables information
exchange across different projects to not only build a common under-
standing and nomenclature for power efficiency and the dark-silicon
problem, but also facilitates integration of research efforts of various
projects including Projects B2, B3, B4, C1, etc.

A summary of the key goals and targets of the WG, aligned to the
road map of the current InvasIC-wide dark-silicon research activities, is
listed below:

1. Aligning research problems to the dark silicon, power/energy
efficiency, and temperature challenges.

2. InvasIC-wide dark-silicon modelling and estimation that will also
require full system power modelling and estimation.

3. Interfacing and facilitate information exchange, for instance,
a) How to pass the dark-silicon information/constraints to the

agent-layer?
b) How to interface between the monitoring (Project B4) and

iDoC (Project B3)?
c) Knowledge exchange on power models (e. g. abstraction

level, technologies, estimation tools) as independent activi-
ties of individual projects.

4. The overarching goal is: Infrastructure development through
a) Building and integrating power models, dark-silicon models.
b) Full system simulation with dark silicon of multi-tile invasive

architectures.
c) Integration of different dark-silicon works, e. g. Projects B2,

B3, B4, B5, C1.
d) Prototyping dark-silicon effects through emulation and demon-

stration and how application projects can incorporate dark-
silicon and energy efficiency effects.

A couple of examples of joint collaborative research activities from
the last year are listed below.
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WG4

1. The research work of Project B3 explored the impact of dark-
silicon management for performance optimisation, dark-silicon
management for ageing optimisation, and dark-silicon manage-
ment for energy optimisation (for more details and a list of publi-
cations, we refer to Project B3).

2. Open-Source Software: Two tools implementing some work of
B3, specifically, the Thermal Safe Power (TSP) power budgeting
technique and the MatEx transient/peak temperature computation
framework, are available at http://ces.itec.kit.edu/download.

3. Some collaborative results of the InvasIC-wide dark-silicon pat-
terning are summarised below.

a) Collaborative activities between Project B3 and Project B2:
Integrating other fabrics like TCPA and i-Core and exploring
the dark-silicon patterning impact. Exploring the tempera-
ture and power density variations for TCPA, RISC-like cores,
and i-Core. Requirements: ASIC synthesis output, layout
/ floorplan, power estimates or power model, performance
traces, same technology, etc. Integrated system simulations.
Derive Thermal Safe Power (TSP) for heterogeneous fab-
rics [Khd+16].

b) Collaborative activities between Project B3 and Project C1:
Coordinated resource and dark-silicon management: Interfac-
ing with Project C1 to forward the dark-silicon constraints to
the agent-layer? Studying the impact of dark-silicon manage-
ment on the efficiency iRTSS. Analysing potential conflicts
between the dark-silicon management and iRTSS.

c) Collaborative activities between Project B3 and Project B5:
Integrated iNoC and tiles patterning for dark silicon. Interest-
ing problems to answer are: Darkening the routers or dark
tiles or not? Multi-layer vs. multiple V-f levels for iNoC? iNoC
and multiple voltage islands? Single layer: Re-routing in case
of dark routers within the active layer.

d) Collaborative activities between Projects B1, B2, B3, B4,
and C1: Integrated and coordinated a cross-layer monitoring
and optimisation approach for distributed dark-silicon man-
agement for heterogeneous multi-tile architectures [Pag+16].

Further WG Activities: The WG team has also performed several
activities for dissemination at a wider and international level through
seminars and embedded tutorial organisations. A summary of these
activities is given below.
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1. Embedded Tutorial on “The Dark Silicon Problem: Technology to the
Rescue?” at the IEEE/ACM 19th Design, Automation and Test in
Europe Conference (DATE), 2016: In this embedded tutorial, we
consider how researchers are leveraging new technologies (espe-
cially, 3D integration and new transistor technologies) in order to
address the dark-silicon problem. More details can be found at
https://www.date-conference.com/date16/conference/session/2.2.

2. Dagstuhl Seminar on “Dark Silicon: From Embedded to HPC Sys-
tems”, 2016: This seminar involved presentations on the state-of-
the-art in power and energy management in HPC and on tech-
niques mitigating the dark-silicon problem in embedded systems.
In a joint session, commonalities and differences as well as collab-
oration potential in the area of dark silicon were explored. More
details can be found at http://www.dagstuhl.de/16052.

Publications

[Khd+16] H. Khdr, S. Pagani, Éricles R. Sousa, V. Lari, A. Pathania, F. Han-
nig, M. Shafique, J. Teich, and J. Henkel. “Power Density-Aware
Resource Management for Heterogeneous Tiled Multicores”.
In: IEEE Transactions on Computers (TC) (July 2016). DOI:
10.1109/TC.2016.2595560.

[Pag+16] S. Pagani, L. Bauer, Q. Chen, E. Glocker, F. Hannig, A. Herk-
ersdorf, H. Khdr, A. Pathania, U. Schlichtmann, D. Schmitt-
Landsiedel, M. Sagi, Éricles Sousa, P. Wagner, V. Wenzel, T.
Wild, and J. Henkel. “Dark Silicon Management: An Integrated
and Coordinated Cross-Layer Approach”. In: it – Information
Technology 58.6 (Sept. 16, 2016), pp. 297–307. DOI: 10.1515/
itit-2016-0028.
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Events and Activities

III



Summary

The central activities and services in InvasIC are coordinated and con-
ducted by Project Z.

Figure 5.2: From left to right: Ina Derr (Financial Services), Dr.-Ing. Jürgen Kleinöder (Man-
aging Director), Dr. Katja Lohmann (Deputy Managing Director), Prof. Jürgen Teich
(Coordinator and PI) and Dr. Sandra Mattauch (Public Relations)

In the following sections, we are again proud to summarise major
events and a whole bunch of activities in 2016. These include Internal
Meetings (Section 6), Training Courses and Tutorials (Section 7) as
well as further InvasIC Activities (Section 8). Last but not least, we
present the current composition of the Industrial and Scientific Board in
Section 9.

Figure 5.3: At the annual meeting in Blaubeuren, September 2016
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6 Internal Meetings

Collaboration between the researchers of the three sites Karlsruhe, Mu-
nich, and Erlangen is essential for the success of the CRC/Transregio 89
– InvasIC. In 2016, researchers met at the following opportunities (list
not being exhaustive):

Event Date

Semi-annual Meeting
2016

Feb. 15/16, 2016,
Adelsried

At the semi-annual meeting, all projects and
working groups presented their progress
in short talks. Additionally, each project
introduced the ideas for the demonstration
platform on a plenary session.

Doctoral Researcher
Retreat

Mar. 7–9, 2016,
Aalen

This year, the doctoral researchers met
in Aalen to discuss progress and further
challenges of the second funding phase.

WG Memory
Hierarchy

May 3, 2016,
Munich

Members of the working group met in Mu-
nich to (i) continue discussion on inter-tile
cache coherency and (ii) start discussions
on MMU for the InvasIC architecture.

WG Demonstrator June 1, 2016,
Munich

Members from the working group met in Mu-
nich to define a small set of demo scenarios
for the demonstrator.

Doctoral Researcher
Retreat

Sept. 12–14,
2016,
Blaubeuren

The 9th InvasIC DRR took place at the
Tagungszentrum Blaubeuren in conjunction
with the annual meeting.

Annual Meeting 2016 Sept. 15/16,
2016,
Blaubeuren

The main focus of the first day was on
reviewing and discussing the progress
achieved in the fields of predictability and
demonstrations. On the second day of
the annual meeting, the InvasIC Industrial
and Scientific Board attended to evaluate
the ideas and progress of the presented
projects and demonstrations.

Actor Meeting I Nov. 3, 2016,
Munich

At the meeting, the integration of the actor
concept and actor graphs in the iRTSS
agent system were discussed.

Actor Meeting II Dec. 8, 2016,
Munich

Main topic of the meeting was a continuation
of the discussion on integrating the concepts
of application characterisation in the iRTSS
agent system.

A1/C3 Meeting Dec. 12, 2016,
Karlsruhe

The researchers from Project A1 and Proj-
ect C3 met to discuss ongoing work as well
as ideas for the third funding phase.
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7 Training Courses and Tutorials

The following internal workshops and training courses were organised
under the coordination of Project Z, to give InvasIC members the oppor-
tunity to strengthen their soft skills, train their key qualifications, and
improve their knowledge on topics related to invasive computing.

Event Date

Workshop
Rhetoric

July 28/29, 2016,
Karlsruhe

Members of InvasIC were invited to join a
two-day workshop on “Rhetoric” held by
the professional didactics trainer Barbara
Berndt.

Workshop
Small Talk and Net-
working

Oct. 6/7, 2016,
Munich

The seminar gave young researchers the
opportunity to improve their language skills
in the areas of research and academia and
to learn successful networking.

Workshop
Time- and Self-
Management

Oct. 27/28, 2016,
Erlangen

The workshop was organised with the
objective of becoming familiar with tools and
techniques to master and control work load
instead of being controlled by it.

Figure 7.1: Small Talk and Networking, October 2016 in Munich
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Workshops

Based on multiple requests and wishes of our doctoral researchers, In-
vasIC organised workshops at all three sites of the Transregio on topics
identified at the annual meeting in Adelsried.
The first Workshop on “Rhetoric” was held by Barbara Berndt from
i-communicate. The participants had a look at different ways of artic-
ulation, body language signs and the common rules of presentation.
Movements on the stage, voice variations and gesticulations were prac-
tised and improved. Theoretical inputs were combined with exercises,
and a video analysis of short talks given by the doctoral researchers
completed the soft skill seminar.

Figure 7.2: Workshop on Rhetoric, Karlsruhe, July 2016

For many scientists, conferences are not only the place to gain knowl-
edge but mainly to get in touch with the people behind. At certain
occasions, like coffee breaks, they start talking to each other and even
manage to stay in contact over a longer period of time. It needs
networking-management to make “what goes around, comes around”
happen. But how to start a conversation? Which are good topics, which
ones should be avoided? And when is the best moment to bid farewell?
All these questions were answered during the workshop “Small Talk and
Networking” which took place in October in Munich.
In addition, Project Z organised a workshop on “Time- and Self-Manage-
ment” in Erlangen, where the doctoral researchers analysed time struc-
ture and working habits. With different models and methods the atten-
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dees get ideas of how to prioritise tasks, structure the day and work with
goals to stay motivated. In addition, they discussed different ways of
successful work-life-balance and found individual solutions for common
time-management problems. In all three workshops, the participants
were sensitised to apply gender mainstreaming principles in daily work.
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8 InvasIC Activities

To promote the ideas and results of InvasIC and discuss them with lead-
ing experts from industry and academia, international guest speakers
were invited to the “InvasIC Seminar”. Additionally, PIs of InvasIC gave
talks and seminars at important research sites and conferences (“Invited
Talks and Seminars”) or organised conferences and workshops (“Organ-
ised Conferences and Workshops”) on the topics of Invasive Computing.
The InvasIC Seminar is a series of talks given at one of the three sites.
Videos of the respective talks are provided at our website
http://www.invasic.de.

Figure 8.1: Chancellor’s Prof. Jason Cong together with Prof. Jürgen Teich and Dr.-Ing. Frank
Hannig

Award for Bachelor Thesis of Theresa Pollinger

Theresa Pollinger, bachelor graduate of Prof. Jürgen Teich, received an
award of Brose Company on the occasion of the graduation ceremony
of Faculty of Engineering, FAU, for her bachelor thesis titled “Video-
based Object Tracking with a Pan-Tilt-Zoom Camera using the Parallel
Programming Language X10”.
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Prof. Dr. Zoran Salcic visited the TCRC

In recognition of his academic achievements and his contribution to
academic cooperation with German specialist colleagues, Prof. Zoran
Salcic (University Auckland, New Zealand) received a Research Award
by the Alexander von Humboldt Foundation to continue his research
with the Friedrich-Alexander-Universität Erlangen-Nürnberg for three
months. This invitation, which has been initiated by Prof. Teich, has
offered an opportunity to continue the collaboration with specialist
colleagues in Germany that was brought about by the Research Award
of the Alexander von Humboldt Foundation in 2010. The successful
cooperation was re-intensified in 2016, when Prof. Salcic returned to
the Chair of Hardware/Software Co-Design for another three months
for researching new ideas.

Figure 8.2: Prof. Zoran Salcic
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InvasIC Seminar

Place and Date Title Speaker

Erlangen,
Jan. 29, 2016

Elastic Computing – Towards a New
Paradigm for Distributed Systems

Prof. Schahram Dustdar
(TU Wien)

Munich,
Feb. 24, 2016

Hyperion Martin Vorbach
(PACT XPP Technologies)

Erlangen,
Mar. 4, 2016

Bytespresso, toward embedded
domain-specific languages for super-
computing

Prof. Shigeru Chiba
(University of Tokyo)

Munich,
Apr. 15, 2016

Revisiting the Perfect Chip Paradigm:
Cross-Layer Approaches to Design-
ing and Monitoring Reliable Systems
using Unreliable Components

Prof. Fadi Kurdahi
(University of California)

Erlangen,
May 6, 2016

Control-theoretic approaches to
Energy Minimization under Soft
Real-Time Constraints

Prof. Martina Maggio
(Lund University)

Figure 8.3: Professor Martina Maggio giving a talk at the InvasIC Seminar

139



Place and Date Title Speaker

Erlangen,
Aug. 5, 2016

Bridging the gap between embedded
systems and automation systems

Prof. Partha S. Roop
(University of Auckland)

Erlangen,
Aug. 8, 2016

Adaptive Parallel and Distributed Software
Systems

Dr. Pramod Bhatotia
(Technische Universität
Dresden)

Erlangen,
Sept. 19, 2016

High-Level Synthesis and Beyond Prof. Jason Cong
(University of California)

Erlangen,
Sept. 30, 2016

From tamed heterogeneous cores to
system wide intrusion tolerance

Dr. Marcus Völp
(University of Luxem-
bourg)

Erlangen,
Oct. 19, 2016

Security Enhanced Multi-Processor Sys-
tem Architecture for Mixed-Critical Embed-
ded Applications

Dr. Morteza Biglari-
Abhari
(University of Auckland)

Erlangen,
Nov. 25, 2016

Resource Allocation under Uncertainty –
Online Scheduling with Hard Deadlines

Prof. Dr. Nicole Megow
(University of Bremen)

Figure 8.4: Prof. Partha S. Roop at the InvasIC Seminar
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Invited Talks

Place and Date Title Speaker

Prague, Czech Republic,
Jan. 18, 2016
Rapid Simulation and Performance
Evaluation: Methods and Tools
(RAPIDO 2016)

Keynote: The Role of Restriction
and Isolation for Increasing the
Predictability of MPSoC Stream
Processing

Prof. J. Teich
(FAU)

Prague, Czech Republic,
Jan. 19, 2016
International Workshop on Poly-
hedral Compilation Techniques
(IMPACT 2016)

Keynote: Symbolic Loop Paral-
lelization for Adaptive Multi-Core
Systems – Recent Advances
and Benefits

Prof. J. Teich
(FAU)

Saarbrücken, Germany,
Feb. 26, 2016
University Saarbrücken

Talk: RaPping and Compilation
for Highly Dynamic Parallelism

Prof. G. Snelting
(KIT)

Dresden, Germany,
Mar. 18, 2016
Friday Workshop on Resource
Awareness and Application Auto-
tuning in Adaptive and Heteroge-
neous Computing (DATE 2016)

Talk: Restriction and Isolation
for Predictable MPSoC Stream
Processing

Prof. J. Teich
(FAU)

Austin, USA,
June 6, 2016
University of Texas at Austin

Talk: Predictable MPSoC Stream
Processing Using Invasive
Computing

Prof. J. Teich
(FAU)

Lübeck, Germany,
July 29, 2016
University of Lübeck

Talk: Predictability, Fault Toler-
ance, and Security on Demand
using Invasive Computing

Prof. J. Teich
(FAU)

Figure 8.5: Prof. Jürgen Teich giving a keynote talk at IMPACT 2016, Prague

141



Organised Conferences and Workshops

Place and Date Title Organiser

Dagstuhl, Germany
Jan. 31–Feb. 3, 2016

Dagstuhl Seminar 16052: Dark
Silicon: From Embedded to
HPC Systems

Prof. M. Gerndt (TUM)
Prof. M. Glaß (FAU)
Prof. S. Parameswaran
(UNSW)
Dr. B. L. Rountree (LLNL)

Dresden, Germany,
Mar. 14–18, 2016

Design, Automation and Test in
Europe (DATE 2016)

Prof. J. Teich (FAU)
Programme Chair

Dresden, Germany,
Mar. 18, 2016
Design, Automation and
Test in Europe (DATE
2016)

First DATE Friday Workshop
on Resource Awareness and
Application Autotuning in
Adaptive and Heterogeneous
Computing

Prof. W. Stechele (TUM)
Prof. C. Silvano (Politecnico
di Milano)
Prof. S. Wong (TU Delft)

Nuremberg, Germany,
Apr. 4–7, 2016

29th GI/ITG International
Conference on Architecture of
Computing Systems (ARCS)

Prof. D. Fey (FAU)
General Chair
Prof. J. Teich and Prof.
W. Schröder-Preikschat
(FAU)
General Co-Chair
Dr.-Ing. F. Hannig (FAU)
Programme Chair

Nuremberg, Germany,
Apr. 4/5, 2016
International Conference
on Architecture of Com-
puting Systems (ARCS
2016)

International Workshop on
Multi-Objective Many-Core
Design (MOMAC)

Dr.-Ing. S. Wildermann
(FAU)
Prof. M. Glaß (FAU)

Munich, Germany,
June 30/July 1, 2016

The Munich Workshop on
Design Technology Coupling

Dr. H. Graeb (TUM)
Dr. S. Nassif (Radyalis)

Dagstuhl, Germany
Oct. 30–Nov. 4, 2016

Dagstuhl Seminar 16441:
Adaptive Isolation for Pre-
dictability and Security

Prof. J. Teich (FAU)
Prof. I. Verbauwhede (KU
Leuven)
Prof. L. Thiele (ETH Zürich)
Prof. T. Mitra (NUS)

Hangzhou, China,
Nov. 7–9, 2016
International Green and
Sustainable Computing
Conference (IGSC)

Third Workshop on Low-
Power Dependable Computing
(LPDC)

Dr. M. Shafique (KIT)
Prof. Dr. X. Zhu (NUDT)
Dakai Zhu (UTSA)
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Design, Automation and Test in Europe

Professor Jürgen Teich served as the Program Chair of DATE 2016 which
was held at the International Congress Centre Dresden, Germany, from
March 14 to 18, 2016. For the 19th successive year, DATE has prepared
an exciting technical programme, says Jürgen Teich, Programme Chair
of DATE 2016. With the help of 327 members of the Technical Program
Committee, who carried out more than 3000 reviews (about four per
submission), finally 199 papers (24%) were selected for regular presen-
tation and 81 additional ones (10%) for interactive presentation.

Figure 8.6: Impressions from DATE 2016

DATE 2016 received 829 paper submissions, a large share (42%)
coming from authors in Europe, 29% of submissions from Asia, 25%
from North America, and 4% from the rest of the world. This clearly
demonstrates DATE’s international character, its global reach and im-
pact.
DATE was attended by 1400 delegates from 50 countries worldwide.

Figure 8.7: Impressions from DATE 2016
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The conference started on Monday, with 10 in-depth technical tu-
torials offered from experts of the industrial and academic worlds on
innovative as well as fundamental topics related to design solutions,
power efficiency, the internet of things, secure systems and testing and
diagnosis. On the same day, the popular PhD Forum, hosted by EDAA,
ACM SIGDA, and IEEE CEDA, gave the opportunity to the 33 selected
PhDs to present their work to a broad audience in the system design
and design automation community from both industry and academia.

29th GI/ITG International Conference on Architecture of Computing
Systems

The 29th International Conference on Architecture of Computing Sys-
tems (ARCS 2016) was hosted by the Department of Computer Science
at Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany,
during April 4 to 7, 2016. ARCS 2016 took place in Nuremberg at FAU’s
Faculty of Business, Economics, and Law in Nuremberg and attracted
100 participants. The conference continued the long-standing ARCS
tradition of reporting top-notch results in computer architecture and
other related areas. ARCS was founded in 1970 by the German com-
puter pioneer Prof. Wolfgang Händler, who also founded the Computer
Science Department at FAU in 1966.

Figure 8.8: Impressions from ARCS 2016

ARCS was organised by multiple PIs of InvasIC, namely Professor
Wolfgang Schröder-Preikschat and Professor Jürgen Teich as General
Co-Chairs and Frank Hannig as Program Chair. The strong techni-
cal program was complemented by three keynote talks on: “Knights
Landing Intel Xeon Phi CPU: Path to Parallelism with General Purpose
Programming” by Avinash Sodani, Chief Architect ‘Knights Landing’
Xeon-Phi processor at Intel Corporation; “Massive Parallelism – C++
and OpenMP Parallel Programming Models of Today and Tomorrow”
by Michael Wong, CEO of OpenMP Corporation; and “Heterogeneous
Systems Era” by John Glossner, President of the Heterogeneous System
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Architecture Foundation (HSAF) and CEO Optimum Semiconductor
Technologies; as well as five workshops and a tutorial.

Figure 8.9: Frank Hannig, Avinash Sodani, and Michael Wong giving talks at ARCS 2016

Beside the technical program, the combined visit of the special ex-
hibition “From Abacus to Exascale – Vom Abakus zu Exascale”, the
conference dinner and best paper award ceremony in the Museum of
Industrial Culture in Nuremberg on Wednesday evening was another
highlight.

Figure 8.10: Impressions from ARCS 2016

Dagstuhl Seminar 16441 “Adaptive Isolation for Predictability and
Security”

Prof. Dr.-Ing. Jürgen Teich (Hardware/Software Co-Design, FAU), Prof.
Dr. Ir. Ingrid Verbauwhede (KU Leuven, BE), Prof. Dr.-Ing. Lothar Thiele
(ETH Zürich, CH) and Prof. Dr. Tulika Mitra (National University of
Singapore, SG) organised and coordinated the Dagstuhl Seminar on
“Adaptive Isolation for Predictability and Security” that took place from
30.10.-04.11.2016 at Dagstuhl Castle.
Adaptive Isolation, the topic of the proposed Dagstuhl Seminar, may be

seen as a novel and important research topic for providing predictability
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Figure 8.11: Participants of the Dagstuhl Seminar 16441

of not only timing but also security and maybe even other properties
of execution on a multi-core platform on a per application basis while
easing and trading off compile-time and run-time complexity. First, a
common understanding of which techniques may be used for isolation
including hardware design, resource reservation protocols, virtualisa-
tion, and including novel hybrid and dynamic resource assignment
techniques were identified. The topic and the findings in several break-
out sessions and by individual talks given are completely in line with
the topic of Invasive Computing that creates isolation of applications on
multi-core resources by default.

Dagstuhl Seminar 16052 “Dark Silicon: From Embedded to HPC
Systems”

Prof. Dr. Gerndt (TUM), Sri Parameswaran (UNSW, Sydney, Australia),
Barry L. Rountree (LLNL, Livermore, United States) and Prof. Dr.-
Ing. Glaß (FAU) organised and coordinated the Dagstuhl Seminar 16052
on “Dark Silicon: From Embedded to HPC Systems”. The goal of this
Dagstuhl Seminar was to bring together experts from the different
domains and to discuss the state-of-the-art and identify future collabo-
ration topics based on common research interests. Three major topics
were discussed: Dark Silicon, Power and Energy Usage in HPC, and
Hybrid Approaches to Resource Management with longer overview pre-
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Figure 8.12: Dagstuhl Seminar 16052

sentations by invited speakers interspersed with research presentations
by the attendees. Each part closed with a discussion slot. After these
three parts, group discussions helped to identify future collaborative
research directions.

International Workshop on Multi-Objective Many-Core Design

Michael Glaß and Stefan Wildermann (FAU) organised the third Inter-
national Workshop on Multi-Objective Many-Core Design (MOMAC) at
ARCS 2016 at FAU’s Faculty of Business, Economics, and Law in Nurem-
berg. Dr. Felix Reimann (Audi Electronics Venture GmbH, Gaimersheim,
Deutschland) gave a keynote talk on “Towards A Holistic Design Space
Exploration for Automotive E/E Architectures”.

The Munich Workshop on Design Technology Coupling

Dr. Helmut Graeb (TUM) and Dr. Sani Nassif (Radyalis) organised
in cooperation with the CRC/Transregio Invasive Computing and the
SPP 1500 “Dependable Embedded Systems” the “Munich Workshop on
Design Technology Coupling (DTC)”. The workshop involved different
contributions from industry, e. g. Infineon AG, Bosch GmbH, and Volk-
swagen AG, as well as from the two DFG-funded research programs. In
one of the sessions, Prof. Teich gave a short introduction and overview
of the topics and benefits of invasive multi-core computing for achieving
timing predictability, fault tolerance and security for individual applica-
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Figure 8.13: Dr.-Ing. Felix Reimann giving the keynote at MOMAC in Nuremberg

tion programs. This talk was followed by the overview talks “Providing
Fault Tolerance Through Invasive Computing” by Dr. Vahid Lari (FAU)
and “On-Chip Diagnosis of Multicore Platforms for Power Management”
by Mark Sagi (TUM). On the second day of the meeting, the following
demonstrations from the CRC/Transregio 89 were presented: An inva-
sive object tracking application that was simulated and visualised in
real-time using the simulator InvadeSIM from Project C2, and the code
generation for Safe(r) loop computations using the compilation flows
developed by Project C3.

Figure 8.14: Panel discussion at the Munich Workshop on Design Technology Coupling
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9 Industrial and Scientific Board

For the promotion of our ideas to the industrial community and for the
discussion with peer colleagues world-wide, we established the InvasIC
Industrial and Scientific Board. Members of the board in its current
constitution are 8 experts from 7 institutions in industry and university:

IBM

Dr. Peter Hans Roth (IBM Böblingen)

Dr. Patricia Sagmeister (IBM Rüschlikon)

Intel

Hans-Christian Hoppe (Intel Director of ExaCluster Lab Jülich,
Intel Director of Visual Computing Institute Saarbrücken)

Siemens

Urs Gleim (Head of Research Group Parallel Systems Germany,
Siemens Corporate Technology)

University of Edinburgh

Prof. Dr. Michael O’Boyle
(Director Institute for Computing Systems Architecture)

Georg-Simon-Ohm Hochschule Nürnberg

Prof. Dr. Christoph von Praun
(Faculty Member and Associate Department Chair)

IAV – Automotive Engineering

Elmar Maas (IAV, Gifhorn)

Xilinx

Michaela Blott (Xilinx, Dublin)
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Meeting with the Industrial and Scientific Board

The members of the InvasIC Industrial and Scientific Board are periodi-
cally informed about progress and news of the CRC/Transregio InvasIC.
In September 2016, the members of the Board met during the an-
nual meeting in Blaubeuren. As an introduction, Prof. Jürgen Teich
(Coordinator) gave an overview about all projects involved into the
CRC/Transregio.

Figure 9.1: Poster session at the annual meeting in Blaubeuren

The following poster and demonstration session brought a good op-
portunity for the Board’s members to get an idea about the current state
of research in InvasIC. In the concluding plenary session, the opinions
and suggestions of the Board’s members were collected and discussed.

Figure 9.2: Members of the Industrial and Scientific Board during the plenary session at the annual
meeting in Blaubeuren, September 2016. From left to right: Michaela Blott (Xilinx),
Peter Hans Roth (IBM), Klaus-Dieter Schubert (IBM), Urs Gleim (Siemens), Dr. Patricia
Sagmeister (IBM Rüschlikon), Elmar Maas (IAV), Hans-Christian Hoppe (Intel)
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